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I. INTRODUCTION

This paper continucs the investigation begun by one of the authors of the
interrelationship between a semi-prime 2-torsion free associative ring, R with
involution and a subset, 7', with property (H)*: namely, 7 is a self-adjoint
Jordan subring (that is, 7 is closed under tou = ty + wi < for all f,ue T
and T = 7T%*) and wtx*e T for all ¢ T, xe R. Levitski and Jacobson semi-
simplicity are shown to hold in 7" when they hold in R. As well, the relationship
between the corresponding radicals is considered.

We also show that if certain ring properties hold in 7 then they also hold in R.
In particular, we are able to prove analogous resuits to Britten and Montgomery
when I satisfies either ascending or descending chain conditions on quadratic
ideals.

We also indicate, by example, how a major portion of the results of I. IN.
Herstein, S. Montgomery, and others relating to regularity conditions on skew
and symmetric elements hold, as well, for subsets with property (H)*. In fact,
we only prove three analogs of the many theorems related to these conditions
that appear in the literature. Finally, we investigate the relationship between R
and a subset T which is a self-adjoint Lie subring (thatis, [¢, u] = tu — ute T
for all ¢, w e T and T = T*) and has the property that xtx* ¢ I for all e 7,
xe R

I1. PRELIMINARY COMMENT

We wish to continue the investigation begun in [1] of particular Jordan
subrings, 7', of an (associative) ring R which is 2-torsion free, and has involution
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x — x*. We let .S denote the set, {x | x = x*}, (and K denotes the set {x | x =
—x*}), of symmetric and skew elements respectively.

The set T is said to be a self-adjoint Jordan subring of R if T is an additive
group and, in addition, T is

(i) closed under the (linear) Jordan multiplication induced by R; that is,
t,uc Timpliestou = tu + ute T.

(i) closed under the involution, that is, ¢ € T implies t* € T.

Furthermore, an additive subgroup 4 of T is said to be a Jordan ideal of T if
actcdforallac A, teT.

We make the following definition which restricts us to the Jordan subrings of R
which we wish to investigate.

DerintTiON 1. We say that a set T has property (H)* if, and only if, T is a
non-zero, self-adjoint Jordan subring of an associative ring R and

tUY = xtx*e T

forallxeR,teT.
We state the main theorem proved in [1] with immediate modifications which
are necessary for further theorems in this paper.

TuEOREM 2. Let R be a semiprime, 2-torsion-free ring with involution and let T
have property (H)*, then either

(i) T contains a self-adjoint (two-sided) ideal I (I = I*) of R such that
0£INS, or
(ii) there exisis a self-adjoint ideal, I, such that 0 £ INSCTCS.

Furthermore,
(iii) /2R = Rthen 2l =1
and
(iv) T is t-semiprime. That is, if A is a Jordan ideal of T and AU, =
(that is, aba = O for all a,b € A) then A = 0.

This theorem allows one to extend the results of [2] which characterize the
nil Jordan ideals of S of bounded index to nil Jordan ideals of T. This extension
is

Levma 3. Let R be a semi-prime 2-torsion free ring with involution and let
T have property (H)*. Let A be a Jordan ideal of T such that a® = O for allac A
(7 a fixed positive integer). Then A = 0.
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Since R is a subdirect sum of 2-torsion free *-prime rings (see [1]) and since
property H* (and nil) carry to the homomorphic image we may assume without
loss that R is a *-prime 2-torsion free ring.

Case 1
0£I=I*CT.
If @2 =0 for all ae A, then a(ar + ia)? = 0 for all 1. Thus, (a)® =0
Thus, it follows that ¢ = 0. Inductively, we see that the argument is the same.

That is, 24 € 4 and hence 2%-1g* € A for alla e 4. Letting a® = O forallac 4,
and 2N = {n or n -+ 1} we have

[ZIV—I(aNZ' + l'aN)}2N — 0
forallae 4, i e l. Since R is two-torsion free, we have on premultiplying by &V
(aVi)PNH = 0.

Thus, we conclude that ¢ = 0, completing the induction argument,

Case 2. 0£INSCTCS.

Ifa® = Qforall ac A then ab 4 ba = 0 and hence aba = 0 for all g, b ¢ A.

Thatis, AU, = 0, and as noted in Theorem 2, 4 = 0.

Now, in general, forae 4,iel, 1€ T, theni 4 ¢* and &t - ti* e I 1 S for all
i€l t e T. Furthermore, 2¢% € 4 for all a € 4 and hence 4ata = (2a) o (aot) —
2a% o t € A. Hence, (46?)] -+ i*(4a®) = 4a o (i*a + ai) — da{i + i*)a e 4 for all
ac A,ic A. Thus,

2%(ati 4 i*a%) e 4.
Replacing i by aV~?%, we have
2%aNi + i*aV)e 4
and hence letting " = O for all ae 4 and 2N == {n or n - 1} we have
a¥(a@Vi + i*aV PN = Q.

As before, by induction, we conclude 4 = 0.

II1. LEVITSKI AND JACOBSON SEMI-SIMPLICITY IN SUBSETS WITH PROPERTY (H)*

In this section we show how Levitski semisimple (1..5.8) for a x-prime ring R
(or how x-primitive for a ring R) transfers to subsets, T, with property (I1)*.
A subset T with property (H)* is said to be 1.8.S. as a Jordan ring if T has no
nonzero locally nilpotent Jordan ideals while T, with property {(H)}* is Jacobson
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semi-simple if 7 has no non-zero quasi-regular Jordan ideals. The main
theorem is:

ToroREM 4. Let R be a x-prime, Levitski-semi-simple (L.S.S.), 2-torsion
Jreering with 2R = R (x-primitive replaces x~prime, L.S.8.). Let T be a subset with
property (H)*, then T is L.8.S., t-x-prime Jordan ring (Jacobson semi-simple
Jordan replaces 1..S.8. Jordan ring.) '

Baxter [1] has shown that Rx-prime implies T is ¢-%-prime. Hence, we need
only prove that #(T), the maximal locally nilpotent ideal of 7, and called the
Levitski radical of T, is 0{_#(T), the maximal quasi-regular ideal of T, and called
the Jacobson radical of T, is 0).

We prove this fact by a sequence of lemmas. In each case, the conditions on R
and T are stated in Theorem 4.

Levma 5. Let I be the self-adjoint ideal of Theorem 2, then £(IN S) =
0(f(IN S)) =0).

This result follows immediately in the Levitsky case from Rich [12] where
LUANS)=ZL(I)N S. In the Jacobson case it follows from McCrimmon, [9],
where £(IN S) = Z(I)N S. As immediate, from this lemma, is the following
lemma. ’

Levva 6. F=2(TNnS) NnINS)=0
(G= FHTNSYn(InS)=0).

Introducing the notation {x, £, ¥), = xfy 4 y*ix*,

Levva 7. 2(TNS) =0 (F(TNS) =0

To prove this lemma, let ae L(TN SyandueclN S, then au 4 ua = 0 =
uau. Thus, u?a = Oforallae L(T N S),ueln S. Hence,

w¥(ta + at) =0
or #¥a = 0 for all ucIN S, ac Z(T'N S) and t e T'N S. In particular,
WulUfla=0  forall xeR.
Linearizing, we have
wx, u?, x*uy}a = 0

which implies
WU w’Ra == 0.
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Now R is s-prime (+-primitive implies x-prime) and thus a =0 (that is
LT N8 =0 F(TNnSY = 0) our desired conclusion), or

WU u® = 0.

It is easily seen that this latter implies (#?x)* = 0, or 42 = Qforallueln S.
However, IN S is a Jordan ideal of §. By Baxter {2}, we have /N 8§ =0, a
contradiction.

We are now prepared to prove Theorem 4. Suppose Z(T) 5= 0 (the argument
is the same for #(T)). Since T is self-adjoint, we have as we subsequently show
in the associative case, that #(7")is self-adjoint. Since, (TN SC (TN S) =
0, we have for all x € £(T) that x + x* = 0. Since #(7)is a Jordan ideal of T
and R is 2-torsion free, we have x® = 0 for all x € Z(T'). Thus, by Lemma 3,
L(T) = 0, completing the proof of Theorem 4.

IV. LevITSKI AND JACOBSON RADICAL OF A SUBSET WiTH PROPERTY (H)*

In the last section we defined for a subset T with property (/)* the Levitski
ard Jacobson radicals, denoted by #(T)} and #(T') respectively. One might ask,
as we did in [1] relative to other radicals, what is the relation between these
radicals and the corresponding radicals #(R) and #(R), the Levitski and
Jacobson radicals of R respectively. Since F(R) is by definition the maximal
locally nilpotent ideal of R and _#(R) is by definition the maximal quasi-regular
Jordan ideal of R, we immediately see that Z(R)N T C F(Ryand F(RINTC
F(T). We wish to show under suitable conditions that the latter is equality.

Levmma 9. Let R be a 2-torsion-free ving with involution and with 2R = R.
Then F(R) is a 2-divisible, self-adjoint ideal. Furthermore, £(R) = {(\ P* | P* s
x-prime, 2-divisible ideal of R and R|[P* = Qs L.8.5.}. I addition, 20 = Q.

That Z(R) is closed under the involution follows from the remark that if
% ¢ FL(R) then there exists a finitely generated subring M of R contained in {x),
the principal ideal generated by x, such that M" is not nilpotent for any 2.
Hence, M* C (x*) has the same property and thus (x*) £ Z(R); that is x* & F(R)

Next we note that #(R) is 2-divisible since if 2x € £(R), then the principal
left ideal, (2x), generated by 2x is locally nilpotent, That is, if B = {n,(2x) +
r,{2%) | 1 <7 << &, n; an integer and 7, € R} is a finite subset of (2x) then there
exists an # such that

n

20 1] (e + %) =0

=1

whenever each of 2(nx -~ 7,%) € B. Thus, since R is 2-torsion free, [ ] (nx -+
rix) = 0, and the corresponding B’ = {mux + rx | 1 <<j << &} generates a
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nilpotent subring of (x), that is, x € Z(R). The proof is now the same as that of
Devinsky [5, p. 128] with only minor modification.

Let M = {05 | Qs is a 2-divisible ideal of R with #(R) C Qp and H" £ O,
(H the finitely generated ring of [5])}.

Then 4 has a maximal Q which is prime and 2-divisible (see Baxter’s Remark,
[1] Lemma § relative to this latter point). Thus, following the argument of
Divinsky, R/Q is Levitski-semi-simple.

Since 2R = R, it is immediate that 20 = Q completing the proof of Lemma 9.

TueoreMm 10. Let R be a 2-torsion free semi-prime ring with involution. Let
2R = R. Let T be a subset with property (H)*, Then L(T') = L(R)N T.

We have observed that F(R)N T C Z(T). Therefore, we must justify
equality. Consider R/P* = O, where P* is *-prime, 2-divisible ideal of R
with R/P* L.S.S. and where T  P*. Then, R/P* = Q contains T -+ P*/P*,
By Theorem 4, T+ P*/P* is t-x-prime and L.5.5. (as a Jordan ring). How-
ever, T -+ P*|P* o= T|T n P*. Thus, the latter, T/T N P* is t-k-prime and
1.S.8. as a Jordan ring.

Now, by Tsai [13], Z(T) = {(\ W, | W, is a Jordan ideal of T and T/W, is
t-+-prime, L.8.S}. Therefore, L(T)C TN P* Thus, L(TYCNW,C
Nrges (T O PF) C T O (Nggps P*). But, T C P* certainly means that Z(7") C
T C Nreps P*. Therefore, L(TYC TN (Np+ P*) = T 0 L(R), completing
the argument.

The following lemma is a consequence of Baxter and Martindale [3].

Levma 11. Let R be a 2 torsion free semi~prime ving with involution and with
the property that 2R = R. Then JZ(R) = (\{P | P is a *x-primitive, 2-divisible
ideal}.

From this and as a consequence of Theorem 4 we obtain

TuaroreMm 12. Let R be a 2-torsion free, semi-prime ring with involution and
let 2R — R. Let T be a subset with property (H)* and the added property: 2T = T.
Suppose, either R has an identity or T C S. Then, #(T) = F(R)N T.

The role of the additional hypothesis is to assure that the quasi-inverse, &, of
an element @ € 7 is also in 7. T'o observe this fact we note a + b — ab = 0, or
(1 —a)1 —5)=1 (in a formal sense if 1 ¢ R, in a real sense 1 € R). Thus
b=(—a)(l—b)=—a+d(—a)l —~b)]=—a—a*(l —b)=—a— (1 —b¥)
(1—a*)a®(1 —b). Now if ae T, then (1 — a®)a?e T (recall 2T'= T and T
is a Jordan subring). Hence, if 1 € R then be 7. As well, if ac S, then be S
and, hence one concludes that be T.

We offer finally in this section without a formal argument the immediate
result:
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CororLarY 13. Let R be a 2-torsion free, semi-prime ving with involution.
Let 2R = R. Let T be a subset with property (H)Y(T L #(R)) and let either 1 € R
or TC S, then

(1) If R is primary (that is, R is a ving with identity, 1, and R| J(R) is a
simple ring), then T is primary (that is, 1 € T, and T| #(T)is simple Jordany;

(it} If R is semi-primary then T is semi-primary.

V. CoNpITIONS ON A SET WITH PROPERTY (F)* WHICH IMPLY CONDITIONS ON R

‘This section assumes that T is a subset with property (H)* in a *-prime, 2-
torsion-free ring R. The key lemma is:

Lemva 4. I T == 0 for any non-zero, self-adjoint ideal 1.

The lemma is proved if we can show that/ N 7 = O leads to [ == .
Notethat fiN T = OQthenforallacl te T

tU¥eInT = 0.

Hence, {a,1, 0%}, =0 for all a,bel, teT. Thus, 0 = a*t{a, ¢, 0%}, =
a*thia*. Hence, (at)®* = O for all ae I, 1 € T. In a semi-prime ring, this means
that az = 0. Hence, since R is x-prime we have ¢ = 0, a contradiction.

We use this lemma to immediately conclude

TueoreM 15, Let R be x-prime and 2-torsion-free. Lei T be a subset of R
with property (H)*. Then R is semi-simple whenever T is a semi-simple Jordan ring.

We make the following definition.

Drrinrtion 16, Wesay e € T is an identity for 7' if, and only if, ef 4 fe = 2¢
forallte T.

Using this definition we conclude

TrueoreM 17. Let R be a 2-torsion free ring with involution. Let T be a subset
with property (H)*. It then follows that whenever e is an identity for T, then e is
a central symmetric idempotent for R.

In proving this theorem we note that 2¢% = 2e, or ¢ = e. Hence, e is an
idempotent. Moreover, since T is self-adjoint, both ¢ and e* have the identity
property. Thus,

2e* = g¥e 1+ ee* = 2e¢
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or ¢ = ¢*. Hence, e is 2 symmetric idempotent. Now, forallt € T, 2 = et + te
implies that

et = te

(post and premultiplying by e yields this fact).
Furthermore
2t = et + te = 2et

implies that ¢ = et = te for all # € T. We note in passing that these facts about
e are consistent with the definition of McCrimmon [10] relative to a unity in a
quadratic Joedan algebra.

Now, for all x, y € Rand t € 7' we have

7 e, 1, hs = {%, 1, 9} xe-
In particular, let ¥ = ¢ = e and we conclude that
ey + ey*e = eye 4 y*e
for all y € R. Pre and post-multiplying by e yields
ey = eye = ye

for all y e R. That is, e Z(R). Hence we have shown that ¢ is a symmetric,

central, idempotent.
With this result we are able to conclude.

Lemma 18, If Ris x-prime and e is an identity for T then e is an identity for R.

We know that e = ¢* = ¢ and e Z(R).

Now, I = {x — ex| x e R} is a %-ideal of R. Moreover, if x — ex & T then
% —ex —e(x —ex) = 0. Thus, INT =0. By Lemma 14, I = 0. Thus
x = exforall xe R.

With this lemma we are able to prove the following theorem.

TueorREM 19. Let R be 2-torsion free x-prime ving and let T be a subset with:
properiy (HY*. Let e be anidentity for T and let T be a x-simple Jordan ring (that is,
T contains no self-adjoint Jordan ideals). Then R is ax-simple associative ring.

By Lemma 14, IN T = T for all non-zero self adjoint ideals I of R. Thus,
ecl. However, by Lemma 18, e is an identity of R. Hence, R = I; that is,
R is x-simple.

One notes that if one takes the classical example of a vector space with countable:
basis over a field, and the primitive ring of matrices acting on this vector space
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with involution, transposition, then it is well-known that the matrices which are §
except in an # X 7 block satisfy the conditions for 7. In this situation, 7 has no
identity, and the theorem is false.

VI. CHAIN CONDITIONS ON A SUBSET WITH PROPERTY {H)*

In this section we prove analogous results to those of Britten {4] and Mont-
gomery [11] for a subset T'with property {H)* of a *-prime, 2-torsion free ring, R.

We are considering those situations where 7" satisfies ascending chain condi-
tions {acc) or descending chain condition (dec) on quadratic ideals. O is a
quadratic ideal of 7' if Q is an additive subgroup of T which is closed under the
quadratic multiplication; that is, U, = gtge Q for all t € T, g € Q. Recall that R
satisfies Goldie’s Theorem for associative rings: R has a ring of quotients which
is semi-simple, Artinian if, and only if, R is semi-prime (satisfied by our hypo-
thesis}, contains no infinite direct sum of left ideals, and satisfies a.c.c. on left
annihilators.

We prove:

Turorem 20. Let R be x-prime, 2-lorsion free, and let T be a subset with
property (H)*. Suppose that T satisfies either acc or dec on guadratic ideals, then R
is @ Goldie ring.

The proof is separated into the 2 cases of Theorem 2.

Case 1. 0 I =I*C T. Since T has acc (or dec) on quadratic ideals, 7
contains no infinite direct sum of quadratic ideals (See Lemma E of [4].) Let
A 5= 0 be a left ideal of R. Then, AN I + 0. If not, then 4 = 0 (and R is
x-prime), hence 4 = 0 which is a contradiction. In fact, for any a # G e 4,
Iz 0. Now, let # = {4}, an infinite sequence of left ideals of R whose sum
is direct.

Hence, {J N A; = 0} is an infinite sequence of quadratic ideals of 7" whose
sum is direct, a contradiction. Thus R contains no infinite direct sum of left
ideals.

Let {4,} be an ascending chain of left ideals which are left annihilators and
such that 4, 7= A, . Let B, = Olp(4;) = {b| A;b = 0} Then 4; = U;(B,) =
{c| ¢B; = 0}. Now, since {0 = I N A,} is an ascending chain of quadratic ideals
of T and every such chain breaks off, we have a positive integer N such that
In A4, =In Ay, for all positive integers .

Thus, ( N Ayy;) By = 0. In particular, I4, By = 0. Hence, Ay, By = 0
since J = I*. Thus, Ay.; C Ay, 2 contradiction. Thus, every ascending chain
breaks off. Hence, R is a Goldie ring.

Case 2. 0 <IN SCTCS for some self-adjoint ideal 1.
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We observe that if 4 is a left ideal of R then 4 N T is a quadratic ideal of T.

Moreover, we observe that the argument that A N 71 £ 0, for 4 =£ 0, still
holds. Thus, suppose that 4 N T = 0, then we claim 4 N S = 0. If not, for
a#%#0eANS,ielInN SC T, then aia = 0 and hence ‘aisiai = 0 for all s& S.
Since R is x-prime, .S is f-semi-prime (see [6]) and hence iai = 0 for all
teIn S. Therefore, ax*[ia(ix + x*i) 4 (ix + ¥*)ai] =0 for all xeR,
ieIn S. Thus

ax*igx¥i = 0

or g = Q for all 1€ I N S. Hence, (ix + x*)a = 0 and thus ¢ = 0, a contra-
diction.

We have just seen that A NS = 0. Thus, a*ta = 0 forallte T C S, ac A.
Now, ata* e T C S and

ata*sata* = 0 forall acAd,teT,seS

since, a*sa e A N S. Therefore, ata* = 0, as well.
Now considerforte T,xc A NI,

Uy = (2 - %) t(x + ) = wtx + 2™ =y 4 y*
where y =wxixe AN L

Furthermore, if Q = {x + «* | xe ANI} =0, then ANICK and, hence
a® = O for all a € A N [. This means that 4 N[ is a nil left ideal of bounded
index, from which it follows that 4 NI = 0, a contradiction.

Note that we have shown that Q ={x -+ x*{xe A NI} is a non-zero
quadratic ideal of 7.

Now, continuing with the argument, in this case, we have the same situation
as Montgomery [11], Theorem 1 and hence we can argue similarly with only
the following modification: instead of choosing » € R, as Montgomery does,
choose 7 € I. Hence, R has no infinite direct sum of right ideals.

We now wish to show that R satisfies acc on left annihilators. Let 4, C 4, C
== C 4, -+~ be a proper ascending chain of left annihilators, and B; = 0Z/x(4,)
be the corresponding descending chain of right annihilators. First, assume
A; T 5 0 for some 7. Then without loss, we may assume 4, N T 5= 0 for all 4.

Now, {4; N T} is an ascending chain of 7. Thus, 4y N T = Ay, , N T for
some N. Leta 0 AyN T, becdy,,bddy,jeT.

Then,

b¥ja + agj*be Ay ,NT = AyNT.
Hence, (6%ja -+ aj*b) By = 0, or

aj*bBy =0 for all je I(= I*).
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Since a = 0 e T C S, we have bBy = 0. Thus, b€ 4, and we have a contra-
diction. Hence, we may assume 4, N 7 = O for all 7.

Now, as noted, for each 7, Q; = {x - 2* | x € 4; N I} is a non-zero quadratic
ideal of T and we argue as above and in Montgomery, Theorem 2 and conclude
that the chain breaks off, a contradiction.

This completes the proof of Theorem 20.

In certain situations we can characterize R more completely. To do this, we
observe the following lemma.

Levmva 21. Let t € TN .S be regular in T N S (that is, uU, = 0, uc T N5,
implies u = Q) then t is regular in R (that s, { has no non-zero left or right zero
divisors).

Consider 7Z,(¢) = {x | w¢ = 0}, the set of left annihilators. Then since x¢ = 0,
we have fx* = 0. Therefore, for all { € I, we have (ix — x™*) U; = 0. However,
t is regular in TN S. Thus, ix + x*0* = 0 for all /€. That is, I/, (1) C K
and so ixix = (0. That is, Rix is a nil left ideal of bounded index. Hence, ix = {
and since { is self-adjoint, we conclude that {7,(¢) = 0, the desired consequence.

Now if a is regular in R and ¢ is regular in 7'M S, then, by Lemma 21, ata™ is
regular in R. Hence we are prepared to state the following corollary to Lemma
21.

Cororrary 22. Let R be x-prime, 2 torsion free, and let T be a subset with
property (H)*. Suppose further that T satisfies either acc or dec on quadratic ideals
and that T N S has a regular element If W is the ring of quotients of R and v e S{(W),
the symmeiric elements of W, then v = U, b wherexe TN S, b¢ S.

Furthermore, if I has a vegular element then both x and b can be chosen in I "\ ;)
every element of Wisc7d, c,d el

Let a % e W, then a is regular in R. Thus ¢*f2 is regular if te TN S is
regular. Furthermore,

a b = (a*tay Ha*tb).
Now assume a~th € S(I) then
(a*ta)yHa*th) = (b*ta)(a*ta)™

or a*tha*ta = a*tab*ta. Letting x = g*ia and vy = a™th, then yxe S and
U, yx) = x~Y(yx) a2, Hence, xly = U, where xe TN S and be S.
The remarks on 7 are self-evident.

VI. SeeciaL Lie SuBrINGS OF R

In this section we investigate an additive subgroup, 7, of a semi-prime 2-
torsion free {associative) ring R with involution which have the properties that
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(i) T is closed under the Lie multiplication; that is, #,ze T implies
[t,u] = tu — ut € T (T is said to be a Lie subring) and

(i) tUF =wix*eTforallxeR, teT.

For such a Lie subring we are able to prove
Turorem 23. Let R be a 2-torsion-free, semi-prime ring with involution. Let T
be a self-adjoint Lie subring and suppose further that tU¥ € T for all x e R, te T.

Then either T contains a non-zero self-adjoint ideal I of R or t + t* € Z, the center
of R, for allt e T.

As in [1], one observes that since the elements
{96', 3 uy}* and {xt: u, J’}*

arein I for all », y € R, ¢, u € T, then R(u*t — ut*)R C T. Letting u*t — ut* =
w, we also have :

Rw*RC T

and hence, R(w 4- w*)R C T. That is, 7" contains a non-zero self-adjoint ideal I
unless

w4 w* =w—w* =0
That is, if 7 does not contain a non-zero self-adjoint ideal then
u*t = ut* forall u,teT.
Now, since 7" is a Lie subring, we have
{x [t 4], 9} T
and
{x, 8, wy}, — {wu, t, v}, e T

forallx,ye R, u,tcT.
That is, on subtracting we have

R[t, (u+ w¥)]RC T.

Likewise
R[t*, (u+u®)RCT

and, as before, 7" contains a non-zero self-adjoint ideal unless

[t,u~+ u*] =0 forall t,ueT.
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Hence, we have shown that if 7 does not contain a nonzero self-adjoint
ideal I then

@O wit =ut*  and (1) [t u-+ ] =0

for all ¢, u € 7. We wish to show that these conditions imply ¢ + t* & Z for all
teT.

Since a semi-prime 2-torsion free ring with involution is the subdirect sum
of *-prime, 2-torsion free rings, and since the properties on 7" will carry to the
homomorphic image, we henceforth assume that R is x-prime, 2-torsion free and
that (1) and (11) hold for all elements of T.

Rewriting the expression (II), we have

(1) 1, 4] = [u*, t] = ut* — ¥ e K

forall t, uec T.
In particular, t*[u, v] = t[e, v]* = t[v*, »*]. (1II) implies that t[v*, 4*] =
tlu, v*¥] = t{v, u]. Therefore, t*[u, v] = —#[u, v] or

(4 t*)uv — vu) =0

forall ¢, w, v e T. Since T is self-adjoint (£ + ¢*¥) U¥ e Tfor all xe R, t& T and
thus

{x, (¢ + %), x*y} (v — vu) =0
forallx, ye R, t, u, ve T. That is,
(¢ -+ t*) UXR(uwv — vu) = 0.

Thus, either ¢ 4 #* = 0 (this follows from (¢ + #*)UF = 0 and the fact that
R is semi-prime) and hence t + t* e Z foralize 7 or

vy [u,9] =wwo — vu =0

forallu,ve T.
We therefore assume the latter holds. Then from (I) we conclude

(V) w¥t =t*u  forallu,ieT.

Defining M = {3 xtx* |x € R, 1€ T} C T, we conclude that ma |- a*me M
forallme M, ae R. By (IV) we have

tm,mos] =0 forall mel,seS.

That is, [m? s] =0 for all me M,seS. Thus, [m®* 4 (m?)*, s] = 0 for all

me M, se S. In a 2-torsion free semiprime ring we conclude that

m? 4 (m*P e Z.

481/55/2-20



494 BAXTER AND CASCIOTTI

Linearizing, we conclude that (# o n) -+ (m o n)* € Z for all m, ne M. How-
ever, [m, n] = [m, n]* = 0. Therefore, for all m, ne M

(VD) mn -+ n¥m* € Z.
Noting that M is self-adjoint we have. in particular,
mm*eZ  forall mel.
Linearizing, we conclude
mn* + nm*e Z for all m, n e M.
From (V), we have
mn*cZ for all m, n e M.

Therefore, mn € Z for all m, n € M, since M is self-adjoint. In particular, making
frequent use of m? € Z for m € M, we have

m(n 4+ n¥)n(a + a*) = mn(na + na*) + (na + na*y*nje Z

forallm,ne M, ac R.
Furthermore, [mn + nm*]n € Z, which by the use of (V) yields

mn+n*meZ  forall mynel.

Thus, m(n + n*)n({a + a*)p — bla + a*)) =0 for all mneM,a,beR.
Therefore,
m(n + n*)nR[a + a*, 0] = 0.

Since m{n + n*)n € S and R is *-prime, we have either ¢ |- a* e Zforallae R
(in particular, m - m* € Z) or

mn+n¥m =0  forall mnel.
Since m(n 4 n*) € Z, we have
m(n + n*) Rn* = Q.
Since m(n 4 n*) € S, we conclude that either M/ = 0 (and hence:m + m*e Z)or
m(n -+ n¥) =0

for all m, n € M. Therefore,

mUX(n + n*) =0
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for all x € R. Thus,
{x, m, x*y},(n + n*) = 0.

That is, amx* == O (which implies M = 0 and so m + m* e Z) or n 4 n* =
6eZ
Thus, in all cases

m-+-m*ed forall me M.

That is,
G+ UreZ

for all 1€ T, x € R. Therefore,
{w,t + ¥, 2%y}, e Z

forallx,ve R, teT.
That 1s,

¢+ U Ny +y")eZ

As before, we are able to conclude that either ¢ + t* = 0 for all e T or
y -+ y*eZ for ye R. In either case, ¢ -}- #* € Z for all e 7. This completes
the proof of the theorem.

We are now in a position to prove the analog of Theorem 2 of Herstein {7].

CororLary 24. Let R be a x-prime, 2-torsion free ving and suppose thay T is a
non-zero self-adjoint Lie subring of R with the properties:

() axtx*eTforallteT, xcRand

(i) T does not contain a non-zero self-adjoint ideal of R. Then T C K or
T C Z N S and R satisfies a standard identity in 4 variables.

Since ¢t - t* e Z for all t € T and ut™ = u*¢ for all 4, t € T, we conclude that
{(# — u*y R(t + t*) = 0.
Hence either 4~ t* = 0 for all te T (that is, T C K}, or ¢ — &* = 0 for all
ue T (that is, T C SN Z). Now since xtx* € SN Z for 2ll £ € T, we conclude
that xx* € Z for all x € R. Hence, as Herstein remarks, R satisfies a standard
identity in 4-variables.

CoroLLarY 25. Let R be x-simple, not satisfy & standard identity in 4
variables, and T as above, then either T = Ror T = K.

T = R if T contains a nen-zero self-adjoint ideal. Hence, assume T does not
contain a self-adjoint ideal.

Next consider the case where 7°C K. Now, recall that 2R = R. Hence, if
we define M = {3 xtx* xRt Ttand V = {3 ma — a*m | me M, ac R}
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then0 =« M CK, V C Sand M @ V is an ideal of R. [This remark is justified
below.] Moreover, M C T. Thus, M = K C T C K. Therefore, K = 1. Now,
if T'C S N Z; then we have seen that R satisfies a standard identity in 4-variables
which is excluded.

Thus, the lemma is proved if we show M @ V is an ideal. It is sufficient,
because of a symmetric argument, to show 2ma and 2va e M @ V for allm e M,
ve Vand ae R. Now, 2ma = (ma + a*m) + (ma — a*m)e M @ V. Likewise,
2va = 2(mb — b*m)a where v = mb — b*m.

Thus, 2va = 2mba — [b*ma -+ a*mb] — [b*ma — a*mb]. The first two
terms on the right are in M @ V. Thus, we are done if we conclude the latter
term is in V. However, this is true since

b*ma — a*mb = b*(ma + a*m) — (ma + a*m)b - m(ab) — (ab)*m.

VII. TuEOREMS OF PosITive DEFINITENESS TYPE

In this section we show that the so-called “positive-definiteness theorems”
(see [8], pg. 73-80) which appear in the literature have their analog in sets with
property (H)*. We do not prove all the theorems or ¢ven state them but rather
select three for proof. We emphasize that the other theorems have their corre-
sponding statement and proof.

The first of these theorems is essentially Theorem 2.1.7 ([8], pg. 62). The
second of these theorems is the analog of Theorem 2.2.1 ([8], p. 73) and is due
to I. N. Herstein,

Turorem 26. Let R be a 2-torsion-free semi-prime ving with involution. Let T
be a subset with property (H)* in which every element of T O\ S is invertible in R.
Then TS = Sand Ris

(1) a division ring, or

(2) the divect sum of a division ring and its opposite, relative to the exchange
involution (%, yY* = (y, x) or

(3) the 2 X 2 matrices over a field, relative to the symplectic involution;
namely, (5 §)* = (2, 72)-

Now, since T is a subset with property (H)*, there exists a non-zero self-
adjoint ideal, 7, such that a 54 I N .S C T'N S. Now the ideal I can contain no
invertible elements if it is proper, thus we must conclude that IN S = S =
T S, and hence T N S, and every element of S is invertible in R. Thus, the
conditions of Theorem 2.1.7 of [8] are satisfied and thus the desired conclusion.

Turorem 27. Let R be a 2-torsion free prime ving with involution. Let T be
a subset with property (H)* and with no non-zero nilpotent elements in T N S.
Then either



BRAUER—CARTAN-HUA CONDITION 497

(i) xx*s£0mRifx~0inRor
(il) SCZ(R)and R is an order in
Fy — Rppg — g%‘reRandz #0eTn S|,

Suppose (i) does not hold, then xx* = 0 for some x 5= 0. Thus, x{T N S)x C
TN S and moreover (x*fx)? =0 for all e TN S. Thus, by hypothesis,
x*tx = Q for all £e TN . In particular, ¥*(@ + i*)x = Q for all fe] (L is the
#-ideal such that 0 £ I N S C T'n ). Thus, x*ix € K for all 7 e 1. In particular,
x¥ix = Qforalit eI N S. Now if a*ix = 0 for all { € I, then it follows since R
is prime, that x = 0, a contradiction. Therefore, there exists an 7 € I such that
%y =k 5= 0l and % = 0. Moreover, kskei N S C T N Sand (ksk)? = 0.
By hypothesis, ksk = 0. Now if s€ S then &s — skel N Sand (ks — sk)2 = (.
Hence, [k, 5] = 0 for all se 5. Now by Theorem 2.1.5, Herstein [8] either
5 C Z or S contains a non-zero ideal, G, of R. Now if the second case, & € Z(R)
and A% = (), a contradiction in a prime ring, therefore S C Z.

Moreover, since R is prime, Z has no zero divisors. Thus we can localize R
at TN SCSCZ and obtain the Rpng ={rfz|7eR, 20T NS Rppng
is a prime ring with invelution.Its non-zero symmetric elements are all invertible
Moreover, k/z € Ry is a non-zero nilpotent element. Hence, by Theorem 26,
Ryng = F, . Buteveryelement of Ry gisof theformre,re R, 2 A0 TN S,

Therefore, if 7 is regular in R, it is regular in Ry~ . Thus, we conclude that R
is an order in F, , completing the proof.

We also prove the analogous theorem to Theorem 2.2.4, Herstein [8], (p. 79}
by invoking Corollary 24.

Tuzorem 28. Let R be a 2-torsion free prime ring with involution and suppose
T is a non-zero self-adjoint Lie subving of R with the properties
(1) wix*Tforallte X,xecR

(it) no non-zero element, t — t* e T, for t € T, is nilpotent.
Then,

(i) xx* =20eRifx ~=0or
(it) R s an order inF, , R a field.

Corollary 24 tells us that either T contains a non-zero self-adjoint ideal I or
TCKorTCZ

Now, if TCTIand I'n K = 0, then it follows that 7 C S and hence is com-
mutative. From which it follows that R is a prime, commutative ring, hence a
commutative integral domain and thus ¢) holds for all x € R.

Thus we need to examine the Theorem under the assumption R is not
commutative.
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If TC Zthenxtx* e Zforallte T, x € R. Thus, txx* € Zand so t[xx*,a] =0
for all 2 € R. Now, this implies tR[xx*, a] = 0. That is xx* € Z for all xc R.
Hence, R satisfies a standard identity of 4 variables. Therefore, by a theorem
of Posner ([8], Theorem 1.3.4) either (i) or (ii) holds.

Therefore, T C K and either T contains a non-zeroideal ,0 #I N K C Tor
T C K. This latter possibility also forces the cxistence of an ideal, I, such
that TN K 5 0C T.Indeed, if ' K # Othen! = R@m)R,m 2 0e TN K
is the desired ideal. For if, xmy i- y*mx* := 0 for all x,y € R then (x*m)? = 0
or m = 0, a contradiction. Hence, without loss, 0 ¢ I N K C T for a self-
adjoint ideal, 7.

Now let xx* =0, x 20cR. Thus, x¥(t-— t*)x = x*tx — (¥ tx)* =
! — I*, le T. Motrcover, [x*(t — t¥)x]? == 0. Thus, by hypothesis, x*(t — t*)x =0
foralltc Tor x*tx == Oforallte 7. NowifacIthena — a* €l N K. That s,
x*(@a — a*)x = 0. Hence, x*ax € S N I for all @ € I. Moreover, since R is prime,
s = x*gyx # 0 for some aq, ¢ I, while s* = 0. Now, s(t — t*)s == Oforallte T
as before. Thus, sts = 0 for all £ T N K. Therefore, sis == 0 for allie I N K.
Since, si + iseI N Kforallie I N K, we have (si + #5)? = si%s and (st + i5)% ==
0 for all :e I N K. Therefore, by hypothesis, si - is = 0. That is, sf == —is
forallieIN K.

Thus, s centralizes (I N K)2. Now the latter is a Lie ideal of R. Therefore,
the subring, L, generated by (I n K)? either contains a non-zero ideal of R or
(I " K)2 C Z (sce [8], Theorem 2.1.2). Since s € § is nilpotent, it is non-central.
Hence, s cannot centralize a non-zero ideal of R. In consequence, (I N K?) C Z,
that is, 2 € (I N K)? implies #? € Z. In particular, if ue I N K thenu? 4 0e Z.
Thus z 5 0. Hence, Z+ = Z N S < 0 and we can localize R at Z+, calling it Q.
Morcover, if k ;2 0 eI N Kthenk® -+ 0 € 7, = Z(Q). Thus, kis invertible in Q.

We claim Q is simple. For if V' o Ois anideal of O, then W = VV* -2 0CV
and is self-adjoint in Q. If W (T N K) = 0 then wi — *w* == O forallic ],
we W. That is, wi € S. Hence, quie S for all ¢ Q. That is, guwi = (qui)* =
wig*, Hence, for p, g€ O, pqui = wig*p* -- quip* = gpwi. That s, [ p, gJwi 0.

Thus, Cwi — 0, where C is the ideal generated by [Q, O]. Since we are in a
prime ring, C = 0; that is, O is commutative and hence R, a contradiction.
Thus, wi : - 0; that is, /W = 0 which is also false. Hence, W (7' K) # 0.
But, every element of 7' " K is invertible. Therefore, 1 € Wand so V == (; that
is Q is simple.

Now IZ+ ={izticl, 2 c Z*}1s an ideal of W. Hence, Q =1Z~*. Thercfore,
K(Q) (the set of skew elements of Q) = K(IZ+) = (KN 1)Z+=(T n K)7Z+.
Furthermore, ifu £ 0,v -2 0e€ TN Kthenuv £ 0€ Z;, and since Z; is a ficld,

u = av, ae”Z;

follows. But then the skews are 1 dimension over the center of Z(Q)and hence
they do not generate Q. This is sufficient to conclude that Q is 4 dimension over
a field and that Ris an orderin F, .
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