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1. ~NTRODUCTIQN 

‘Ihis paper continues the investigation begun by one of the authors of the 
interrelationship between a semi-prime 2-torsion free associative ring, .R with 
involution and a subset, T, with property (H)*: namely, T is a self-adjoint 
Jordan subring (that is, T is closed under t 0 u = 04 + tit ET for all t, u E T 
and T = T”) and xtr* E T for all t G T, x t R. Levitski and Jacobson semi- 
simplicity are shown to hold in T when they hold in R. As well, the relationship 
between the corresponding radicals is considered. 

We also show that if certain ring properties hold in T then they also hold in 
In particular, we are able to prove analogous results to Bitten and ,Montgomery 
when T satisfies either ascending or descending chain conditions on quadratic 
ideals. 

We also indicate, by example, how a major portion of the results of I. N. 
erstein, S. Montgomery, and others relating to regularity conditions on skew 

and symmetric elements hold, as well, for subsets with property (M)+. In fact, 
we only prove three analogs of the many theorems related to these conditions 
that appear in the literature. Finally, we investigate the reIationship between 
and a subset T which is a self-adjoint Lie subring (that is, [t, G] = tu - ut E T 
for all L, u c T and T = T*) and has the property that xbx* c: 7’ for all t E T, 
XER. 

II. PRELIMINARY coM~13wr 

We wisb to continue the investigation begun in [I] of particular Jordan 
subrings, T, of an (associative) ring R which is 2-torsion free, and has involution 
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x + x*. We let S denote the set, 1% 1 x = x*}, (and K denotes the set {x j x = 

--CC*}), of symmetric and skew elements respectively. 
The set T is said to be a self-adjoint Jordan subring of R if T is an additive 

group and, in addition, T is 

(i) closed under th e (1 inear) Jordan multiplication induced by R; that is, 
t, u E T implies t 0 u = tu + ut E T. 

(ii) closed under the involution, that is, t E T implies t* E T. 

Furthermore, an additive subgroup A of T is said to be a Jordan ideal of T if 
aotEAforallaEA,tET. 

We make the following definition which restricts us to the Jordan subrings of R 
which we wish to investigate. 

DEFINITION 1. We say that a set T has property (H)* if, and only if, T is a 

non-zero, self-adjoint Jordan subring of an associative ring R and 

tU,* = xtx” E T 

for all x E R, t E T. 
We state the main theorem proved in [l] with immediate modifications which 

are necessary for further theorems in this paper. 

THEOREM 2. Let R be a semiprime, 2-torsion-free ring with involution and let T 

have property (H)*, then either 

(i) T contains a self-adjoint (two-sided) ideal I (I = I*) of R such that 
0 # I n s, OY 

(ii) there exists a self-adjoint ideal, I, such that 0 # In S C T C S. 

Furthermore, 

(iii) if2R = R then 21 = I 

and 

(iv) T is t-semiprime. That is, ; f  A is a Jordan ideal of T and AU, = 0 
(that is, aba = 0 for all a, b E A) then A = 0. 

This theorem allows one to extend the results of [2] which characterize the 
nil Jordan ideals of S of bounded index to nil Jordan ideals of T. This extension 
is 

LEMMA 3. Let R be a semi-prime 2-torsion free ring with involution and let 
T have property (H)*. Let A be a Jordan ideal of T such that an = 0 for all a E A 
(n aJixedpositive integer). Then A = 0. 
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Since R is a subdirect sum of 2-torsion free *-prime rings (see [I]) and since 

property H* (and nil) carry to the homomorphic image we may assume without 
loss that R is a *-prime 2-torsion free ring. 

Case I 

Q#i==I”CT. 

If  a2 = 0 for all a E A, then a(& + ia) = 0 for all i E 1. Thus, (a;)” = 0. 

Thus, it follows that a = 0. Inductively, we see that the argument is the same. 

That is, 2a2 E A and hence 27c-1ak E A for all a F A. Letting an = 0 for a11 a E A, 
and2iV=(nornj- 1)wehave 

[2”-l(a% + iaN)jzN = 0 

for all a E A, i E I. Since R is two-torsion free, we have on ~~ern~l~~~~~~g by alv 

Thus, we conclude that aiv = 0, completing the induction argument. 

Case 2. 0 # In S C T C 5’. 

I f  a2 = 0 for all a E A then ab + ba = 0 and hence aba = 0 for all a, b E A. 
That is, AU, = 0, and as noted in Theorem 2, A = 0. 
Kow, in general, for a E A, i E I, t E T, then i + z’” and it f  tP E I n S for al% 

i E I, t E T. Furthermore, 2a2 E A for all a E A and hence 4ata = (2a) o (a o t) - 
2a2 0 t E A. Hence, (4a”)i + i*(4a2) = 4a 0 (i*a f ai) - 4a(i + P)a E A for ali 
acA,i~A.Thus, 

22(a2i + i*a2) E A. 

Replacing i by aNb2i, we have 

22(aNi + i*aN) E A 

and hence letting a 12 =Oforalla~Aand2N=(norpz+ 1)wehave 

a”(aNi + i*aN)2N = 0. 

As before, by induction, we conclude A = 0. 

111. LEVITSKI AND JACOBSON SEMI-SIMPLICITY IN SUBSETS WITH PROPERTY ( 

In this section we show how Levitski semisimple (L.S.S) for a <<-prime ring 
(or how *-primitive for a ring R) transfers to subsets, T, with property (H)*. 
A subset T with property (H)* is said to be L.S.S. as a Jordan ring if T has no 
nonzero locally nilpotent Jordan ideals while T, with property (H)” is Jacobson 
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semi-simple if T has no non-zero quasi-regular Jordan ideals. The main 
theorem is: 

THEOREM 4. Let R be a +-prime, Levitski-semi-simple (L.S.S.), 2-torsion 
free ring with 2R = R (*-primitive replaces *-prime, L.S.S.). Let T be a subset with 

property (H)*, then T is L.S.S., t-*-prime Jordan ring (Jacobson semi-simple 
Jordan replaces L.S.S. Jordan ring.) 

Baxter [I] has shown that &-prime implies T is t-*-prime. Hence, we need 

only prove that L?(T), the maximal locally nilpotent ideal of T, and called the 
Levitski radical of T, is 0($(T), th e maximal quasi-regular ideal of T, and called 
the Jacobson radical of T, is 0). 

We prove this fact by a sequence of lemmas. In each case, the conditions on R 

and T aye stated in Theorem 4. 

LEMMA 5. Let I be the self-adjoint ideal of Theorem 2, then Z(I n S) = 

O($(I n S)) = 0). 

This result follows immediately in the Levitsky case from Rich [12] where 
5?(1 n S) = Z?(I) n S. In the Jacobson case it follows from McCrimmon, [9], 

where /(I n S) = f(1) n S. As immediate, from this lemma, is the following 
lemma. 

LEMMA 6. F=LP(TnS)n(InS)=O 

(G=$(TnS)n(InS)=O). 

Introducing the notation {x, t, y)* = xty + y*tx*. 

LEMMA 7. L?(T n S) = 0 ($(T n S) = 0). 

To prove this lemma, let a E L?(T n S) and u E P n S, then au + ua = 0 = 
uau. Thus, u2a = 0 for all a E 3?( T n S), u E I n S. Hence, 

u2(ta + at) = 0 

or u2ta = 0 for all u E I n S, a E A?(T n S) and t E T n S. In particular, 

u2[u2U,*]a = 0 for all x E R. 

Linearizing, we have 

which implies 

u2@, u2, x*u2y}*a = 0 

uz[u2U,*] u2Ra = 0. 
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Now R is *-prime (*-primitive implies *-prime) and thus a = 0 (that is 
L?(T n S) = O($(T n S) = 0) our desired conclusion), or 

uyuw~] u2 = 0. 

It is easiiy seen that this latter implies (zL%)~ = 0, or ~3 = 0 for all u E 1 n S, 
owever, In S is a Jordan ideal of S. By Baxter [2j, we have In S = 0, a 

contradiction. 
We are now prepared to prove Theorem 4. Suppose 55’(T) f 0 (the argument 

is the same for y(T)). Since T is self-adjoint, we have as we subsequently show 
in the associative case, that Y(T) is self-adjoint. Since, L?(T) n SC 2?(T n S) = 
0, we have for all x E 9(T) that x + x* = 0. Since P(T) is a Jordan ideal of T 
and R is 2-torsion free, we have x2 = Q for all x E L?(T). Thus, by Lemma 3, 
9’(T) = 0, completing the proof of Theorem 4. 

IV. LEVIT~KI AND JACOBSON RADICAL OF A SUBSET WITH PROPERTY(H)* 

In the last section we defined for a subset T with property (H)* the Levitski 
and Jacobson radicals, denoted by L?(T) and fl( T) respectively. One might ask, 
as we did in [I] relative to other radicals, what is the relation between these 
radicals and the corresponding radicals Z(R) and #(I?), the Levitski and 

bson radicals of R respectively. Since L?(R) is by definition the maximal 
ly nilpotent ideal of R and $(R) is by definition the maximal quasi-regular 

Jordan ideal of I?, we immediately see that L?‘( )n TL.L?(R)andf( 
8(T). We wish to show under suitable conditions that the latter is equality. 

ham~A 9. Let R be a l&torsion-free hng z&h ~~~o~~t~on and with 2R = 
Then L?“(W) is a 2-divisible, self-adjoint ideal. Fwthermore, LFp(Rj = 

+-primeg Z-divisible ideal of R and PI/B* = Q is L.S.S.). 6~. addition, 

That Z’(R) is closed under the involution follows from the remark that if 
x 6 Z(R) then there exists a finitely generated subring M of contained in (x), 

pa3 ideal generated by x, such that M” is not nilpotent for any B. 
* C (x*) has the same property and thus (a+) g A?(R); that is x* $9(R) 

Next we note that 9’(R) is 2-divisible since if 2.x E Z(R), then the principal 
left ideal, (2x), generated by 2x is locally nilpotent, That is, if B = jn&!x) ,+ 
r$x) I 1 < i < K, ni an integer and yi E R} is a finite subset of (2x) then there 
exists an n such that 

whenever each of 2(8,x + ~~3) E B. Thus, since R is 2-torsion free, z”=l(nfx -+ 
rix) = 0, and the corresponding B’ = (+v + Y?X j 1 < j < K> generates a 
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nilpotent subring of(x), that is, x E Z(R). The proof is now the same as that of 
Devinsky [5, p. 1281 with only minor modification. 

Let d = {QB I QP is a 2-divisible ideal of R with Z(R) C QB and H” $ Q0 
(H the finitely generated ring of [5])}. 

Then A? has a maximal Q which is prime and 2-divisible (see Baxter’s Remark, 

[I] Lemma 8 relative to this latter point). Thus, following the argument of 
Divinsky, R/Q is Levitski-semi-simple. 

Since 2R = R, it is immediate that 2Q = Q completing the proof of Lemma 9. 

THEOREM 10. Let R be a 2-torsion free semi-prime ring with involution. Let 
2R = R. Let T be a subset with property (H)*, Then Z(T) = Z(R) n T. 

We have observed that 9(R) n T C 9(T). Therefore, we must justify 
equality. Consider R/P* = Q, where P* is *-prime, 2-divisible ideal of R 
with RIP* L.S.S. and where T g P*. Then, RIP* = Q contains T + P*IP*. 

By Theorem 4, T + P*/P* is t-*-prime and L.S.S. (as a Jordan ring). How- 
ever, T + P*IP* s TIT n P*. Thus, the latter, T/T n P* is t-*-prime and 
L.S.S. as a Jordan ring. 

Now, by Tsai [ 131, s(T) = {n W, 1 W, is a Jordan ideal of T and T/W, is 
t-*-prime, L.S.S>. Therefore, A?(T) C T n P*. Thus, Z(T) C 0 W, C 

nTa,4Tn P*) c 7-n u-h* P*). But, T C P* certainly means that Y(T) C 

TC f-b P*. Therefore, Y(T) C T n (nP* P*) = T n Y(R), completing 
the argument. 

The following lemma is a consequence of Baxter and Martindale [3]. 

LEMMA 11. Let R be a 2 torsion free semi-prime kg with involution and with 
the property that 2R = R. Then $(R) = n {P 1 P is a *-primitive, 2-divisible 
ideal}. 

From this and as a consequence of Theorem 4 we obtain 

THEOREM 12. Let R be a 2-torsion free, semi-prime ring with involution and 
2et 2R = R. Let T be a subset with property (H)* and the addedproperty: 2T = T. 
Suppose, either R has an identity or T C S. Then, $(T) = f(R) n T. 

The role of the additional hypothesis is to assure that the quasi-inverse, b, of 
an element a E T is also in T. To observe this fact we note a + b - ab = 0, or 
(1 - a)(1 - b) = 1 (in a formal sense if 1 # R, in a real sense 1 E R). Thus 
b = (-a)(1 - b) = -a + a[(-a)(1 - b)] = -a - a2(1 - b) = -a - (1 - b*) 
(1 - a*) a2(1 - b). Now if a E T, then (1 - a*) a2 E T (recall 2T = T and T 
is a Jordan subring). Hence, if 1 E R then b E T. As well, if a E S, then 6 E S 
and, hence one concludes that b E T. 

We offer finally in this section without a formal argument the immediate 
result: 
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COROLLARY 13. Let R be a 2-torsion free, semi-prime ring with ~~~~~~t~~~. 
Let 2R = 41. Let T be a subset with property (N)*(T $ &(R)) and let either 1 E R 

or T C S, then 

6) If  is primary (that is, R is a ring with identity, 1, aazd RI/(R) is cz 
sim#e ring), then T is primary (that is, 1 E T, and T//(T) is simple ]~&an); 

(ii) I f  R is semi-pyimayy then T is semi-primary. 

Y. GONDITI~N~ 0~ A SET WITHPROPERTY( WHICH IMPLY CONDITIONS ON bi 

This section assumes that T is a subset with property ( )” in a *-prime, 2- 
torsion-free ying R. The key lemma is: 

LEMMA 14. I fl T # Ofor any non-xeyo, self-adjoint idealI. 

The lemma is proved if we can show that I n T = 0 leads to 9 = 0. 
Note that if I n T = 0 then for all a E I’, t E T 

tU~EI.n T=O. 

Hence, (a, t, b*), = 0 for all a, b ~1, t E T. Thus, 0 = a*t(a, t, b”), = 

a*tbta*. Hence, (atI = 0 for all a EI, t E T. In a semi-prime ring, this means 
that at = 0. Hence, since R is *-prime we have a = 0, a contradiction. 

We use this lemma to immediately conclude 

THEOREM 15. Let R be +-prime and 2-torsion-free. Let T be a subset of R 
withpzoperty (El)*. Then R is semi-simple whenever T is a semi-simple JOT&B riq+* 

We make the following definition. 

DEFINITION 16. We say e E T is an identity for T if, and only if, et + te = 2t 
for all t E T. 

Using this definition we conclude 

THEOREM 17. Let R be a Z-torsion fTee ring with izvohtion. Let T be a subset 
with property (El)*. It then follows that whenever e is a7t identity for T, then e is 
a central symmetric ia!empotent for R. 

In proving this theorem we note that 2e2 = 2e, or e2 = e. Hence, e is an 
idempotent. Moreover, since T is self-adjoint, both e and e* have the identity 
property. Thus, 

2e* = e*e + ee* = 2e 
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or e = e*. Hence, e is a symmetric idempotent. Now, for all t E T, 2t = et + te 
implies that 

et = te 

(post and premultiplying by e yields thii fact). 

Furthermore 

2t = et -/- te = 2et 

implies that t = et = te for all t E T. We note in passing that these facts about 
e are consistent with the definition of McCrimmon [lo] relative to a unity in a 
quadratic Joedan algebra. 

Now, for all x, y  E W and t E T we have 

e{x, t, Y>* = +, 6 yl*e. 
In particular, let x = t = e and we conclude that 

ey + ey*e = eye +y*e 

for all y  E R. Pre and post-multiplying by e yields 

ey = eye = ye 

for all y  E R. That is, e E Z(R). H ence we have shown that e is a symmetric, 

central, idempotent. 
With this result we are able to conclude. 

LEMMA 18. Ijc R is *-prime and e is an identity for T then e is an identity for R.. 

We know that e = e* = e2 and e E Z(R). 
Now, 1 = {x - ex 1 x E R} is a *-ideal of R. Moreover, if x - ex E T then 

x - ex = e(x - ex) = 0. Thus, In T = 0. By Lemma 14, I = 0. Thus 

x = ex for all x E R. 
With this lemma we are able to prove the following theorem. 

THEOREM 19. Let R be 2-torsion free +prirne ring and let T be a subset with: 
property (El)*. Let e be an identity for T and let T be a *-simple Jordan ring (that is,. 
T contains no self-adjoint Jordan ideals). Then R is a*-simple associative ying. 

By Lemma 14,1 n T = T for all non-zero self adjoint’ideals 1 of R. Thus,, 
e E I. However, by Lemma 18, e is an identity of R. Hence, R = I, that is, 
R is *-simple. 

One notes that if one takes the classical example of a vector space with countable 
basis over a field, and the primitive ring of matrices acting on this vector space 
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with involution, transposition, then it is well-known that the matrices -which are 0 

except ir, an a x n block satisfy the conditions for T. Hn this situation, T has no 
identity, and the theorem is false. 

VI. CHAIN CONDITIONS ON A SUBSET WITH PROPERTY (a)* 

In this section we prove analogous results to those of Britten [4] and Mont- 
gomery [l I] for a subset T with property *-prime, l&torsion free ring, K. 

w- 1 are considering those situations w re T satisfies az3cendin.g chain ccndi- 

tions (ace) or descending chain condition (dcc) on quadratic ideals. Q is a 
quadratic ideal of T if Q is an additive subgroup of T which is cio 
quadratic multiplication; that is, t U, = qtq E Q for all t E T, 4 E 9. 

satisfies Goldie’s Theorem for associative rings: R has a ring of quotients which 
is semi-simple, Artinian if, and only if, R is semi-prime (satisfied by our hypo- 
thesis), contains no infinite direct sum of left ideals, and satisfies a.c.c. on left 
annihilators. 

We proT:e: 

Tmoxm 20. Let R be *-prime, 2-to&m free, and let T be a subset z&h 
property (pi)*. Suppose that T satisfies either act or dcc oz qudmtic ideals, then R 

is a CM&e Gg. 

The proof is separated into the 2 cases of Theorem 2. 

Case 1. 0 + I = .I* C T. Since T has act (or dcc) on quadratic ideals, T 
contains no infinite direct sum of quadratic ideals (See Lemma E of [4].) Let 
A f  0 be a left ideal of R. Then, A n I # 0. If  not, then IA = 0 (and 

x-prime)? hence A = 0 which is a contradiction. In fact, for any a # 0 E A, 
Ia + 0. Now, iet JZ = (Ai), an infinite sequence of left ideals of R whose sum 
is direct. 

exe, {I n Ai f  0> is an infinite sequence of quadratic ideals of T whose 

sum is direct, a contradiction. Thus R contains no infinite direct sum of left 
ideals. 

Let (AJ be an ascending chain of left ideais which are left annihilators and 

such that Ai + Aihl . Let B, = GZR(A,) = {b 1 A$ = 0). Then A, = O&$3,) = 
(c i cBi = 0). Sow, since (0 f  I A Ai) is an ascending chain of quadrztic ideals 
of T and every such chain breaks off, we have a positive integer N such that 
d n A, = 1 n A,,i for all positive integers i. 

Thus, (I n A,+J B, = 0. In particular, PA,V+, B - 0. Hence, A,,,B, = @ iV - 
since 1 = I*. Thus, A,+i C A, , a contradiction. Thus, every ascending chain 
breaks OK Hence, R is a Goldie ring. 

Case 2. 0 + P n S C T C S for some self-adjoint ideal I. 
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We observe that if A is a left ideal of I? then A n T is a quadratic ideal of T. 
Moreover, we observe that the argument that A n I + 0, for A f  0, still 

holds. Thus, suppose that A n T = 0, then we claim A n S = 0. If  not, for 
a#O~AnS,i~InSCT,thenaia=OandhenceiaZsiai=Oforalls~S. 
Since R is $-prime, S is t-semi-prime (see [6]) and hence iai = 0 for all 
i E I n S. Therefore, ax*[ia(ix + x*i) + (ix + x*i)ai] = 0 for all x E R, 
igIn S. Thus 

ax*iax*i = 0 

or ia = 0 for all i E I n S. Hence, (ix + x*i)a = 0 and thus a = 0, a contra- 

diction. 
We have just seen that A n S = 0. Thus, a*ta = 0 for all t E T C S, a E A. 

Now, ata* E T C S and 

ata*sata* = 0 forall aEA,tET,sES 

since, a*sa E A n S. Therefore, ata* = 0, as well. 
Now consider for t E T, x E A n I; 

t Lo&+ = (x $ x”) t(x + x”) = xtx + x*tx* = y  + y” 

where y  = xtx E A n I. 

Furthermore, if Q = {X + x*jxEAnI)=O, then AnICKand, hence 

a2 = 0 for all a E A n I. This means that A n I is a nil left ideal of bounded 
index, from which it follows that A n I = 0, a contradiction. 

Note that we have shown that Q = (X + x* / x E A n I} is a non-zero 
quadratic ideal of T. 

Now, continuing with the argument, in this case, we have the same situation 

as Montgomery [l 11, Theorem 1 and hence we can argue similarly with only 
the following modification: instead of choosing Y E R, as Montgomery does, 
choose i E I. Hence, R has no infinite direct sum of right ideals. 

We now wish to show that R satisfies act on left annihilators. Let A, C A, C 
... C A, ... be a proper ascending chain of left annihilators, and I$ = M,(A,) 
be the corresponding descending chain of right annihilators. First, assume 
A, n T # 0 for some i. Then without loss, we may assume Ai n T f  0 for all i. 

Now, (Ai n T) is an ascending chain of T. Thus, A, n T = A,,, n T for 
someN.Leta#OEA,nT,bEAN+l,b$AN,jET. 

Then, 

b*ja + aj*b E A,+1 n T = A, n T. 

Hence, (b*ja + aj*b) B, = 0, or 

aj*bB, = 0 for all jEI(= I*). 
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Since a + 0 E T C S, we have bB, = 0. Thus, b E A, a& we have a contra- 

diction. ence, we may assume Ai n T = 0 for all i. 

Now, as noted, for each i, ,Oi = {X $ x* I x E: iai n I> is a non-zero quadratic 

ideal of T and we argue as above and in Montgomery, Theorem 2 and conclude 
that the chain breaks off, a contradiction. 

This completes the proof of Theorem 20. 
In certain situations we can characterize W more completely. To do this, we 

observe the following lemma. 

kEMMA21. LettETnSberegularinTf7S(thatis,uPi,=O,uETnS, 
implies u = 0) then t is regular in R (that is, t has no non-zero I@. or right zero 

divisors). 

Consider C??,(t) = (X j xt = 01, the set of left annihilators. Then since xt = 0, 
we have tx* = 0. Therefore, for all i E I, we have (ix i x5*) U, = 

t is regular in T n 5’. Thus, ix + x5* = 0 for all i E I. That is, 16YL(t) C K 
and so ZX?X = 0. That is, XX is a nil left ideal of bounded index. Hence, ix = 0 
and since d is self-adjoint, we conclude that LZL(t) = 0, the desired consequence. 

Now if a is regular in R and t is regular in T n S, then, by Lemma 21, ata* is 

regular in R. Hence we are prepared to stat, * the following corollary to Lemma 
21. 

CQRQLLARY 22. Let R be x-prime, 2 torsion free, and let T be a subset with 
property (H)*. Suppose further that T satisjes either act OP dcc on quadratic ideals 
and that T n S has a regular element. I f  W is the ring of quotients of da and v  E S( W jP 
the symmetric elements’ of W, then v  = lJz-lb where x E T n S, b E S. 

~u~th~rno~e, if I has a regular element then both x and b cati be chosen in I r\ S; 

every element of W is c-Id, c, d E I. 

Let a-lb E r/v then a is regular in R. Thus a% is regular if t E T n 5 is 
regular. Furthermore, 

a-lb = (a%-r(w”tb). 

Now assume a-lb E S(W) then 

(a%-l(a”tb) = (b*ta)(a*ta)-1 

or a*tba”ta = a*tab*ta. Letting x = a*ta and y  = a*tb, then yx E S and 
G;l(yx) = x-‘( yx) x-l. Hence, x-‘y = U;lb where x E T n S and b E S. 

The remarks on 1 are self-evident. 

VI. SPECIAL LIE SUBRINGS OF W 

In this section we investigate an additive subgroup, T, of a semi-prime 2- 
torsion free (associative) ring R with involution which have the properties that 
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(i) T is closed under the Lie multiplication; that is, t, u E T implies 
[t,u] =tu-uut~T(T is said to be a Lie subring) and 

(ii) tU$ =xtx*~Tforallx~R,t~T. 

For such a Lie subring we are able to prove 

?hOREM 23. Let R be a 2-torsion-free, semi-prime ring with involution. Let T 
be a self-adjoint Lie subring and suppose &further that t U,* E T for all x E R, t E: T. 

Then either T contains a non-zero self-agjoint ideal I of R OY t + t* E Z, the center 
of R, fey all t E T. 

As in [I], one observes that since the elements 

h 4 UY>* 

are in T for all x, y E R, t, u E T, then R(u*t - ut *)R C T. Letting u*t - ut* = 
w, we also have 

R&R C T 

and hence, R(w f w*)R C T. That is, T contains a non-zero self-adjoint ideal I 
unless 

w + w* = w - w* = 0. 

That is, if T does not contain a non-zero self-adjoint ideal then 

u”t = ut” for all u, t E T. 

Now, since T is a Lie subring, we have 

{x, [t, u], y}* E T 

and 

{x, t, UY>, - {xu, t,y>* 6 T 

for all x, y E R, u, t E T. 
That is, on subtracting we have 

R[t, (u + u”)]R C T. 

Likewise 

R[t”, (u + u*)]R C T 

and, as before, T contains a non-zero self-adjoint ideal unless 

[t,u+u”] =o for all t, u E T. 
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Hence, we have shown that if T does not contain a nonzero self-adjoint 
ideal I then 

(U u”t = ut” and (II) [t, u + ?4”] = 

for all t, u E T. We wish to show that these conditions imply t + t* E Z for all 
t E T. 

Since a semi-prime 2-torsion free ring with involution is the subdirect sum 
of *-prime, 2-torsion free rings, and since the properties on T w-ill carry to the 

homomorphic image, we henceforth assume that R is a-prime, 2-torsiolz free am.2 
that (I) ami (II) holdfor all elements of T. 

Rewriting the expression (II), we have 

PI) [t, u] = [u*, t] = ut” - tu” E K 

for all t, u E T. 
In partiaular, t*[u, v] = t[u, ZJ]* = t[~*, 24*]. (III) implies that t[v*, g*] = 

t[u, v*] = t[v, ZI]. Therefore, t*[zl, ~1 = -t[u, v] or 

(t + t*)(uv - vu) = 

for all t, ZL, zi E T. Since T is self-adjoint (t + t*) Uz E 7’ for all x E 
thus 

(x, (t + t”), x*y>&m - vu) = 0 

for all x, y  E R, t, u, v  E T. That is, 

(t + t”) U;R(uv - vu) = 0. 

Thus, either i + t* = 0 (this follows from (t + t*)U$ = 0 ancl the fact t 
.R is semi-prime) and hence t + t* E 2 for all t E T or 

[% VI = uv - vu = 

We therefore assume the latter holds. Then from (I) we conclude 

PJ> & z t*u for all u, t E T. 

Defining M = (C xtx* j x E R, t E T) C T, we conclude that ma + a*m E 
for all laz E M, &I E R. By (IV) we have 

[m, m 0 s] = 0 for all m E M, s E S. 

That is, [wP, s] = 0 for all m E M, s E S. Thus, [m2 + (m2)*, s] = 
m E MT s E S. In a 2-torsion free semiprime ring we conclude that 

m2 + (m*y E z 

4&1/jj!Z-20 
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Linearizing, we conclude that (m 0 n) + (m 0 n)* E 2 for all m, n E M. How- 
ever, [m, n] = [m, n]* = 0. Therefore, for all m, n E M 

(VI) mn+n*m*EZ . 

Noting that M is self-adjoint we have. in particular, 

mm*EZ for all m E M. 

Linearizing, we conclude 

mn*+nm*EZ for all m, n E M. 

From (V), we have 

mn*EZ for all m, n E M. 

Therefore, mn E Z for all m, n E M, since M is self-adjoint. In particular, making 
frequent use of m2 E Z for m E M, we have 

m(n + n*) n(a + a*) = m[n(na + na*) + (na + na*)*n] E Z 

forallm,nEM,aER. 
Furthermore, [mn + nm*]n E Z, which by the use of (V) yields 

m(n + n*)n E Z for all m, n E M. 

Thus, m(n + n*) n((a + a*)b - b(a + u*)) = 0 for all m, n E M, a, b E R. 
Therefore, 

m(n + n*) nR[a + a*, b] = 0. 

Since m(n + n*)n E S and R is *-prime, we have either a + a* E Z for all a E R 
(in particular, m + m* E Z) or 

m(n + n*)n = 0 for all m, n E M. 

Since m(n + n*) E Z, we have 

m(n + n*) Rn* = 0. 

Since m(n + n*) E S, we conclude that either M = 0 (and hencetin + m* E Z) or 

m(n + n*) = 0 

for all m, n E M. Therefore, 

mUz(n + n*) = 0 
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(x, m, x"y)*(n + n*> = 0. 

That is, xmx* = 0 (which implies M = 0 and so m + girl* E Z> or n f  a* = 

E z. 
Thus, in all cases 

Fi2+TlPEZ 

That is, 
(t + it*> u,* E z 

for all t E T, x E R. Therefore, 

{x, t + t”, x*yj)* E z 

for all x, y  E R, t E T. 
That is, 

As before, we are able to conclude that either t $ t* = 0 for all t E T or 
y  + y* E Z for y  E R. In either case, t + t* E Z for ail t E T. This completes 

the proof of the theorem. 
We are now in a position to prove the analog of Theorem 2 oi 

COROLLARY 24. Let R be a +primeP 2-torsion free ring and suppose that T is a 
rtox-zero self-adjoint Lie subring of R with the properties: 

(i) xtx* E Tfor all t E T, x E R and 

(ii) T does not contain a non-zero selJ-adjoint ideal of 
T C Z n S and R satisJes a standard identity in 4 variabks. 

Since t $ t* E Z for all t E T and UP = u*t for all a7 t e T, we conclude that 
(u - u*> R(t + t”) = 0. 

Hence either t + t* = 0 for all t E T (that is, T C Kjs or u - u* = 0 for alI. 
u E T (t&t is, T C S n Z). Now since xtx” E S n Z for all t E T, we conclude 
that xx* E Z for all x E R. Hence, as Herstein remarks, R satisfies a standard 

identity in 4-variables. 

CQRQLL~Y 25. Let R be *-simple, not sat 
v&abEes, and T as above, then either T = R or T 

standard identity in 

T = 22 if T contains a non-zero self-adjoint id 
contain a self-adjoint ideal. 

rice, assume T does not 

Next consider the case where T C K. Now, recall that 2R = R. 
wedefineM=(Cxtx”IxER,tET)and V=(Cma--a*mjm~ 
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then 0 # M C K, v  C S and M @ V is an ideal of R. [This remark is justified 
below.] Moreover, n/l C T. Thus, M = KC T C K. Therefore, K = T. Now, 

if T C S n 2; then we have seen that R satisfies a standard identity in 4-variables 
which is excluded. 

Thus, the lemma is proved if we show M @ v  is an ideal. It is sufficient, 
because of a symmetric argument, to show 2ma and 2va E M @ V for all m E M, 

v  E V and a E R. Now, 2ma = (ma + a*m) + (ma - a*m) E M @ V. Likewise, 
2va = 2(mb - b*m)a where v  = mb - b*m. 

Thus, 2va = 2mba - [b*ma + a*mb] - [b*ma - a*mb]. The first two 
terms on the right are in M @ V. Thus, we are done if we conclude the latter 

term is in V. However, this is true since 

b*ma - a*mb = b*(ma + a*m) - (ma + a*m)b + m(ab) - (ab)*m. 

VII. THEOREMS OF POSITIVE DEFINITENESS TYPE 

In this section we show that the so-called “positive-definiteness theorems” 

(see [8], pg. 73-80) which app ear in the literature have their analog in sets with 
property (H)*. We do not prove all the theorems or even state them but rather 
select three for proof. We emphasize that the other theorems have their corre- 

sponding statement and proof. 
The first of these theorems is essentially Theorem 2.1.7 ([8], pg. 62). The 

second of these theorems is the analog of Theorem 2.2.1 ([SJ, p. 73) and is due 
to I. N. Herstein. 

THEOREM 26. Let R be a 2-torsion-free semi-prime kg with involution. Let T 
be a subset with property (H)” in which every element of T n S is inve&ble in R. 
Then TnS = SandRis 

(1) a division ring, or 

(2) the direct sum of a division ring and its opposite, relative to the exchange 

involution (x, y)* = (y, x) or 

(3) the 2 x 2 matrices over a Jield, relative to the symplectic involution; 

namely, (G t)* = (E, -3. 

Now, since T is a subset with property (H)*, there exists a non-zero self- 
adjoint ideal, I, such that a # I n S C T n S. Now the ideal I can contain no 
invertible elements if it is proper, thus we must conclude that 1 n S = S = 
T n S, and hence T n S, and every element of S is invertible in R. Thus, the 
conditions of Theorem 2.1.7 of [8] are satisfied and thus the desired conclusion. 

THEOREM 27. Let R be a 2-torsion free prime ring with involution. Let T be 
a subset with property (H)* and with no non-zero nilpotent elements in T n S. 
Then either 
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(i) xx*#OinRifx#OiinRor 

(ii) S C Z(R) and R is an order in 

Suppose (i) does not hold, then xx * = 0 for s0me x # 0. Thus, x*(T f? S)x C 

T n S and moreover (a%~)~ = 0 for all t E T n S. Thus, by hypothesis, 
x%x = 0 for all t E T f7 S. Xn particular, x*(i + i*)x = 0 for all i E I (I is the 
*-ideal such that 0 f  I A S C T n 5’). Thus, X%X E K for all i E I. In particular, 

x%x = 0 for all i E I f? S. Now if x*ix = 0 for all i E I, then it follows since R 
is prime, that x = 0, a contradiction. Therefore, there exists an Z E I such that 
x%x = k + 0 E I and k2 = 0. Moreover, ksk E I n S C T n S and (ksk)2 = 0. 

hypothesis, ksk = 0. Now if s E S then ks - sk E 1 n S and (ks - sk12 
rice, [k, S] = 0 for all s E S. Kow by Theorem 2.11.5, Herstein [8] eit 

S C Z or S contains a non-zero ideal, 6, of R. Now if the second case, k E Z 
an = 0, a contradiction in a prime ring, therefore 

reover, since pi is prime, Z has no zero divi 

at n S C S C Z and obtain the RTnS = (r/z j 7 f  0 E T n S). R,,, 
is a prime ring with involution.Its non-zero symmetric e s are all invertible 

oreover, k/x E RTns is a non-zero nilpotent element. 
ns = Fz . But every element of RTnS is of the for 

Therefore, if Y is reguiar in R, it is regular in 
is an order in F’, , completing the proof, 

We also prove the analogous theorem to Th 
by invoking Corollary 24. 

THEOREM 28. Let R be a 2-torsion free prime ring with involutiolz and suppose 
T is a aon-zero self-adjoht Lie subring of R witk the properties 

(9 XIX* T for all t E X, x E R 

(ii) no non-xevo element, t - t* E T, for t E T, is nilpotent. 

nen, 

(i) xx* #OERifx #Oar 

(ii) R is an order in FP , R a jield. 

Corollary 24 tells us that either T contains a non-zero self-adjoint ideal I or 
TCKor TCZ. 

j?;owi if T C I and I n R = 0, then it follows that I C S and hence is com- 
mutative. From which it follows that R is a prime, commutative ring, hence a 
commutative integral domain and thus i) holds for all x E R. 

Thus we need to examine the Theorem under the assumption R is not 
commutative. 
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If T C Z then xtx” E Z for all t E T, x E R. Thus, txx* E 2 and so t[xx*, a] = 0 
for all a E R. Now, this implies tR[xx*, a] : 0. That is xx* E 2 for all x E R. 
Hence, R satisfies a standard identity of 4 variables. Therefore, by a theorem 
of Posner ([8], Theorem 1.3.4) either (i) or (ii) holds. 

Therefore, T C K and either T contains a non-zero ideal I,0 f I n K C T or 
T C K. This latter possibility also forces the existence of an ideal, I, such 
that I n K + 0 C T. Indeed, if ?’ n K f 0 then I .:: R(2m)R, m #- 0 E T n K 
is the desired ideal. For if, xmy j y%x* : -: 0 for all x, y E R then (x*m)s = 0 
or m = 0, a contradiction. Hence, without loss, 0 # In K C T for a self- 
adjoint ideal, I. 

Now let xxi = 0, x f 0 E H. Thus, y+ft .- t*)x -1- x”tx - (@tx)* = 

I - I*, ZE T. Moreover, [x*(t - t”).x]” :..: 0. Th us, by hypothesis, x*(t - t*)x = 0 
for all t E T or x*tx : 0 for all t E 1‘. Now if a E I then a - a* E I n R. That is, 
x*(a - u*)x = 0. Hence, x*ux E S n I for all a ~1. Moreover, since R is prime, 
s = x*u,x -+ 0 for some a, 5 1, while 9 = 0. Now, s(t - t*)s =-: 0 for all t E T 
as before. Thus, sts = 0 for all t E T n K. Therefore, sis : = 0 for all i E I n K. 
Since, si + is E I n K for all i E I n K, we have (si + is)* = si*s and (si $- is)4 :L 
0 for all i E I n K. Therefore, by hypothesis, si I is = 0. That is, si = -7 -is 
for all i E I n K. 

Thus, s centralizes (In K)*. Now the latter is a Lie ideal of R. Therefore, 
the subring, L, generated by (I n K)* either contains a non-zero ideal of R or 
(In K)* C 2 (SCC [8], Th eorem 2.1.2). Since s E S is nilpotent, it is non-central. 
Hence, s cannot centralize a non-zero ideal of R. In consequence, (I n K2) C 2, 
that is, ‘L’ G (I n K)* implies w2 E 2. In particular, if u E 1 n K then u4 /; 0 E 2. 
Thus z # 0. Hence, ZA = Z n S I/‘: 0 and we can localize R at Z+, calling it Q. 
Moreover, if K :# 0 E I n K then hs :;A 0 E Zr = Z(Q). Thus, k is invertible in Q. 

We claim Q is simple. For if I/ r/ 0 is an ideal of Q, then W = VV* :b 0 C V 
and is self-adjoint in Q. If W n (T n K) = 0 then wi - i*w* =: 0 for all i F I, 
w E W. That is, wit S. Hence, qwiE S for all q ~0. That is, qwi = (pi)” = 
wiq*. Hence, forp, q E 0, pqwi = wiq*p” ..- qwip* = qpwi. That is, [p, q]wi -- 0. 

Thus, Cwi -: 0, where C is the ideal generated by [Q, Q]. Since we are in a 
prime ring, C = 0; that is, Q is commutative and hence R, a contradiction. 
Thus, ci 1 0; that is, W = 0 which is also false. Hence, W n (7’ n K) + 0. 
But, every element of 7’ n K is invertible. Therefore, 1 E Wand so V L= Q; that 
is Q is simple. 

T\iow I%-:- = (ix1 i c I, z c: Z+} is an ideal of W. Hence, Q = IZ:. Therefore, 
K(Q) (the set of skew elcmcnts of Q) = K(IZ+) = (K n 1)X+ = (T n K)Z+. 
Furthermore, if u -+ 0, n + 0 E T n K then uv # 0 E Zi , and since Z, is a field, 

u = av, Ly E z; 

follows. But then the skews are 1 dimension over the center of Z(Q) and hence 
they do not generate Q. This is sufficient to conclude that Q is 4 dimension over 
a field and that R is an order in F2 . 
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