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Abstract

The authors consider the boundary value problem

{
y′′ − ρ2y + λg(t)f (y) = 0, 0 � t � 2π,

y(0) = y(2π), y′(0) = y′(2π).

Under different combinations of superlinearity and sublinearity of the function f , various existence, mul-
tiplicity, and nonexistence results for positive solutions are derived in terms of different values of λ. The
uniqueness of solutions and the dependence of solutions on the parameter λ are also studied. The results are
illustrated with an example.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Krasnosel’skii’s theorem in a cone has often been used to study the existence and multiplicity
of positive solutions of periodic boundary value problems over the last several years. As recent
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examples, we mention the papers of Atici and Guseinov [3], Jiang et al. [5], Li [7], O’Regan and
Wang [10], Torres [11], and Zhang and Wang [13]. Here, we consider the problem of existence,
multiplicity, and nonexistence of positive solutions for the periodic boundary value problem

{
y′′ − ρ2y + λg(t)f (y) = 0, 0 � t � 2π,

y(0) = y(2π), y′(0) = y′(2π),
(1.1)

where ρ > 0 is a constant and λ is a positive parameter. We will also examine the uniqueness of
the solutions and their dependence on the parameter λ. Our basic assumptions here are:

(A1) f : [0,∞) → [0,∞) is continuous and f (u) > 0 for u > 0;
(A2) g : [0,2π] → [0,∞) is continuous and

∫ 2π

0 g(t) dt > 0;
(A3) f : [0,∞) → (0,∞) is nondecreasing, and there exists θ ∈ (0,1) such that

f (κu) � κθf (u) for κ ∈ (0,1) and u ∈ [0,∞).

In the next section, we state our results for the problem (1.1). In Section 3 we present some
preliminary lemmas and then prove the main results in Section 4. The final section of the paper
contains an example to illustrate our results.

2. Main results

We begin by introducing the notations

f0 = lim
u→0

f (u)

u
and f∞ = lim

u→∞
f (u)

u
.

We will also need the function

f ∗(u) = max
0�t�u

{
f (t)

}

and we let f ∗
0 = limu→0 f ∗(u)/u and f ∗∞ = limu→∞ f ∗(u)/u. Our existence result is the fol-

lowing.

Theorem 2.1. Assume that (A1)–(A2) hold.

(a) If f0 = 0 or f∞ = 0, then there exists λ0 > 0 such that (1.1) has a positive solution for
λ > λ0.

(b) If f0 = ∞ or f∞ = ∞, then there exists λ0 > 0 such that (1.1) has a positive solution for
0 < λ < λ0.

(c) If f0 = f∞ = 0, then there exists λ0 > 0 such that (1.1) has at least two positive solutions
for λ > λ0.

(d) If f0 = f∞ = ∞, then there exists λ0 > 0 such that (1.1) has at least two positive solutions
for 0 < λ < λ0.

(e) If f0 < ∞ and f∞ < ∞, then there exists λ0 > 0 such that (1.1) has no positive solutions
for 0 < λ < λ0.

(f) If f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that (1.1) has no positive solutions for
λ > λ0.
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Our next result concerns the uniqueness and dependence of solutions of (1.1) on the parame-
ter λ. Let ‖u‖ = maxt∈[0,2π] |u(t)| for any continuous function u(t) on [0,2π].

Theorem 2.2. Assume that (A1)–(A3) hold. Then, for any λ ∈ (0,∞), (1.1) has a unique positive
solution uλ(t). Furthermore, such a solution uλ(t) satisfies the following properties:

(i) uλ(t) is nondecreasing in λ;
(ii) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ = ∞;

(iii) uλ(t) is continuous in λ, that is, if λ → λλ0 , then ‖uλ − uλ0‖ → 0.

As a consequence of Theorem 2.2, we have the following result.

Corollary 2.1. Assume that (A1)–(A3) hold. Then, for each M ∈ (0,∞), there exists λ∗ ∈ (0,∞)

such that (1.1) has a positive solution u∗(t) with ‖u∗‖ = M .

Remark 2.1. We note that:

(1) Results similar to Theorem 2.2 have been established by Li and Liu [8,9] for other types of
boundary value problems. Some ideas of the proof of Theorem 2.2 are from [8,9].

(2) The problem of finding solutions of boundary value problems with given maximum has been
studied by Agarwal, O’Regan, and Staněk. For more details on this study, we refer the reader
to [1] for a higher order problem with Lidstone boundary conditions, and [2] for a second
order problem with a nonlinear term in the equation and Dirichlet boundary conditions.

3. Preliminary lemmas

Our first lemma gives some relationships between the functions f and f ∗.

Lemma 3.1. (See [12].) Assume (H1) holds. Then f ∗
0 = f0 and f ∗∞ = f∞.

The following fixed-point theorem of cone expansion/compression type is crucial in the proofs
of our results.

Lemma 3.2. (See [4,6].) Let X be a Banach space and let K ⊂ X be a cone in X. Assume Ω1,Ω2
are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let

F :K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) ‖Fu‖ � ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Fu‖ � ‖u‖ for any u ∈ K ∩ ∂Ω2,

or

(ii) ‖Fu‖ � ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Fu‖ � ‖u‖ for any u ∈ K ∩ ∂Ω2.

Then F has a fixed point in K ∩ (Ω2 \ Ω1).
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We consider the function

G(t, s) =
⎧⎨
⎩

eρ(t−s)+eρ(2π−t+s)

2ρ(e2ρπ−1)
, 0 � s � t � 2π,

eρ(s−t)+eρ(2π−s+t)

2ρ(e2ρπ−1)
, 0 � t � s � 2π.

Define

Ĝ(x) = eρx + eρ(2π−x)

2ρ(e2ρπ − 1)
for x ∈ [0,2π].

Then, it is easy to check that Ĝ is decreasing on [0,π], increasing on [π,2π], and G(t, s) =
Ĝ(|t − s|). Thus,

eρπ

ρ(e2ρπ − 1)
= Ĝ(π) � G(t, s) � Ĝ(0) = 1 + eρ2π

2ρ(e2ρπ − 1)

for s, t ∈ [0,2π].
Let X be the Banach space C[0,2π] endowed with the norm

‖u‖ = max
0�t�2π

∣∣u(t)
∣∣.

Define the cone K in X by

K =
{
u ∈ X: u(t) � 0 on [0,2π] and min

0�t�2π
u(t) � σ‖u‖

}
,

where σ = 2eρπ/(1 + e2ρπ ), and for r > 0, let

Ωr = {
u ∈ K: ‖u‖ < r

}
.

Define the map Tλ :K → X by

Tλu(t) = λ

2π∫
0

G(t, s)g(s)f
(
u(s)

)
ds, 0 � t � 2π.

Then the following lemma can be easily verified.

Lemma 3.3. Assume (A1)–(A2) hold. Then u ∈ K is a positive fixed point of Tλ if and only if u

is a positive solution of (1.1).

In the next lemma, we show that Tλ is completely continuous and maps K into itself.

Lemma 3.4. Assume (A1)–(A2) hold. Then Tλ(K) ⊂ K and Tλ :K → K is completely continu-
ous.
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Proof. Let u ∈ K ; then Tλu(t) � 0 on [0,2π] and

min
0�t�2π

Tλu(t) � Ĝ(π)λ

2π∫
0

g(s)f
(
u(s)

)
ds = σĜ(0)λ

2π∫
0

g(s)f
(
u(s)

)
ds � σ‖Tλu‖,

i.e., Tλ(K) ⊂ K . A standard argument can be used to show that Tλ : K → K is completely
continuous. �

In the next two lemmas, we obtain lower and upper estimates on the operator Tλ. Define

Γ = Ĝ(π)σ

2π∫
0

g(s) ds.

Lemma 3.5. Assume (A1) holds and let η > 0 be given. If u ∈ K and f (u(t)) � u(t)η for
t ∈ [0,2π], then

‖Tλu‖ � λΓ η‖u‖.

Proof. From the definitions of Tλu and K , it follows that

‖Tλu‖ � λĜ(π)

2π∫
0

g(s)f
(
u(s)

)
ds � λĜ(π)η

2π∫
0

g(s)u(s) ds

� λĜ(π)ησ‖u‖
2π∫

0

g(s) ds = λΓ η‖u‖.

This completes the proof. �
Lemma 3.6. Assume (A1) holds and let r > 0 be given. If there exists ε > 0 such that f ∗(r) � εr ,
then

‖Tλu‖ � λε‖u‖Ĝ(0)

2π∫
0

g(s) ds for u ∈ ∂Ωr.

Proof. From the definition of Tλ, we have that

‖Tλu‖ � λĜ(0)

2π∫
0

g(s)f
(
u(s)

)
ds � λĜ(0)

2π∫
0

g(s)f ∗(r) ds � λε‖u‖Ĝ(0)

2π∫
0

g(s) ds

for u ∈ ∂Ωr . This completes the proof. �
The following two lemmas are weak forms of Lemmas 3.5 and 3.6.
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Lemma 3.7. Assume (A1)–(A2) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖ � λm̂rĜ(π)

2π∫
0

g(s) ds,

where m̂r = minrσ�t�r{f (t)} > 0.

Proof. Since f (u(t)) � m̂r for t ∈ [0,2π], it follows that

‖Tλu‖ � λĜ(π)

2π∫
0

g(s)f
(
u(s)

)
ds � λm̂rĜ(π)

2π∫
0

g(s) ds.

This completes the proof. �
Lemma 3.8. Assume (A1)–(A2) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖ � λM̂rĜ(0)

2π∫
0

g(s) ds,

where M̂r = 1 + max0�t�r{f (t)} > 0.

Proof. Since f (u(t)) � M̂r for t ∈ [0,2π], we have

‖Tλu‖ � λĜ(0)

2π∫
0

g(s)f
(
u(s)

)
ds � λM̂rĜ(0)

2π∫
0

g(s) ds

for u ∈ ∂Ωr . This completes the proof. �
Our final lemma in this section gives upper and lower estimates for the operator Tλ.

Lemma 3.9. Assume (A1)–(A3) hold. Then, for any nonnegative u ∈ X, there exists Du � C > 0
such that

CLλ � Tλu(t) � DuLλ, (3.1)

where

Lλ = λ

2π∫
0

g(s) ds. (3.2)
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Proof. Recall that f (0) > 0 and f is nondecreasing. Then, for any nonnegative u ∈ X and
t ∈ [0,2π], we have

Tλu(t) � λf (0)Ĝ(π)

2π∫
0

g(s) ds = f (0)Ĝ(π)Lλ := CLλ.

Clearly, C > 0 and is independent of u(t). Again, from the monotonicity of f , we have that

Tλu(t) � λĜ(0)f
(‖u‖)

2π∫
0

g(s) ds = Ĝ(0)f
(‖u‖)Lλ := DuLλ.

It is obvious that Du � C. This completes the proof. �
4. Proofs of the main results

Proof of Theorem 2.1. Part (a). Choose a number r1 > 0. By Lemma 3.7, we have

‖Tλu‖ > ‖u‖ for u ∈ ∂Ωr1 and λ > λ0,

where

λ0 � r1

m̂r1Ĝ(π)
∫ 2π

0 g(s) ds
> 0.

If f0 = 0, then from Lemma 3.1, f ∗
0 = 0, and so we can choose r2 ∈ (0, r1) so that f ∗(r2) � εr2,

where ε > 0 satisfies

λεĜ(0)

2π∫
0

g(s) ds < 1. (4.1)

Then, Lemma 3.6 implies that

‖Tλu‖ � λε‖u‖Ĝ(0)

2π∫
0

g(s) ds < ‖u‖ for u ∈ ∂Ωr2 .

If f∞ = 0, then from Lemma 3.1, f ∗∞ = 0. Hence, there exists r3 ∈ (2r1,∞) such that f ∗(r3) �
εr3, where ε > 0 satisfies (4.1). Thus,

‖Tλu‖ � λε‖u‖Ĝ(0)

2π∫
0

g(s) ds < ‖u‖ for u ∈ ∂Ωr3 .

Then, from Lemma 3.2, Tλ has a fixed point in Ωr1 \ Ωr2 or Ωr3 \ Ωr1 according to whether
f0 = 0 or f∞ = 0, respectively. Consequently, (1.1) has a positive solution for λ > λ0.
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Part (b). Choose a number r1 > 0. By Lemma 3.8, there exists λ0 > 0 such that

‖Tλu‖ < ‖u‖ for u ∈ ∂Ωr1 and 0 < λ < λ0.

If f0 = ∞, then there exists r2 ∈ (0, r1) such that f (u) � ηu for 0 � u � r2, where η > 0 is
chosen so that

λΓ η > 1. (4.2)

Clearly,

f
(
u(t)

)
� ηu(t) for u ∈ ∂Ωr2, t ∈ [0,2π].

Then, from Lemma 3.5,

‖Tλu‖ � λΓ η‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

If f∞ = ∞, then there exists Ĥ > 0 such that f (u) � ηu for u � Ĥ , where η > 0 satisfies (4.2).
Let r3 = max{2r1, Ĥ /σ }. If u ∈ ∂Ωr3 , then

min
0�t�2π

u(t) � σ‖u‖ � Ĥ .

As a result,

f
(
u(t)

)
� ηu(t) for t ∈ [0,2π].

From Lemma 3.5, it follows that

‖Tλu‖ � λΓ η‖u‖ > ‖u‖ for u ∈ ∂Ωr3 .

Then, Lemma 3.2 implies that Tλ has a fixed point in Ωr1 \Ωr2 or Ωr3 \Ωr1 according to whether
f0 = ∞ or f∞ = ∞, respectively. Consequently, (1.1) has a positive solution for 0 < λ < λ0.

Part (c). Choose two numbers 0 < r3 < r4. By Lemma 3.7, there exists λ0 > 0 such that

‖Tλu‖ > ‖u‖ for λ > λ0, u ∈ ∂Ωri , i = 3,4.

Since f0 = 0 and f∞ = 0, from the proof of Theorem 2.1(a), it follows that we can choose
r1 ∈ (0, r3/2) and r2 ∈ (2r4,∞) such that

‖Tλu‖ < ‖u‖ for u ∈ ∂Ωri , i = 1,2.

From Lemma 3.2, Tλ has two fixed points u1 and u2 such that u1 ∈ Ωr3 \Ωr1 and u2 ∈ Ωr2 \Ωr4 .
These are the desired distinct positive solutions of (1.1) for λ > λ0 satisfying

r1 � ‖u1‖ � r3 < r4 � ‖u2‖ � r2. (4.3)
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Part (d). Choose two numbers 0 < r3 < r4. By Lemma 3.8, there exists λ0 > 0 such that

‖Tλu‖ < ‖u‖ for u ∈ ∂Ωri , 0 < λ < λ0, i = 3,4.

Since f0 = ∞ and f∞ = ∞, from the proof of Theorem 2.1(b), we see that we can choose
r1 ∈ (0, r3/2) and r2 ∈ (2r4,∞) such that

‖Tλu‖ > ‖u‖ for u ∈ ∂Ωri , i = 1,2.

From Lemma 3.2, Tλ has two fixed points u1 and u2 such that u1 ∈ Ωr3 \Ωr1 and u2 ∈ Ωr2 \Ωr4 ,
which are the desired distinct positive solutions of (1.1) for 0 < λ < λ0 satisfying (4.3).

Part (e). Since f0 < ∞ and f∞ < ∞, there exist positive numbers ε1, ε2, r1, and r2 such that
r1 < r2, and

f (u) � ε1u for u ∈ [0, r1],
f (u) � ε2u for u ∈ [r2,∞).

Let the positive number ε3 be defined by

ε3 = max

{
ε1, ε2, max

r1�u�r2

{
f (u)

u

}}
.

Then,

f (u) � ε3u for u ∈ [0,∞).

Assume v(t) is a positive solution of (1.1). We will show that this leads to a contradiction for
0 < λ < λ0 = 1/(ε3Ĝ(0)

∫ 2π

0 g(s) ds). Since Tλv(t) = v(t) for t ∈ [0,1], by Lemma 3.6, we
have that

‖v‖ = ‖Tλv‖ � λĜ(0)ε3‖v‖
2π∫

0

g(s) ds < ‖v‖,

which is a contradiction.
Part (f). Since f0 > 0 and f∞ > 0, there exist positive numbers η1, η2, r1, and r2 such that

r1 < r2, and

f (u) � η1u for u ∈ [0, r1],
f (u) � η2u for u ∈ [r2,∞).

Let the positive number ε3 be defined by

η3 = min

{
η1, η2, min

{
f (u)

}}
.

r1�u�r2 u
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Then,

f (u) � η3u for u ∈ [0,∞).

Assume v(t) is a positive solution of (1.1). We will show that this leads to a contradiction for
λ > λ0 = 1/(Γ η3). Since Tλv(t) = v(t) for t ∈ [0,1], by Lemma 3.5, we have that

‖v‖ = ‖Tλv‖ � λΓ η3‖v‖ > ‖v‖,

which is a contradiction. This completes the proof. �
Proof of Theorem 2.2. We first show that, for any fixed λ ∈ (0,∞), (1.1) has a solution. From
(A3), we see that Tλ is nondecreasing and satisfies

Tλ

(
κu(t)

) = λ

2π∫
0

G(t, s)g(s)f
(
κu(s)

)
ds

� κθλ

2π∫
0

G(t, s)g(s)f
(
u(s)

)
ds = κθTλu(t) (4.4)

for u ∈ X with u(t) � 0 for t ∈ [0,2π]. Let Lλ be defined by (3.2) and define ū(t) = Lλ for
t ∈ [0,2π]. Then, ū(t) ∈ X and ū(t) > 0 on [0,2π]. Thus, by Lemma 3.9,

CLλ � Tλū(t) � DLλLλ.

Let C̄ and D̄ be defined by

C̄ = sup
{
x: xLλ � Tλū(t)

}
and D̄ = inf

{
x: Tλū(t) � xLλ

}
.

Clearly, C̄ � C and D̄ � DLλ . Choose Ĉ and D̂ such that

0 < Ĉ < min
{
1, (C̄)

1
1−θ

}
and max

{
1, (D̄)

1
1−θ

}
< D̂ < ∞.

Define two sequences {uk(t)}∞k=1 and {vk(t)}∞k=1 by

u1(t) = ĈLλ, uk+1(t) = Tλuk(t), t ∈ [0,2π], k = 1,2, . . .

and

v1(t) = D̂Lλ, vk+1(t) = Tλvk(t), t ∈ [0,2π], k = 1,2, . . . .

Then, from the monotonicity of Tλ and (4.4), we obtain that

ĈLλ = u1(t) � u2(t) � · · · � uk(t) � · · · � vk(t) � · · · � v2(t) � v1(t) = D̂Lλ. (4.5)



J.R. Graef et al. / J. Differential Equations 245 (2008) 1185–1197 1195
Let d = Ĉ/D̂. Then d ∈ (0,1). We now claim that

uk(t) � dθk

vk(t) for t ∈ [0,2π]. (4.6)

In fact, it is obvious that u1(t) = dv1(t) on [0,2π]. Assume (4.6) holds for k = n, i.e., un(t) �
dθn

vn(t) for t ∈ [0,2π]. Then, from the monotonicity of Tλ and (4.4), we see that

un+1(t) = Tλun(t) � Tλ

(
dθn

vn(t)
)
�

(
dθn)θ

Tλvn(t) = dθn+1
vn+1(t)

for t ∈ [0,2π]. Hence, by induction, (4.6) holds. From (4.5) and (4.6), it follows that

0 � uk+l(t) − uk(t) � vk(t) − uk(t) �
(
1 − dθk )

v1(t) = (
1 − dθk )

D̂Lλ

for t ∈ [0,2π], where l is a nonnegative integer. Thus,

‖uk+l − uk‖ � ‖vk − uk‖ �
(
1 − dθk )

D̂Lλ.

Therefore, there exists a positive function ũ ∈ X such that

lim
k→∞uk(t) = lim

k→∞vk(t) = ũ(t) for t ∈ [0,2π].

Clearly, ũ(t) is a positive solution of (1.1).
Next, we show the uniqueness of solutions of (1.1). Assume, to the contrary, that there exist

two positive solutions u1(t) and u2(t) of (1.1); then Tλu1(t) = u1(t) and Tλu2(t) = u2(t) for
t ∈ [0,2π]. We note that there exists α > 0 such that u1(t) � αu2(t) for t ∈ [0,2π]. Let α0 =
sup{α: u1(t) � αu2(t)}. Then 0 < α0 < ∞ and u1(t) � α0u2(t) for t ∈ [0,2π]. We now show
that α0 � 1. In fact, if α0 < 1, then, from (A3), f (α0u2(t)) > α0f (u2(t)) on [0,2π]. This,
together with the monotonicity of f , implies that

u1(t) = Tλu1(t) � Tλ

(
α0u2(t)

)
> α0Tλu2(t) = α0u2(t) for t ∈ [0,2π].

Thus, we can find τ > 0 such that u1(t) � (α0 + τ)u2(t) on [0,2π], which contradicts the defi-
nition of α0. Hence, u1(t) � u2(t) for t ∈ [0,2π]. Similarly, we can show that u2(t) � u1(t) for
t ∈ [0,2π]. Therefore, (1.1) has a unique solution.

Using exactly the same argument as in the second part of the proof of [9, Theorem 6], we can
show that (i), (ii), and (iii) hold. The details are omitted here. This completes the proof of the
theorem. �
Proof of Corollary 2.1. The conclusion readily follows from Theorem 2.2. �
Remark 4.1. In Theorem 2.2, we have that f is nondecreasing and f (0) > 0, so f0 = ∞. In
addition, we see that condition (A3) implies

f (κu) � κθf (u) = κθ−1 f (u)
,

κu κu u
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and so

f∞ � κθ−1f∞.

Thus,

(
1 − κθ−1)f∞ � 0,

and hence f∞ = 0 since 1 − κθ−1 < 0. It would then be easy to construct a proof using
Lemma 3.2 to show that a positive solution to our problem exists for every 0 < λ < ∞.

5. Example

As an example of our results in this paper, we have the following example.

Example 5.1. Consider the boundary value problem (1.1), where ρ > 0 is a constant, λ is a
positive parameter, g(t) is any nonnegative continuous function on [0,2π], g(t) 
≡ 0 on [0,2π],
and

f (u) =
n∑

i=1

uαi + 1

with n an integer and αi ∈ (0,1), i = 1, . . . , n. We claim that, for any λ ∈ (0,∞), the prob-
lem (1.1) has a unique solution uλ(t) satisfying the properties (i), (ii), and (iii) stated in Theo-
rem 2.2, i.e., uλ(t) satisfies

(i) uλ(t) is nondecreasing in λ;
(ii) limλ→0+ ‖uλ‖ = 0, and limλ→∞ ‖uλ‖ = ∞; and

(iii) uλ(t) is continuous in λ.

In fact, for the above functions g and f , (A1) and (A2) are trivially satisfied. Note that for
u ∈ [0,∞), f > 0 and is nondecreasing. Moreover, for θ ∈ (supi αi,1), it is easy to see that

f (κu) � κθf (u) for κ ∈ (0,1) and u ∈ [0,∞),

i.e., (A3) holds. The conclusion then follows from Theorem 2.2.
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