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Abstraet--A parallel algorithm for generating all combinations of m items out of n given items in 
lexicographic order is presented. The computationa! model is a linear systolic array consisting of m 
identical processing elements. It takes (~) time-steps to generate all the ~ )  combinations. Since any 
processing element is identical and executes the same procedure, it is suitable for VLSI implementation. 
Based on mathematical induction, such algorithm is proved to be correct. 

1. INTRODUCTION 

Because of the drastically lowered hardware cost and the advancement of hardware technology, 
parallel processing becomes more and more feasible in practice. Using a parallel computer is a way 
to achieve higher computing speeds, this appealing approach has promptly increased interest in the 
area of design and analysis of parallel algorithms. The growing importance of parallel computers 
and parallel algorithms is highlighted in [1-5]. Systolic array is one of the parallel computation 
models. A systolic array architecture is specified by the timing of data movement and inter- 
connection of processing elements (PEs) such that the movement of data is simple, regular, and 
uniform. These array processors are typically made up of identical PEs that operate in synchronous. 
Many examples of systolic array processor have been presented, e.g. in the fields of image 
processing, matrix manipulation, digital signal processing and the solver of simultaneously linear 
equations etc. However, only a few systolic array are designed for combinatorial enumeration 
problems. 

Generating combinations is important in combinatorics. Several parallel algorithms [6-8] have 
been designed to solve this problem. However, these algorithms do not generate the combinations 
in lexicographic order, or they are not systolic algorithms. In this paper we design a parallel 
algorithm in a linear systolic array to generate all combinations of m out of n items in lexicographic 
order. 

It is known that the combinations in lexicographic order can be generated sequentially in a 
straightforward way [9]. In [6] Chan and Akl presented a parallel algorithm to generate the 
combinations on a single-instruction-multiple-data (SIMD) machine which allows data to be read 
simultaneously from a shared memory. The PE must know its indexed position and also has a mark 
to indicate whether the PE is active in order to perform its program. Moreover, in [7] a parallel 
algorithm for generating the permutations of at most m out of n but not in lexicographic order 
was presented. The architecture consists of a linear array and a selector. Each PE has a stack of 
size m to store the necessary data during the execution of algorithm. This algorithm can easily be 
modified to generate combinations. In [8] for k is a given ranking number they proposed an 
algorithm to evaluate the m components of the kth combination within a PE. If we have (~,) PEs 
to be used, then the kth PE will be assigned to generate the kth combination, hence all of the (~) 
combinations can be produced simultaneously. Since a combination can be produced in O(n) time 
units, their algorithm generates all the combinations in O(n) time units provided that (~) PEs are 
available in a SIMD computer. In this paper, we only use a linear array consisting of m PEs, and 
these PEs are not necessary to know their indexed positions during the execution of algorithm. We 
use four registers to replace the stack of size m as shown in [7]. In [10] Semba presented a sequential 
algorithm to generate all the combinations of at most m out of n items in lexicographic order. Such 
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result can also be produced by the use of  our algorithm and then by the execution of  two recursive 
procedures which are described in Section 4. 

2. T H E  C O M P U T A T I O N A L  M O D E L  A N D  T H E  P A R A L L E L  A L G O R I T H M  

A systolic array processor can be viewed as a network composed of  a few types of  computational 
PEs, and an array processor is often used as an attached processor linked with a host computer 
through an interface system. Within a systolic array, if it is necessary to send data from PEI to 
PE2 then there exists a communication link (say e-link) from PE1 to PE2. We call such e-link an 
input link of  PE2 and an output link of  PE1, we also write ei. and eo,t to denote the input value 
of  PE2 and the output value of  PE1 via e-link, respectively. Moreover, if the e-link is labeled with 
an integer 7 delays, it means that when PE 1 sends eoo, to e-link at time tt, then such eou t is the e~, 
of  PE2 at time t~ + 7. For  convenience, we use ei,, eout as the names of  variable in our parallel 
algorithm. 

Our computational model for generating combinations is a linear systolic array consisting of  m 
identical PEs provided that only the adjacent PEs can communicate their data via communication 
links. Figure 1 indicates the layout of our computational model, any individual PE is referred to 
as PE(i) for 1 ~< i ~< m, and each individual PE is specified in Fig. 2, where c, d, x and y are four 
communication links, each link is labeled with one delay, R, C, T are registers, F is a flag, and 
oi is the output terminal. We assume that each PE performs the following three tasks. (1) Receiving 
data from its input of communication links with names ci., X~n, a~,, and Yin, respectively. (2) 
Executing the functions that are described by an existing algorithm. (3) Sending data to its output 
of  communication links with name Cnn~, Xn,,, do.,, and Yo,,, respectively. 

We call the needed time units to do the above three tasks as a time-step. Because the 
communication x-link has one delay in our computational model, so the output value Xou t of  PE(i) 
at time-step t is the input value Xin of  PE(i -- 1) at time-step t + 1. Similarly, the Co,, of PE(i) at 
time-step t is the c~. of  PE(i) at time-step t + 1, and the Ynut, dour of PE(i) at time-step t are the 
y~., d~. of  PE(i + 1) at time-step t + 1, respectively. 
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Without loss of  generality, it is assumed that the n given items are 1, 2, 3 , . . . ,  n. By the definition 
of  lexicographic order, if A = {a~, a2 . . . . .  am} is a combination, then ai ~< n - m + i for all 
1 ~< i ~< m. We call n - m + i the limit value of  the ith component of  A, and denote it by Ri. The 
use of  communication links and registers in each individual PE(i) (1 ~< i ~< m) are described as 
follows. 

(1) The communication c-link transmits the input/output (Cin/Co,t) of  the ith component of  any 
combination. 

(2) The communication x-link indicates that whether the current output of  c-link (i.e. Co,t) is 
equal to its limit value. 

(3) The communication y-link transmits data to the register T of  PE(i + 1), if PE(i + 1) exists. 
(4) The communication d-link transmits the same data as Cout, i.e. dout = Cout at all time-steps. 
(5) Register R contains the limit value Ri = n - m  + i. 
(6) Register T stores a temporary element when the algorithm is working. T receives element from 

y-link. 
(7) Register C contains a counter indicating at what time-step the element in T will be retrieved 

and assigned to Cout. 
(8) Flag F indicates that if the condition "Cout = Ri - 1 and x~, = 1" is true then PE(i) is ready 

to transmit elements into the Ts in PE(k) for i ~< k ~< m. 

Our parallel algorithm is shown in Algorithm 1. It produces a combination within a time-step. 
Since the elapsed time units within a loop is constant, its time complexity is O(~)).  

Algorithm 1 

Initial state: 
LI: Set ci. = i in PE(i) for 1 ~<i ~<m - 1 and c i . = m  - 1 in PE(m). 
L2: S e t R = n - m + i ,  T = 0 ,  C = 0 a n d F = 0 i n P E ( i )  f o r a l l  l~<i~<m. 
L3: Set xi. = 0 in PE(i) for 1 ~< i ~< m - 1, and a~. = 0, Yin = 0 in PE(i) for 2 ~< i ~< m. 
L4: Set xi. = 1 in PE(m) and d~. = 0, Yi. = 0 in PE(1) at all time-steps. 

Executive state: 
begin 

L5: repeat/* do simultaneously for all PEs. */ 
L6: if Cin < R t h e n  Coutt=Cin "1- Xin 

else 
begin 

L7: if C = 1 t h e n  Cout,=T e l s e  Cout,=R; 
L8: C , = C -  1 

end; 
L9: if Co.t -- R then Xo.t:=l else Xout,=0; 
L10: dout:=Co.t; 
L l l :  if F =  1 then 

begin 
LI2: T'=din + 2; 
L13: Yo,t,=di, + 3; 
L14: F..=0; 
L15: C , = C  + 1 

e n d  
else 

begin 
LI6: if Yin > 0 t h e n  

begin 
L 17: T,=yin; 
L 18: Yo.t,=Yi. + 1; 
LI9: C , = C  + 1 

e n d  
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L20: else yo=,=0 
e n d ;  

L21: if x~, = 1 a n d  Co,t = R - 1 t h e n  F . = I  
u n t i l  the Xout = 1 of PE(1) is recognized by host computer 
end. 

Note  that  in Algor i thm 1, after receiving the input  data  xi,, q . ,  the m PEs generate 
simultaneously the m componen t s  o f  a combinat ion.  For  1 <~ i ~< m PE(i)  produces the i th 
component .  At  the same time-step the combina t ion  comes out  f rom the terminals oi as shown in 
Fig. 1, and then we detect whether  Co= reaches its limit value in order  to determine the value o f  
Xo=, and so on. In  what  follows, the symbol  "L i  indicates that  we are referring to the line number  
i o f  Alor i thm 1. First we observe the following four  facts: 

(1) I f  m ~ < n -  1, L 1 , 3 , 4 , 6  imply that  the first combina t ion  coming out  is {1,2 . . . . .  m}. I f  
m = n, L 1, 2,4, 6, 7 imply that  the first combina t ion  is also { 1, 2 . . . . .  m }. Tha t  is, at time-step t = 1, 
the first combina t ion  comes out  in lexicographic order. 

(2) Suppose that  the combina t ion  A = {a~, a2, • • •, a=} comes out  at time-step to, and there exists 
an integer ct such that  F = 1 in PE(ct) (this F = 1 is set via L21), then at the following time-steps 
(from t 0 + l  to t 0 + ( m - ~ t ) + l )  PE(~) propagates  the ( m - c t ) + l  values (say 
S==  {a=_~ + 2, a=_t + 3  . . . . .  a=_~ + ( m  - ~ ) + 2 } )  to the (m - ~ ) +  1 Ts o f  PE(i)  for ~ ~<i ~<m 
respectively. This p ropaga t ion  works as follows. 

(2a) At  to + 1 : L 1 2 - 1 5  imply that  PE(ct) receives a~, = a~_ l, assigns a~, + 2 = a=_ 1+  2 to its T, 
sends d~, + 3 = a=_ ~ + 3 to Your, resets F = 0, and increases C by one. 

(2b) At  to + 2 : L 1 7 - 1 9  imply that  PE(ct + 1) receives and assigns Yin = a=_ i -t- 3 to its T, sends 
a=_ t + 4 to Your, and increases C by one. 

(2c) In general at to + j :  L17-19 imply that  PE(ct + j  - 1) receives and assigns Yi, = a=_~ + j  + 1 
to its T, sends a=_ l + J  + 2 to Your, and increases C by one. 

(2d) And  so on up to PE(m)  receives and assigns Yi. = a=_ ~ + (m - ~t) + 2 into its T, sends 
a=_ ~ + (m - 0t) + 3 to Your, and increases C by one at to + (m - ~) + 1. 

We define PE(~t) to be the leader of  a propagating work within the propagating time interval 

I = [to + 1, to + (m - ~t) + 1], and the (m - ~t) + 1 values in S= are called the propagating values of  
PE(ct) within time interval L 

(3) F r o m  L7 if ci. = Ri then Con, is assigned a value f rom T or  R according as the content  o f  C 
is 1 or  not.  

(4) By L5 the Algor i thm 1 repeats its execution until the Xn= = 1 in PE(1) is recognized by a host  
computer .  

We assume that  there exists a simple control  circuit which can stop the linear array at the 
time-step such that  Xo~, = 1 o f  PE(1) is recognized. 

3. T H E  P R O O F  OF  C O R R E C T N E S S  

When  the systolic ar ray  begins its operat ion,  all PEs have F = 0 and C = 0 by L2. I f  m ~= n, 
Algor i thm 1 increases the m th componen t  by one at each time-step for generating a new 
combinat ion.  After  (n - m)  time-steps, the combina t ion  A = {1, 2, 3 . . . . .  m - 1, n - 1} comes out. 
By L21 PE(m) sets F = 1 because PE(m)  has xi, = 1 and Co= t = Rm - 1 = n - 1. It  means that  the 
assumpt ion o f  the fact (2) in Section 2 is satisfied for ~t = m at time-step t = n - m. We will discuss 
the behaviors o f  propagat ing  works  o f  some PEs under  the above assumption.  That  is, "There  
exists  an integer ~t such that the (m - ot + 1) PEs  (~t <~ i <~ m )  set all F = 1 and all the m PEs  have 
C = 0 at some t ime-s tep to" is satisfied. For  simplicity, we use the nota t ion II PE(i); Co= = j ,  
xi, = k . . . .  ; t = to II to denote  the statement that  PE(i)  has Co~, = j ,  xi, = k and so on at the time-step 
t = to. And  the symbol  "A =~B" means that  s tatement A implies statement B. 
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Lemma 1 

Suppose at time-step to, there exists an integer ~ such that PE(i) (~ ~< i ~< m) sets F = 1 and all 
C = 0, then for integer i such that ~ ~< i ~< m we have (a): II PE(i); xi, = 1, Cout = Ri - 1, Xou, = 0; 
t = t011; (b) :  PE(i) begins its propagating work at time-step to+ 1. 

Proof. (a) By L21,9. (b) By L12-15.[]  

Lemma 2 

Under the assumption of  Lemma 1. If  PE(~ - 1) has Co~, = fl such that fl ~< ~ _  1 - 2. (When 
= 1, we let fl = 0, Ro = 2.) Then for integer j such that 1 ~<j ~< (m - ~ + 1), PE(~) propagates 
+ j  + 1 into the T o f P E ( ~  + j  - 1) at to + Z  In other words, PE(~) performs its propagating work 

within the time interval I = [t0÷ 1, to+ ( m -  ~ ) +  1], and PE(~ + j -  1) receives and assigns 
the propagating value fl + j  + 1 of  leader PE(~) to the T of  PE(~ + j  - 1) at time-step to + j .  

Proof. By (b) of  Lemma 1 PE(~) begins its propagating work at time-step to + 1. This lemma 
is proved by the descriptions (2a)-(2d) in Section 2.[]  

Lemma 3 

Under the assumption of  Lemma 2. For  integers k, j such that 1 ~<k ~ < m - ~  and 
1 ~<j ~< m - ~ - k + 1, PE(~ + k) propagates R=+~+j_ 1 to the T o f P E ( ~  + k + j  - 1) at to + j .  That  
is, PE(~ + k + j  - 1) receives and assigns the propagating value R=+k+j_, of  leader PE(~ + k) to 
the T of  PE(~ + k + j  - 1) at time-step to + j .  

Proof. By (b) of  Lemma 1 PE(~ + k) begins its propagating work at time-step to + 1. This lemma 
is also shown by (2)of Section 2.[]  

From Lemmas 2 and 3, there exist (m - ~) + 1 PEs (PE(i) for ~ ~< i ~< m) such that they begin 
concurrently their propagating works at to + 1, respectively. We call such PE(~) the leftmost-leader 
among these (m - ~) + 1 leaders PE(i), and notice that the propagating time interval with leader 
PE(i + 1) is a subset of  the propagating time interval with leader PE(i). The behaviors of  Lemmas 
2 and 3 are illustrated by the paths with arrows in Fig. 3, where the nodes are located in a x-y-plane 
coordinate system with x the variable of  PE's index, and y the variable of  time-step. Any path in 
Fig. 3 means that a propagating work of  leader PE(~ + k) for 0 ~< k ~< m - ~. Note that during 
time interval [to + 1, to + (m - ~) + 1] the last value being assigned to T of  PE(i) (~ ~< i ~< m) is the 
propagating value with the leftmost-leader PE(~). Under the assumption of  Lemma 2, since II PE(i); 
Coat = Ri - 1, Xout = 0; t = to II for all ~ ~< i ~< m, by L6,9 we have 

[PE(m); Cou t=Rm- l ;  t = t 0 ]  

=:-[PE(m); Cin = R m - -  1, Xin = 1, Cout = Rm, Xout = 1; t = to + 1] 

=:-[PE(m - 1); Cin = R~_ ~ -- 1, xi, = 1, Coot = R,,_ 1, Xout = 1; t = to + 2] 

=*,[PE(m - 2); ci, = Rm_ 2 - 1, xi, = 1, Cout = R,,_ 2, Xout = 1; t = to + 3] 

=}[PE(~); c i , = R = - l ,  x i , = l ,  Coot=R=,xo~t=l;  t = t 0 + ( m - g ) + l ] .  

And during I = [to + 1, to + (m - ~ ) +  1] by L8,15,19 the Cs of  PE(g) and PE(m) are always 1, 
while the Cs of  PE(k) for • + 1 ~< k ~< m - 1 are greater than 1. Hence Lemmas 2 and 3 and L7 
imply that PE(p) has C o u t = R z  in the time interval [ t 0 + ( m - p ) +  1, t o + ( m - g ) +  1] for 

~< p ~< m. In fact, if we again refer to Fig. 3, where the four vertices A, B, C and D have 
coordinates (a, to + 1), (m, to + 1), (m, to + (m - a) + 1), (a, to + (m - ~) + 1) respectively, and E is 
the intersection of  line-segments AC and BD. For  any fixed PE(i) (~ ~< i ~< m) the contents of  its 
register C are increased by 1 within or on the triangle AABC, and decreased by 1 within the triangle 
ABCD or on the segments BC, DC. Therefore the value of  C in any fixed PE(i) is increased by 
1 within and on AABE, kept the same value within AAED, ABCE or on the segments ED, EC, 
and decreased by 1 within ACDE or on CD. That is, we obtain the values of  Cs of  PE(a + p) 
for 0 ~< p ~< m - ~ during the time interval I = [to + 1, t o + (m - a) + 1] as follows. 

If  

m m ~  
o . < p  ~< L---T-J 
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Fig. 3. The illustration o f  propagating work. 

then (1) C = j  for  l ~ < j ~ < p + l ;  (2) C = p + l  for  p + 2 ~ < j ~ < m - ~ - p + l ;  and  (3) 
C = m  - ~  - j + 2  for  m - ~  - p  + 2 <~j <~m - ~  + 1. 

I f  

m - ~  
L~J+I ~<p ~<m - ~  

then (1) C = j  for  1 <~j<~m - ~  - p  + 1; (2) C = m  - ~  - p  + 1 for  m - o r  - p  + 2 < ~ j < ~ p  + 1; 
and  (3) C = m - ~ - j + 2  f o r p + 2 < ~ j < ~ m - ~ + l .  

Not ice  that  all PE(i )  have C = 1 at  t = to + (m - ~) + 1 for  a ~< i ~< m. We also note  that  all 
combina t ions  dur ing this t ime interval I = [to + 1, t o +  ( m -  ~ ) +  1] come out  in lexicographic 
order.  Therefore ,  we have the following lemma.  

L e m m a  4 

Under  the a s sumpt ion  o f  L e m m a  2, let {a~, a2 . . . . .  a ,_2,  fl, R= - 1 . . . . .  Rm - 1} be the combina-  
t ion coming  out  at  to, then we have the following six results. 

(a) F o r  any  integer j such that  1 ~<j ~< m - ~ + 1 we have II PE(p) ;  Co,t = Rp; t = to + j  II for  all 
m - j  + l <~ p <~ rn. 

(b) I f  there exists an integer p such tha t  II PE(p) ;  Co,, = Rp; t = tl II then we have II PE(i);  Cou t = Ri; 
t = tl II for  all p ~< i ~< m. 

(c) Within  the p ropaga t ing  t ime interval I = [to + 1, to + ( m -  ~ ) +  1] o f  the lef tmost- leader  
PE(~)  all the combina t ions  come  out  in lexicographic order.  

(d) II PE(i);  C = 1, T = fl + (i - c~) + 2; t = to + (m - ~) + 1 II for  all c¢ ~< i ~< m. 
(e) The  max ima l  value o f  C is 

and it appears at PE(k)  for 

m - o ~  
L-~--J + l 

(f) The combinat ion A = {at, a2 . . . . .  a~_:,  fl + 1, fl + 2 . . . . .  fl + (m - ~) + 2} comes out and all 
C = 0 at time-step to + (m - g)  + 2. 

Proof. The parts o f  (a)-(e) are the results o f  the aforementioned discussions. So we only prove 

k = • + L-m--~J.  
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the result o f  (f). By parts  (a), (d) o f  this lemma with j = (m - c t ) +  1 and L7, for  all ~t ~< i ~< m we 
have 

[[PE(i); C = I ,  cout=Ri, T = # + ( i - ~ ) + 2 ;  t = t o + ( m - o t ) + l H  

=>IIPE(i); ci,= Ri, cout=fl + ( i - o t ) +  2, C =O; t = t o + ( m - o t ) +  2ll. 

Since PE(~ - 1) has Co,t = fl and C = 0 during [to, to + (m - ct) + 1], and 

II PE(~t); Cou t = R, ,  Xo.t = 1; t = t o + (m - ct) + 1 I1 

~[IPE(ct  - 1); c~,=fl, xm= 1, C o u t = f l  + 1, C = 0 ;  t = t 0 + ( m  - ~ t ) + 2 1 1 .  

Therefore the combina t ion  A comes out  and all C = 0 at time-step to + (m - at) + 2.1-1 
F r o m  (f) o f  Lemma 4, if/Y < R,_  ~ - 2, then any ith componen t  o f  A is not  the value R~ - 1. 

This means that  the assumpt ion of  Lemma 2 is not  satisfied for  any integer ~t such that  ~t ~< m. 
Algor i thm 1 increases the m th componen t  by one to generate new combina t ion  at the following 
time-step. But if fl = R ,_ ,  - 2, then for all ct - 1 ~< i ~< m we have 

IJPE(i); Co,t = R ~ -  1, Xin = 1, F =  1, C = 0 ;  t = to+(m - c t ) + 2 1 J .  

This implies that  the assumpt ion o f  Lemma 2 holds for decreasing ~t by one. And  these (m - • + 2) 
leaders (PE(i) for a c t  - 1 ~< i ~< m) begin simultaneously their propagat ing  works at time-step 
to + (m - 0 t ) +  3. Therefore we have the following lemmas. 

Lemma 5 
There exist exactly (m - ct + 2) PEs (PE(i) for ~ - 1 ~< i ~< m) such that  PE(i)  sets F = 1 and all 

C = 0 at time-step t o + (m - ct) + 2 if and only if there exist exactly (m - ct + 1) PEs (PE(k)  for 
~< k ~< m) such that  PE(k)  sets F = 1, all C = 0, and PE(~t - 1) has Co,t = R ~ _ ~ -  2 at time-step 

l 0 • 

Lemma 6 

I f  there exist exactly (m - ~t + 1) componen ts  o f  A = {al, a2 . . . . .  a~_ ~, R , , . . . ,  Rm} arriving at 
their limit values at to + (m - a t ) +  1 respectively, and a~_ ~ ~< R~_ t - 2 .  Then at time-step t o the 
combina t ion  D = { a l , a 2  . . . . .  a ~ _ t , R ~ - l , R ~ + t - I  . . . . .  R , , - I }  comes out  and PE(i) 
(ct~<i~<m) s e t s F - - 1  and all C = 0 .  

Lemma 7 

I f  there exists an integer ~ such that  PE(ct) sets F = 1, so do all PE(i),  ~t ~< i ~< m. 

Lemma 8 
I f  there exist exactly ( m - c t  + 2 )  PEs (PE(k)  for  c t -  1 ~<k ~<m) such that  PE(k)  has 

Cout = Rk -- 1 at to + (m -- ct) + 2, then PE(k)  has xi, = 1, for all ~t - 1 ~< k ~< m. 
Fol lowing the previous Lemmas,  we should prove that  Algor i thm 1 in our  linear systolic array 

is correct. 

Theorem 1 
Algor i thm 1 for generating the combina t ions  in lexicographic order  is correct. 
Proof. The p r o o f  is by induct ion on the index N o f  the combina t ions  in lexicographic order. 

No te  that  N is also the time-step t o f  Algor i thm 1. 
(1) N = 1. F r o m  the description o f  fact (1) in Section 2, we know that  the first combina t ion  is 

{1,2 . . . . .  m}. 
When  N = 2. (i) I f m  = n, then we have I] PE(1); Cou, = 1, Xou t = 1; t = 1 II, hence Xo~t = 1 o f  PE(I )  

is recognized at t = 2 and Algor i thm 1 stops by L5. (ii) Suppose m ~ n then all PEs have Co,t ~ Ri 
and send Xo,t = 0 at t = 1. By L6 for 1 ~< i ~< m - 1 we have II PE(i); c~, = i, xi, = 0, Co,t = i; t = 2 II, 
and IIPE(m); c in--m,  )tin = 1 ,  C o , , = m + l ;  t=211 .  That  is, the second combina t ion  
{ 1 , 2 , . . . , m  - 1, m + 1} is generated at t = 2. 

(2) Suppose that  the theorem is true for  all N ~< k, i.e. all combinat ions  with indexes N ~< k o f  
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lexicographic order  are genera ted correctly.  Let A = {at, a2 . . . . .  am} be the k th  combina t ion  that  
comes  out  at  t ime-step t = k. 

(3) Fo r  N = k + 1. Let  B = {bt, b2 . . . . .  b,,} be the next combina t ion  coming out  after  A. We 
want  to show that  B has index k + 1 under  the lexicographic order.  We classify the p r o o f  according 
to whether  there exists a c o m p o n e n t  o f  A arr iving at limit value. 

(a) I f  am ~ n, we mus t  show that  b,, = a,, + 1 and bi = a~ for all 1 ~< i ~< m - 1. Since at  t + 1 all 
PEs have Xin = 0 except that  Pe(m) has Xin = 1. By L6 the combina t ion  
B = {at, a2 . . . . .  a,,,_ t, am "+" 1 } comes  out  at  t = k + 1. Hence  N = k + 1 is true. 

(b) I f  am = n = R,,. Then  par t  (b) o f  L e m m a  4 implies that  there exists a minimal  positive integer 
6 such tha t  A = {a], a2 . . . . .  a~_ i, R~, R~ + t . . . . .  R,,}, where a~_ t < R~_ 1. Fol lowing the par t  (a) o f  
L e m m a  4 and  L e m m a  5 the combina t ion  A must  be within a p ropaga t ing  t ime interval (say 
I = [to + 1, to + (m - ~) + 1]) o f  a lef tmost- leader  PE(~t) for ct ~< 6. 

(b-i) I f  a~_, = R~_ 1 - 1 i.e. 0t < 6, then A comes  out  within the t ime interval I. Hence  the par ts  
(a), (c) o f  L e m m a  4 imply that  B = {at, a2 . . . . .  a~ _ 2, R~_ t, R~ . . . . .  Rm} comes  out  at t = k + 1 and 
B has index k + 1 in lexicographic order.  This  proves  the theorem for  N = k + 1. 

(b-ii) I f  a~ , < R ~ _ ~ - 1  i.e. ~ = 6 ,  then by L e m m a  5 the combina t ion  A comes  out  at  
t = to + (m - ct) + 1. By L e m m a  6, the combina t ion  D = {at, a2 . . . . .  a~_ t, R~ - 1, 
R~÷, - 1 . . . . .  Rm - 1} was generated at  the t ime-step to = t - (m - ~) - 1. By induction hypothe-  
sis, D comes  out  in lexicographic order  at  to because o f  to ~< k. By L27 and L e m m a  8 PE(i)  sets 
F = I  at  to for  ~ < i ~ < m ,  and all C = 0 ,  thus these ( m - 0 t ) + l  PEs (PE(i)  for c t~<i~<m)  
begin s imul taneously  their p ropaga t ing  works  within the t ime interval [to + 1, to + ( m -  i ) +  1] 
respectively. By (f)  o f  L e m m a  4 the combina t ion  B = {b], b2 . . . . .  bin} = {at, a2 . . . . .  a~_ 2, a~_ l + 1, 
aa- t "F 2 . . . . .  a~_ ~ + (m - o~) + 2} comes  out  at t ime step to + (m - ~) + 2 = t + 1 because of  
t 0 = t - ( m - ~ ) - l .  H e n c e N = k + l  is true. 

By mathemat ica l  induct ion principle, the combina t ions  coming out  in lexicographic order  is 
proved.  The  last combina t ion  {n - m  + 1, n - m  + 2 . . . . .  n } reaches terminals  at t ime-step (~,). 
Hence  PE(1) sends Xo~, = 1 at  t = (",,) and thus Xo~t = 1 o f  PE( l )  is recognized at  the t ime-step (~) + 1. 
Therefore ,  Algor i thm 1 stops at  tha t  right t ime-step.  

This  completes  the p r o o f  o f  this t h e o r e m . [ ]  

4. E X A M P L E S  

E x a m p l e  1 

Table  1 is an example  o f  n = 5, m = 3 for  i l lustrating the results o f  opera t ions  in Algor i thm 1. 
The  values o f  xi., xo~t, din, dout, Yin, Your and  T, C, F, R of  PEs are located at  their cor responding 
posi t ions o f  Fig. 2. The  limit values o f  PEs are fixed by 3, 4, 5 in PE(1), PE(2), PE(3), respectively. 
The  max ima l  value o f  C is 2 which appears  in PE(2) at  t ime-step t = 9. 

E x a m p l e  2 

In  Table  2 we give an example  to illustrate the behaviors  o f  L e m m a s  2 and 3 with the contents  
o f  C, T, F in some PEs during the execution o f  Algor i thm 1. Let n = 15, m = 7, ~t = 3 and fl = 6 
be in L e m m a  2 o f  Section 3. Suppose  we have a combina t ion  (@, 6, 10, 11, 12, 13, 14) at t ime-step 
to, where @ indicates any  n u m b e r  belonging to {1 ,2 ,3 ,4 ,  5}. Then at  t ime t = t o - 1  the 
combina t ion  is (@, 6, 9, 12, 13, 14, 15), hence we have Xin = 1 and cou, = R~ - 1 in PE(i)  at  the t ime 
to for  3 ~< i ~< 7. In Algor i thm 1 these PEs start  s imul taneously  their p ropaga t ing  works  in order  
to assign values to their cor responding  Ts. The  values o f  T, C, F and the componen t s  o f  each 
related combina t ions  are shown in Table  2, where • indicates any n u m b e r  in which we are not  
interested. The  values o f  F, C are put  in the first column.  The  values o f  T and  the Cout 
are located in the second column.  Tha t  is, F, C, and T have the posi t ions as shown in Fig. 2 but  
the posi t ion o f  R is replaced by Cout. No te  that  the max imal  value o f  C is 3, as appeared  in PE(5) 
at  t ime step t = to + 3. 

With  the aid o f  two recursive procedures  (Algor i thms 2 and 3) we can modi fy  the ou tpu t  s t ream 
o f  Algor i thm 1 to p roduce  all ),-subsets o f  the set {1,2 . . . . .  n} for  l~<) ,~<m.  Let B be a 
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Table 1. An example with n = 5, m = 3 

T PW) PW W3) OUT 

0 

1 

2 

3 

4 

5 

6 

0010 
0000 cl 0 0 3 0 

0 1 I 0 

0 1 1 0 
0000 

cl 0031 

0 1 10 

0110 

0 I 1 0 

0110 
0000 

cl 0031 

021 I 

0 2 2 0 

1321 
010210 

0020 
0000 cl 0040 

0 2 2 0 
0000 q 0042 

0 2 2 0 
0000 

cl 1042 

0 2 2 0 
0000 

cl 1042 

0321 
0100 

cl 1043 

0330 
0034 

cl 1143 

1431 

0 3 4 1 
0130 

cl 1043 

0330 
0 0 4 5 q 2143 

143 I 

1441 
010310 

0021 
0000 

cl 0050 

0321 
0 0 0 0 

El 0053 

0431 

1541 

0451 
0 140 

cl 2 0 5 4 

1541 

I 5 5 I 

0451 
0140 

cl 4054 

1541 

I 5 5 1 

ooo 

123 

124 

125 

134 

135 

145 

234 

235 

245 

345 

first-in-first-out buffer containing all the output of Algorithm 1, the modified algorithm can be 
designed by applying the following steps. 

(1) Read a combination A = (a,, a,, . . . , a,) from B until B is empty. 
(2) For each combination A = {a,, a*,. . . , a,,,} of B, suppose that A’ = {LZ;, a;, . . . , uk} is the 

preceding combination of A (initial A’ = (0, 0, . . . , 0}), find the smallest index r such that 

u,=a;+ 1. 
(3-l) If r = m or a, # n - m + r then we produce the combinations {a,, u2, . . . , ui} one by one 

for r < i < m under the recursive procedure extension(r, m) as shown in Algorithm 2, where 
“parallel-output a,, a,, . . . , a,” means that PE@) sends c,,,, = up for 1 < p < r and PE(/3) sends the 
blank signal to c,,, for r + 1 < p < m at a same time-step. 

Table 2. An illustrative example with n = 15, m = 7, a = 3, B = 6 

T PEW PE(2) W3) PE(4) W5) PE(6) PE(7) 

1,-l 0 z 8 G 0 1 11 
0 12 0 13 0 14 

l 

: 1’: 
1 

t: ! 
14 I 15 

1 
'0 * 0 z :, 1; :, 11 : 12 0 :z 0 :: 

to + 1 8 : 
0 8 0 12 0 13 0 14 0 15 

* 1 10 1 I1 1 12 1 13 1 15 
to+2 8 : 0 8 0 2 9 0 13 0 * 

1 IO 
IO+3 * : z 0 1 10 8 0 2 ‘A 11 

f t; f 

;i y :: 

14 0 15 

to + 4 * 8 ;, 

to + 5 * 8 z 1 11 

:, 

12 1 13 1 14 1 15 

r,+6 0 ; 0 8 * 0 0 8 0 ‘9 8 f8 8 
11 0 12 
11 0 12 
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Table 3. The 7-subsets of {1, 2, 3, 4, 5} for ~< 7 ~< 3 

B ),-subsets Called subroutine 

123 1, 12, 123. extension(l, 3). 
124 124. extension(3, 3). 
125 125. extension(3, 3). 
134 13, 134. extension(2, 3). 
135 135. extension(3, 3). 
145 14, 145, 15. subset(2, 3, 5). 
234 2, 23, 234. extension(l, 3). 
235 235. extension(3, 3). 
245 24, 245, 25. subset(2, 3, 5). 
345 3, 34, 345, 35, 4, 45, 5. subset(l, 3, 5). 

(3-2) Otherwise, i.e. if r < m and ar = n - m + r then we call the procedure subset(r, m, n) as 
shown in Algorithm 3 which can be considered as to generate all p-subsets of  the set 
{n - m  + r , n  - m  + r  + 1 . . . . .  n - 1,n} for 1 ~< p ~<m - r + I, and then add {al,a2 . . . . .  a~_,} to 
those p-subsets to get the y-subsets of  the set {1, 2 . . . . .  n} for 1 ~< ~ ~< m. 

(4) Go to step (1). 

Example 3 
Following Example 1 the lexicographic enumeration of  all ~,-subsets (1 ~< 7 ~ 3) corresponding 

to the combinations in B are shown in Table 3. 

Algorithm 2 
e x t e n s i o n ( r ,  m)  - 

b e g i n  
p a r a l l e l - o u t p u t  a~, a2 . . . . .  a,; 
i f  r < m  t h e n  e x t e n s i o n ( r  + 1 ,m)  
e n d  

Algorithm 3 
s u b s e t ( r ,  m, n)  = 

b e g i n  
a r , = n  - m + r ; / ,  a s s i g n  n - m + r t o  t h e  Cou t o f  PE(r) */ 
p a r a l l e l - o u t p u t  a~, a2 . . . . .  a,.; 
i f  ar < n t h e n  b e g i n  

s u b s e t ( r  + 1, m, n); 
subset ( r ,  m - 1, n) 
e n d  

end.  

5. C O N C L U S I O N S  

In this paper we present a parallel algorithm to generate all combinations of  m items out of n 
given items in lexicographic order. The computational model is a linear systolic array processor. 
The algorithm is contrasted with that of [6-8], where they are either not in systolic array or they 
are not in lexicographic order. We also present two recursive procedures in order to modify the 
output of  Algorithm 1 for generating all combinations of at most m items out of n given items 
in lexicographic order as shown in [10, 1 I]. Since all PEs are identical and execute the same 
program, it is suitable for VLSI implementation. If  the number of  PEs has a limitation, say only 
fl PEs can be used, the technique in [12] for partitioning and mapping algorithms into the fl PEs 
may be applied. Finally there are many other important combinatorial enumeration problems 
existed for which parallel algorithms are yet to be developed. For  example, can we design a systolic 
algorithm to generate the m! permutations? If  it can be solved then we can generate all the 
permutations of  m items out of  n given items in a computational model of  linear systolic array. 
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