
Computers Math. Applic. Vol. 17, No. 12, pp. 1523-1533, 1989 0097-4943/89 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1989 Pergamon Press plc

A PARALLEL ALGORITHM FOR GENERATING
COMBINATIONS

C.-J. LIN
Department of Applied Mathematics and Institute of Computer Engineering, National Chiao

Tung University, Hsinchu, Taiwan 30050, Republic of China

(Recewed3February 1988; m rev~edform 19July 1988)

Abstraet--A parallel algorithm for generating all combinations of m items out of n given items in
lexicographic order is presented. The computationa! model is a linear systolic array consisting of m
identical processing elements. It takes (~) time-steps to generate all the ~) combinations. Since any
processing element is identical and executes the same procedure, it is suitable for VLSI implementation.
Based on mathematical induction, such algorithm is proved to be correct.

1. INTRODUCTION

Because of the drastically lowered hardware cost and the advancement of hardware technology,
parallel processing becomes more and more feasible in practice. Using a parallel computer is a way
to achieve higher computing speeds, this appealing approach has promptly increased interest in the
area of design and analysis of parallel algorithms. The growing importance of parallel computers
and parallel algorithms is highlighted in [1-5]. Systolic array is one of the parallel computation
models. A systolic array architecture is specified by the timing of data movement and inter-
connection of processing elements (PEs) such that the movement of data is simple, regular, and
uniform. These array processors are typically made up of identical PEs that operate in synchronous.
Many examples of systolic array processor have been presented, e.g. in the fields of image
processing, matrix manipulation, digital signal processing and the solver of simultaneously linear
equations etc. However, only a few systolic array are designed for combinatorial enumeration
problems.

Generating combinations is important in combinatorics. Several parallel algorithms [6-8] have
been designed to solve this problem. However, these algorithms do not generate the combinations
in lexicographic order, or they are not systolic algorithms. In this paper we design a parallel
algorithm in a linear systolic array to generate all combinations of m out of n items in lexicographic
order.

It is known that the combinations in lexicographic order can be generated sequentially in a
straightforward way [9]. In [6] Chan and Akl presented a parallel algorithm to generate the
combinations on a single-instruction-multiple-data (SIMD) machine which allows data to be read
simultaneously from a shared memory. The PE must know its indexed position and also has a mark
to indicate whether the PE is active in order to perform its program. Moreover, in [7] a parallel
algorithm for generating the permutations of at most m out of n but not in lexicographic order
was presented. The architecture consists of a linear array and a selector. Each PE has a stack of
size m to store the necessary data during the execution of algorithm. This algorithm can easily be
modified to generate combinations. In [8] for k is a given ranking number they proposed an
algorithm to evaluate the m components of the kth combination within a PE. If we have (~,) PEs
to be used, then the kth PE will be assigned to generate the kth combination, hence all of the (~)
combinations can be produced simultaneously. Since a combination can be produced in O(n) time
units, their algorithm generates all the combinations in O(n) time units provided that (~) PEs are
available in a SIMD computer. In this paper, we only use a linear array consisting of m PEs, and
these PEs are not necessary to know their indexed positions during the execution of algorithm. We
use four registers to replace the stack of size m as shown in [7]. In [10] Semba presented a sequential
algorithm to generate all the combinations of at most m out of n items in lexicographic order. Such

c^Mw^ 17/12--B 1523

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82552711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1524 C.-J. LIN

result can also be produced by the use of our algorithm and then by the execution of two recursive
procedures which are described in Section 4.

2. T H E C O M P U T A T I O N A L M O D E L A N D T H E P A R A L L E L A L G O R I T H M

A systolic array processor can be viewed as a network composed of a few types of computational
PEs, and an array processor is often used as an attached processor linked with a host computer
through an interface system. Within a systolic array, if it is necessary to send data from PEI to
PE2 then there exists a communication link (say e-link) from PE1 to PE2. We call such e-link an
input link of PE2 and an output link of PE1, we also write ei. and eo,t to denote the input value
of PE2 and the output value of PE1 via e-link, respectively. Moreover, if the e-link is labeled with
an integer 7 delays, it means that when PE 1 sends eoo, to e-link at time tt, then such eou t is the e~,
of PE2 at time t~ + 7. For convenience, we use ei,, eout as the names of variable in our parallel
algorithm.

Our computational model for generating combinations is a linear systolic array consisting of m
identical PEs provided that only the adjacent PEs can communicate their data via communication
links. Figure 1 indicates the layout of our computational model, any individual PE is referred to
as PE(i) for 1 ~< i ~< m, and each individual PE is specified in Fig. 2, where c, d, x and y are four
communication links, each link is labeled with one delay, R, C, T are registers, F is a flag, and
oi is the output terminal. We assume that each PE performs the following three tasks. (1) Receiving
data from its input of communication links with names ci., X~n, a~,, and Yin, respectively. (2)
Executing the functions that are described by an existing algorithm. (3) Sending data to its output
of communication links with name Cnn~, Xn,,, do.,, and Yo,,, respectively.

We call the needed time units to do the above three tasks as a time-step. Because the
communication x-link has one delay in our computational model, so the output value Xou t of PE(i)
at time-step t is the input value Xin of PE(i -- 1) at time-step t + 1. Similarly, the Co,, of PE(i) at
time-step t is the c~. of PE(i) at time-step t + 1, and the Ynut, dour of PE(i) at time-step t are the
y~., d~. of PE(i + 1) at time-step t + 1, respectively.

y-4

d-4

o 1 0 2 o m

C C C "~

PE(1) - 4 P E (2)

0 3

C
(...

-4 PE(3)

- 4

Fig. 1. The computational model.

+- +-

-4...-4

-4 -4

PE(m)

~ x

- 4

- 4

X o u t

Yin

d .
i n

t -

- 4

Fig. 2. The

Cout~Cin
T 1

F T

e R

specification of PE(i).

X •
11l

Your

d o u r

A parallel algorithm for generating combinations 1525

Without loss of generality, it is assumed that the n given items are 1, 2, 3 , . . . , n. By the definition
of lexicographic order, if A = {a~, a2 am} is a combination, then ai ~< n - m + i for all
1 ~< i ~< m. We call n - m + i the limit value of the ith component of A, and denote it by Ri. The
use of communication links and registers in each individual PE(i) (1 ~< i ~< m) are described as
follows.

(1) The communication c-link transmits the input/output (Cin/Co,t) of the ith component of any
combination.

(2) The communication x-link indicates that whether the current output of c-link (i.e. Co,t) is
equal to its limit value.

(3) The communication y-link transmits data to the register T of PE(i + 1), if PE(i + 1) exists.
(4) The communication d-link transmits the same data as Cout, i.e. dout = Cout at all time-steps.
(5) Register R contains the limit value Ri = n - m + i.
(6) Register T stores a temporary element when the algorithm is working. T receives element from

y-link.
(7) Register C contains a counter indicating at what time-step the element in T will be retrieved

and assigned to Cout.
(8) Flag F indicates that if the condition "Cout = Ri - 1 and x~, = 1" is true then PE(i) is ready

to transmit elements into the Ts in PE(k) for i ~< k ~< m.

Our parallel algorithm is shown in Algorithm 1. It produces a combination within a time-step.
Since the elapsed time units within a loop is constant, its time complexity is O(~)).

Algorithm 1

Initial state:
LI: Set ci. = i in PE(i) for 1 ~<i ~<m - 1 and c i . = m - 1 in PE(m).
L2: S e t R = n - m + i , T = 0 , C = 0 a n d F = 0 i n P E (i) f o r a l l l~<i~<m.
L3: Set xi. = 0 in PE(i) for 1 ~< i ~< m - 1, and a~. = 0, Yin = 0 in PE(i) for 2 ~< i ~< m.
L4: Set xi. = 1 in PE(m) and d~. = 0, Yi. = 0 in PE(1) at all time-steps.

Executive state:
begin

L5: repeat/* do simultaneously for all PEs. */
L6: if Cin < R t h e n Coutt=Cin "1- Xin

else
begin

L7: if C = 1 t h e n Cout,=T e l s e Cout,=R;
L8: C , = C - 1

end;
L9: if Co.t -- R then Xo.t:=l else Xout,=0;
L10: dout:=Co.t;
L l l : if F = 1 then

begin
LI2: T'=din + 2;
L13: Yo,t,=di, + 3;
L14: F..=0;
L15: C , = C + 1

e n d
else

begin
LI6: if Yin > 0 t h e n

begin
L 17: T,=yin;
L 18: Yo.t,=Yi. + 1;
LI9: C , = C + 1

e n d

1526 C.-J. LIN

L20: else yo=,=0
e n d ;

L21: if x~, = 1 a n d Co,t = R - 1 t h e n F . = I
u n t i l the Xout = 1 of PE(1) is recognized by host computer
end.

Note that in Algor i thm 1, after receiving the input data xi,, q . , the m PEs generate
simultaneously the m componen t s o f a combinat ion. For 1 <~ i ~< m PE(i) produces the i th
component . At the same time-step the combina t ion comes out f rom the terminals oi as shown in
Fig. 1, and then we detect whether Co= reaches its limit value in order to determine the value o f
Xo=, and so on. In what follows, the symbol "L i indicates that we are referring to the line number
i o f Alor i thm 1. First we observe the following four facts:

(1) I f m ~ < n - 1, L 1 , 3 , 4 , 6 imply that the first combina t ion coming out is {1,2 m}. I f
m = n, L 1, 2,4, 6, 7 imply that the first combina t ion is also { 1, 2 m }. Tha t is, at time-step t = 1,
the first combina t ion comes out in lexicographic order.

(2) Suppose that the combina t ion A = {a~, a2, • • •, a=} comes out at time-step to, and there exists
an integer ct such that F = 1 in PE(ct) (this F = 1 is set via L21), then at the following time-steps
(from t 0 + l to t 0 + (m - ~ t) + l) PE(~) propagates the (m - c t) + l values (say
S== {a=_~ + 2, a=_t + 3 a=_~ + (m - ~) + 2 }) to the (m - ~) + 1 Ts o f PE(i) for ~ ~<i ~<m
respectively. This p ropaga t ion works as follows.

(2a) At to + 1 : L 1 2 - 1 5 imply that PE(ct) receives a~, = a~_ l, assigns a~, + 2 = a=_ 1+ 2 to its T,
sends d~, + 3 = a=_ ~ + 3 to Your, resets F = 0, and increases C by one.

(2b) At to + 2 : L 1 7 - 1 9 imply that PE(ct + 1) receives and assigns Yin = a=_ i -t- 3 to its T, sends
a=_ t + 4 to Your, and increases C by one.

(2c) In general at to + j : L17-19 imply that PE(ct + j - 1) receives and assigns Yi, = a=_~ + j + 1
to its T, sends a=_ l + J + 2 to Your, and increases C by one.

(2d) And so on up to PE(m) receives and assigns Yi. = a=_ ~ + (m - ~t) + 2 into its T, sends
a=_ ~ + (m - 0t) + 3 to Your, and increases C by one at to + (m - ~) + 1.

We define PE(~t) to be the leader of a propagating work within the propagating time interval

I = [to + 1, to + (m - ~t) + 1], and the (m - ~t) + 1 values in S= are called the propagating values of
PE(ct) within time interval L

(3) F r o m L7 if ci. = Ri then Con, is assigned a value f rom T or R according as the content o f C
is 1 or not.

(4) By L5 the Algor i thm 1 repeats its execution until the Xn= = 1 in PE(1) is recognized by a host
computer .

We assume that there exists a simple control circuit which can stop the linear array at the
time-step such that Xo~, = 1 o f PE(1) is recognized.

3. T H E P R O O F OF C O R R E C T N E S S

When the systolic ar ray begins its operat ion, all PEs have F = 0 and C = 0 by L2. I f m ~= n,
Algor i thm 1 increases the m th componen t by one at each time-step for generating a new
combinat ion. After (n - m) time-steps, the combina t ion A = {1, 2, 3 m - 1, n - 1} comes out.
By L21 PE(m) sets F = 1 because PE(m) has xi, = 1 and Co= t = Rm - 1 = n - 1. It means that the
assumpt ion o f the fact (2) in Section 2 is satisfied for ~t = m at time-step t = n - m. We will discuss
the behaviors o f propagat ing works o f some PEs under the above assumption. That is, "There
exists an integer ~t such that the (m - ot + 1) PEs (~t <~ i <~ m) set all F = 1 and all the m PEs have
C = 0 at some t ime-s tep to" is satisfied. For simplicity, we use the nota t ion II PE(i); Co= = j ,
xi, = k ; t = to II to denote the statement that PE(i) has Co~, = j , xi, = k and so on at the time-step
t = to. And the symbol "A =~B" means that s tatement A implies statement B.

A parallel algorithm for generating combinations 1527

Lemma 1

Suppose at time-step to, there exists an integer ~ such that PE(i) (~ ~< i ~< m) sets F = 1 and all
C = 0, then for integer i such that ~ ~< i ~< m we have (a): II PE(i); xi, = 1, Cout = Ri - 1, Xou, = 0;
t = t011; (b) : PE(i) begins its propagating work at time-step to+ 1.

Proof. (a) By L21,9. (b) By L12-15.[]

Lemma 2

Under the assumption of Lemma 1. If PE(~ - 1) has Co~, = fl such that fl ~< ~ _ 1 - 2. (When
= 1, we let fl = 0, Ro = 2.) Then for integer j such that 1 ~<j ~< (m - ~ + 1), PE(~) propagates
+ j + 1 into the T o f P E (~ + j - 1) at to + Z In other words, PE(~) performs its propagating work

within the time interval I = [t0÷ 1, to+ (m - ~) + 1], and PE(~ + j - 1) receives and assigns
the propagating value fl + j + 1 of leader PE(~) to the T of PE(~ + j - 1) at time-step to + j .

Proof. By (b) of Lemma 1 PE(~) begins its propagating work at time-step to + 1. This lemma
is proved by the descriptions (2a)-(2d) in Section 2.[]

Lemma 3

Under the assumption of Lemma 2. For integers k, j such that 1 ~<k ~ < m - ~ and
1 ~<j ~< m - ~ - k + 1, PE(~ + k) propagates R=+~+j_ 1 to the T o f P E (~ + k + j - 1) at to + j . That
is, PE(~ + k + j - 1) receives and assigns the propagating value R=+k+j_, of leader PE(~ + k) to
the T of PE(~ + k + j - 1) at time-step to + j .

Proof. By (b) of Lemma 1 PE(~ + k) begins its propagating work at time-step to + 1. This lemma
is also shown by (2)of Section 2.[]

From Lemmas 2 and 3, there exist (m - ~) + 1 PEs (PE(i) for ~ ~< i ~< m) such that they begin
concurrently their propagating works at to + 1, respectively. We call such PE(~) the leftmost-leader
among these (m - ~) + 1 leaders PE(i), and notice that the propagating time interval with leader
PE(i + 1) is a subset of the propagating time interval with leader PE(i). The behaviors of Lemmas
2 and 3 are illustrated by the paths with arrows in Fig. 3, where the nodes are located in a x-y-plane
coordinate system with x the variable of PE's index, and y the variable of time-step. Any path in
Fig. 3 means that a propagating work of leader PE(~ + k) for 0 ~< k ~< m - ~. Note that during
time interval [to + 1, to + (m - ~) + 1] the last value being assigned to T of PE(i) (~ ~< i ~< m) is the
propagating value with the leftmost-leader PE(~). Under the assumption of Lemma 2, since II PE(i);
Coat = Ri - 1, Xout = 0; t = to II for all ~ ~< i ~< m, by L6,9 we have

[PE(m); Cou t=Rm- l ; t = t 0]

=:-[PE(m); Cin = R m - - 1, Xin = 1, Cout = Rm, Xout = 1; t = to + 1]

=:-[PE(m - 1); Cin = R~_ ~ -- 1, xi, = 1, Coot = R,,_ 1, Xout = 1; t = to + 2]

=*,[PE(m - 2); ci, = Rm_ 2 - 1, xi, = 1, Cout = R,,_ 2, Xout = 1; t = to + 3]

=}[PE(~); c i , = R = - l , x i , = l , Coot=R=,xo~t=l; t = t 0 + (m - g) + l] .

And during I = [to + 1, to + (m - ~) + 1] by L8,15,19 the Cs of PE(g) and PE(m) are always 1,
while the Cs of PE(k) for • + 1 ~< k ~< m - 1 are greater than 1. Hence Lemmas 2 and 3 and L7
imply that PE(p) has C o u t = R z in the time interval [t 0 + (m - p) + 1, t o + (m - g) + 1] for

~< p ~< m. In fact, if we again refer to Fig. 3, where the four vertices A, B, C and D have
coordinates (a, to + 1), (m, to + 1), (m, to + (m - a) + 1), (a, to + (m - ~) + 1) respectively, and E is
the intersection of line-segments AC and BD. For any fixed PE(i) (~ ~< i ~< m) the contents of its
register C are increased by 1 within or on the triangle AABC, and decreased by 1 within the triangle
ABCD or on the segments BC, DC. Therefore the value of C in any fixed PE(i) is increased by
1 within and on AABE, kept the same value within AAED, ABCE or on the segments ED, EC,
and decreased by 1 within ACDE or on CD. That is, we obtain the values of Cs of PE(a + p)
for 0 ~< p ~< m - ~ during the time interval I = [to + 1, t o + (m - a) + 1] as follows.

If

m m ~
o . < p ~< L---T-J

1528

t o

to+l
to+2

t0+(m- a) + l

C.-J. L~N

a a+l a+2 . m- 1 m

O O O O O O O O O

A

o'--.o"-.,
o

o o

I o o l

: . . ,
. o o o o o o o
1/

, PE#

TIME

Fig. 3. The illustration o f propagating work.

then (1) C = j for l ~ < j ~ < p + l ; (2) C = p + l for p + 2 ~ < j ~ < m - ~ - p + l ; and (3)
C = m - ~ - j + 2 for m - ~ - p + 2 <~j <~m - ~ + 1.

I f

m - ~
L~J+I ~<p ~<m - ~

then (1) C = j for 1 <~j<~m - ~ - p + 1; (2) C = m - ~ - p + 1 for m - o r - p + 2 < ~ j < ~ p + 1;
and (3) C = m - ~ - j + 2 f o r p + 2 < ~ j < ~ m - ~ + l .

Not ice that all PE(i) have C = 1 at t = to + (m - ~) + 1 for a ~< i ~< m. We also note that all
combina t ions dur ing this t ime interval I = [to + 1, t o + (m - ~) + 1] come out in lexicographic
order. Therefore , we have the following lemma.

L e m m a 4

Under the a s sumpt ion o f L e m m a 2, let {a~, a2 a ,_2, fl, R= - 1 Rm - 1} be the combina-
t ion coming out at to, then we have the following six results.

(a) F o r any integer j such that 1 ~<j ~< m - ~ + 1 we have II PE(p) ; Co,t = Rp; t = to + j II for all
m - j + l <~ p <~ rn.

(b) I f there exists an integer p such tha t II PE(p) ; Co,, = Rp; t = tl II then we have II PE(i); Cou t = Ri;
t = tl II for all p ~< i ~< m.

(c) Within the p ropaga t ing t ime interval I = [to + 1, to + (m - ~) + 1] o f the lef tmost- leader
PE(~) all the combina t ions come out in lexicographic order.

(d) II PE(i); C = 1, T = fl + (i - c~) + 2; t = to + (m - ~) + 1 II for all c¢ ~< i ~< m.
(e) The max ima l value o f C is

and it appears at PE(k) for

m - o ~
L-~--J + l

(f) The combinat ion A = {at, a2 a~_:, fl + 1, fl + 2 fl + (m - ~) + 2} comes out and all
C = 0 at time-step to + (m - g) + 2.

Proof. The parts o f (a)-(e) are the results o f the aforementioned discussions. So we only prove

k = • + L-m--~J.

A parallel algorithm for generating combinations 1529

the result o f (f). By parts (a), (d) o f this lemma with j = (m - c t) + 1 and L7, for all ~t ~< i ~< m we
have

[[PE(i); C = I , cout=Ri, T = # + (i - ~) + 2 ; t = t o + (m - o t) + l H

=>IIPE(i); ci,= Ri, cout=fl + (i - o t) + 2, C =O; t = t o + (m - o t) + 2ll.

Since PE(~ - 1) has Co,t = fl and C = 0 during [to, to + (m - ct) + 1], and

II PE(~t); Cou t = R, , Xo.t = 1; t = t o + (m - ct) + 1 I1

~[IPE(ct - 1); c~,=fl, xm= 1, C o u t = f l + 1, C = 0 ; t = t 0 + (m - ~ t) + 2 1 1 .

Therefore the combina t ion A comes out and all C = 0 at time-step to + (m - at) + 2.1-1
F r o m (f) o f Lemma 4, if/Y < R,_ ~ - 2, then any ith componen t o f A is not the value R~ - 1.

This means that the assumpt ion of Lemma 2 is not satisfied for any integer ~t such that ~t ~< m.
Algor i thm 1 increases the m th componen t by one to generate new combina t ion at the following
time-step. But if fl = R ,_ , - 2, then for all ct - 1 ~< i ~< m we have

IJPE(i); Co,t = R ~ - 1, Xin = 1, F = 1, C = 0 ; t = to+(m - c t) + 2 1 J .

This implies that the assumpt ion o f Lemma 2 holds for decreasing ~t by one. And these (m - • + 2)
leaders (PE(i) for a c t - 1 ~< i ~< m) begin simultaneously their propagat ing works at time-step
to + (m - 0 t) + 3. Therefore we have the following lemmas.

Lemma 5
There exist exactly (m - ct + 2) PEs (PE(i) for ~ - 1 ~< i ~< m) such that PE(i) sets F = 1 and all

C = 0 at time-step t o + (m - ct) + 2 if and only if there exist exactly (m - ct + 1) PEs (PE(k) for
~< k ~< m) such that PE(k) sets F = 1, all C = 0, and PE(~t - 1) has Co,t = R ~ _ ~ - 2 at time-step

l 0 •

Lemma 6

I f there exist exactly (m - ~t + 1) componen ts o f A = {al, a2 a~_ ~, R , , . . . , Rm} arriving at
their limit values at to + (m - a t) + 1 respectively, and a~_ ~ ~< R~_ t - 2 . Then at time-step t o the
combina t ion D = { a l , a 2 a ~ _ t , R ~ - l , R ~ + t - I R , , - I } comes out and PE(i)
(ct~<i~<m) s e t s F - - 1 and all C = 0 .

Lemma 7

I f there exists an integer ~ such that PE(ct) sets F = 1, so do all PE(i), ~t ~< i ~< m.

Lemma 8
I f there exist exactly (m - c t + 2) PEs (PE(k) for c t - 1 ~<k ~<m) such that PE(k) has

Cout = Rk -- 1 at to + (m -- ct) + 2, then PE(k) has xi, = 1, for all ~t - 1 ~< k ~< m.
Fol lowing the previous Lemmas, we should prove that Algor i thm 1 in our linear systolic array

is correct.

Theorem 1
Algor i thm 1 for generating the combina t ions in lexicographic order is correct.
Proof. The p r o o f is by induct ion on the index N o f the combina t ions in lexicographic order.

No te that N is also the time-step t o f Algor i thm 1.
(1) N = 1. F r o m the description o f fact (1) in Section 2, we know that the first combina t ion is

{1,2 m}.
When N = 2. (i) I f m = n, then we have I] PE(1); Cou, = 1, Xou t = 1; t = 1 II, hence Xo~t = 1 o f PE(I)

is recognized at t = 2 and Algor i thm 1 stops by L5. (ii) Suppose m ~ n then all PEs have Co,t ~ Ri
and send Xo,t = 0 at t = 1. By L6 for 1 ~< i ~< m - 1 we have II PE(i); c~, = i, xi, = 0, Co,t = i; t = 2 II,
and IIPE(m); c in--m,)tin = 1 , C o , , = m + l ; t=211 . That is, the second combina t ion
{ 1 , 2 , . . . , m - 1, m + 1} is generated at t = 2.

(2) Suppose that the theorem is true for all N ~< k, i.e. all combinat ions with indexes N ~< k o f

1530 c.-J. LIN

lexicographic order are genera ted correctly. Let A = {at, a2 am} be the k th combina t ion that
comes out at t ime-step t = k.

(3) Fo r N = k + 1. Let B = {bt, b2 b,,} be the next combina t ion coming out after A. We
want to show that B has index k + 1 under the lexicographic order. We classify the p r o o f according
to whether there exists a c o m p o n e n t o f A arr iving at limit value.

(a) I f am ~ n, we mus t show that b,, = a,, + 1 and bi = a~ for all 1 ~< i ~< m - 1. Since at t + 1 all
PEs have Xin = 0 except that Pe(m) has Xin = 1. By L6 the combina t ion
B = {at, a2 a,,,_ t, am "+" 1 } comes out at t = k + 1. Hence N = k + 1 is true.

(b) I f am = n = R,,. Then par t (b) o f L e m m a 4 implies that there exists a minimal positive integer
6 such tha t A = {a], a2 a~_ i, R~, R~ + t R,,}, where a~_ t < R~_ 1. Fol lowing the par t (a) o f
L e m m a 4 and L e m m a 5 the combina t ion A must be within a p ropaga t ing t ime interval (say
I = [to + 1, to + (m - ~) + 1]) o f a lef tmost- leader PE(~t) for ct ~< 6.

(b-i) I f a~_, = R~_ 1 - 1 i.e. 0t < 6, then A comes out within the t ime interval I. Hence the par ts
(a), (c) o f L e m m a 4 imply that B = {at, a2 a~ _ 2, R~_ t, R~ Rm} comes out at t = k + 1 and
B has index k + 1 in lexicographic order. This proves the theorem for N = k + 1.

(b-ii) I f a~ , < R ~ _ ~ - 1 i.e. ~ = 6 , then by L e m m a 5 the combina t ion A comes out at
t = to + (m - ct) + 1. By L e m m a 6, the combina t ion D = {at, a2 a~_ t, R~ - 1,
R~÷, - 1 Rm - 1} was generated at the t ime-step to = t - (m - ~) - 1. By induction hypothe-
sis, D comes out in lexicographic order at to because o f to ~< k. By L27 and L e m m a 8 PE(i) sets
F = I at to for ~ < i ~ < m , and all C = 0 , thus these (m - 0 t) + l PEs (PE(i) for c t~<i~<m)
begin s imul taneously their p ropaga t ing works within the t ime interval [to + 1, to + (m - i) + 1]
respectively. By (f) o f L e m m a 4 the combina t ion B = {b], b2 bin} = {at, a2 a~_ 2, a~_ l + 1,
aa- t "F 2 a~_ ~ + (m - o~) + 2} comes out at t ime step to + (m - ~) + 2 = t + 1 because of
t 0 = t - (m - ~) - l . H e n c e N = k + l is true.

By mathemat ica l induct ion principle, the combina t ions coming out in lexicographic order is
proved. The last combina t ion {n - m + 1, n - m + 2 n } reaches terminals at t ime-step (~,).
Hence PE(1) sends Xo~, = 1 at t = (",,) and thus Xo~t = 1 o f PE(l) is recognized at the t ime-step (~) + 1.
Therefore , Algor i thm 1 stops at tha t right t ime-step.

This completes the p r o o f o f this t h e o r e m . []

4. E X A M P L E S

E x a m p l e 1

Table 1 is an example o f n = 5, m = 3 for i l lustrating the results o f opera t ions in Algor i thm 1.
The values o f xi., xo~t, din, dout, Yin, Your and T, C, F, R of PEs are located at their cor responding
posi t ions o f Fig. 2. The limit values o f PEs are fixed by 3, 4, 5 in PE(1), PE(2), PE(3), respectively.
The max ima l value o f C is 2 which appears in PE(2) at t ime-step t = 9.

E x a m p l e 2

In Table 2 we give an example to illustrate the behaviors o f L e m m a s 2 and 3 with the contents
o f C, T, F in some PEs during the execution o f Algor i thm 1. Let n = 15, m = 7, ~t = 3 and fl = 6
be in L e m m a 2 o f Section 3. Suppose we have a combina t ion (@, 6, 10, 11, 12, 13, 14) at t ime-step
to, where @ indicates any n u m b e r belonging to {1 ,2 ,3 ,4 , 5}. Then at t ime t = t o - 1 the
combina t ion is (@, 6, 9, 12, 13, 14, 15), hence we have Xin = 1 and cou, = R~ - 1 in PE(i) at the t ime
to for 3 ~< i ~< 7. In Algor i thm 1 these PEs start s imul taneously their p ropaga t ing works in order
to assign values to their cor responding Ts. The values o f T, C, F and the componen t s o f each
related combina t ions are shown in Table 2, where • indicates any n u m b e r in which we are not
interested. The values o f F, C are put in the first column. The values o f T and the Cout
are located in the second column. Tha t is, F, C, and T have the posi t ions as shown in Fig. 2 but
the posi t ion o f R is replaced by Cout. No te that the max imal value o f C is 3, as appeared in PE(5)
at t ime step t = to + 3.

With the aid o f two recursive procedures (Algor i thms 2 and 3) we can modi fy the ou tpu t s t ream
o f Algor i thm 1 to p roduce all),-subsets o f the set {1,2 n} for l~<) ,~<m. Let B be a

A parallel algorithm for generating combinations 1531

Table 1. An example with n = 5, m = 3

T PW) PW W3) OUT

0

1

2

3

4

5

6

0010
0000 cl 0 0 3 0

0 1 I 0

0 1 1 0
0000

cl 0031

0 1 10

0110

0 I 1 0

0110
0000

cl 0031

021 I

0 2 2 0

1321
010210

0020
0000 cl 0040

0 2 2 0
0000 q 0042

0 2 2 0
0000

cl 1042

0 2 2 0
0000

cl 1042

0321
0100

cl 1043

0330
0034

cl 1143

1431

0 3 4 1
0130

cl 1043

0330
0 0 4 5 q 2143

143 I

1441
010310

0021
0000

cl 0050

0321
0 0 0 0

El 0053

0431

1541

0451
0 140

cl 2 0 5 4

1541

I 5 5 I

0451
0140

cl 4054

1541

I 5 5 1

ooo

123

124

125

134

135

145

234

235

245

345

first-in-first-out buffer containing all the output of Algorithm 1, the modified algorithm can be
designed by applying the following steps.

(1) Read a combination A = (a,, a,, . . . , a,) from B until B is empty.
(2) For each combination A = {a,, a*,. . . , a,,,} of B, suppose that A’ = {LZ;, a;, . . . , uk} is the

preceding combination of A (initial A’ = (0, 0, . . . , 0}), find the smallest index r such that

u,=a;+ 1.
(3-l) If r = m or a, # n - m + r then we produce the combinations {a,, u2, . . . , ui} one by one

for r < i < m under the recursive procedure extension(r, m) as shown in Algorithm 2, where
“parallel-output a,, a,, . . . , a,” means that PE@) sends c,,,, = up for 1 < p < r and PE(/3) sends the
blank signal to c,,, for r + 1 < p < m at a same time-step.

Table 2. An illustrative example with n = 15, m = 7, a = 3, B = 6

T PEW PE(2) W3) PE(4) W5) PE(6) PE(7)

1,-l 0 z 8 G 0 1 11
0 12 0 13 0 14

l

: 1’:
1

t: !
14 I 15

1
'0 * 0 z :, 1; :, 11 : 12 0 :z 0 ::

to + 1 8 :
0 8 0 12 0 13 0 14 0 15

* 1 10 1 I1 1 12 1 13 1 15
to+2 8 : 0 8 0 2 9 0 13 0 *

1 IO
IO+3 * : z 0 1 10 8 0 2 ‘A 11

f t; f

;i y ::

14 0 15

to + 4 * 8 ;,

to + 5 * 8 z 1 11

:,

12 1 13 1 14 1 15

r,+6 0 ; 0 8 * 0 0 8 0 ‘9 8 f8 8
11 0 12
11 0 12

1532 C.-J. LZN

Table 3. The 7-subsets of {1, 2, 3, 4, 5} for ~< 7 ~< 3

B),-subsets Called subroutine

123 1, 12, 123. extension(l, 3).
124 124. extension(3, 3).
125 125. extension(3, 3).
134 13, 134. extension(2, 3).
135 135. extension(3, 3).
145 14, 145, 15. subset(2, 3, 5).
234 2, 23, 234. extension(l, 3).
235 235. extension(3, 3).
245 24, 245, 25. subset(2, 3, 5).
345 3, 34, 345, 35, 4, 45, 5. subset(l, 3, 5).

(3-2) Otherwise, i.e. if r < m and ar = n - m + r then we call the procedure subset(r, m, n) as
shown in Algorithm 3 which can be considered as to generate all p-subsets of the set
{n - m + r , n - m + r + 1 n - 1,n} for 1 ~< p ~<m - r + I, and then add {al,a2 a~_,} to
those p-subsets to get the y-subsets of the set {1, 2 n} for 1 ~< ~ ~< m.

(4) Go to step (1).

Example 3
Following Example 1 the lexicographic enumeration of all ~,-subsets (1 ~< 7 ~ 3) corresponding

to the combinations in B are shown in Table 3.

Algorithm 2
e x t e n s i o n (r , m) -

b e g i n
p a r a l l e l - o u t p u t a~, a2 a,;
i f r < m t h e n e x t e n s i o n (r + 1 ,m)
e n d

Algorithm 3
s u b s e t (r , m, n) =

b e g i n
a r , = n - m + r ; / , a s s i g n n - m + r t o t h e Cou t o f PE(r) */
p a r a l l e l - o u t p u t a~, a2 a,.;
i f ar < n t h e n b e g i n

s u b s e t (r + 1, m, n);
subset (r , m - 1, n)
e n d

end.

5. C O N C L U S I O N S

In this paper we present a parallel algorithm to generate all combinations of m items out of n
given items in lexicographic order. The computational model is a linear systolic array processor.
The algorithm is contrasted with that of [6-8], where they are either not in systolic array or they
are not in lexicographic order. We also present two recursive procedures in order to modify the
output of Algorithm 1 for generating all combinations of at most m items out of n given items
in lexicographic order as shown in [10, 1 I]. Since all PEs are identical and execute the same
program, it is suitable for VLSI implementation. If the number of PEs has a limitation, say only
fl PEs can be used, the technique in [12] for partitioning and mapping algorithms into the fl PEs
may be applied. Finally there are many other important combinatorial enumeration problems
existed for which parallel algorithms are yet to be developed. For example, can we design a systolic
algorithm to generate the m! permutations? If it can be solved then we can generate all the
permutations of m items out of n given items in a computational model of linear systolic array.

A parallel algorithm for generating combinations 1533

R E F E R E N C E S

1. H. T. Kung, Why systolic architectures? 1EEE Trans. Comput. 15, 37-46 (1982).
2. H. T. Kung, The structure of parallel algorithms. In Advances in Computers, (Ed. M. C. Yovits), pp. 65-112. Academic

Press, New York (1980).
3. H. S. Stone, Parallel computers. In Introduction to Computer Architectures, pp. 363-425. Science Research Associates,

Chicago, IlL (1980).
4. D. S. Hirschberg, Fast parallel sorting algorithm. Commun. ACM 21, 657--661 (1978).
5. V. Zakharov, Parallelism and array processing. IEEE Trans. Comput. C33, 45-78 (1984).
6. B. Chan and S. G. Akl, Generating combinations in parallel. Bit 26, 2-6 (1986).
7. G. H. Chen and M. S. Chern, Parallel generating of permutations and combinations. Bit 26, 277-283 (1986).
8. C. Y. Tag, M. W. Du and R. C. T, Lee, Parallel generation of combinations. Proc. Int. Computer Syrup., Taipei, Taiwan,

pp. 1006-1010 (1984).
9. E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Englewood

Cliffs, N.J. (1977).
10. I. Semba, An efficient algorithm for generating all k-subsets (1 ~< k ~< m ~< n) of the set {1, 2 n} in lexicographic

order. J. Algorithm 5, 281-283 (1984).
11. I. Stojmenovic and M. Miyakawa, Applications of a subset-generating algorithm to base enumeration, knapsack and

minimal covering problems. Comput. J. 31, 65-70 (1988).
12. D. I. Moldovan and J. A. B. Fortes, Partitioning and mapping algorithms into fixed size systolic arrays. IEEE Trans.

Comput. C35, 1-12 (1986).

