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Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a con-
clusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so
far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot
lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this
extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide
range of geometric lattice parameters and the influence of different materials.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Periodic arrangements of nano-scaled holes, so-called antidot
lattices, in magnetic thin films have been investigated in a wide
scientific context and in different host materials. Various novel
phenomena like artificial spin ice [1] and spin glass [2], and pairs
of magnetic monopoles [3] have been reported in antidot lattices.
They can be applied as spin wave guides and filters [4] or in the
context of data storage as a type of bit patterned media, because
antidot lattices can overcome the superparamagnetic limit as there
are no isolated magnetic islands [5]. Furthermore, antidot lattices
influence the magnetic properties of the host materials and can be
used to tune the magnetic anisotropy [6–8] and coercivity [9–11].
Therefore, nano-scaled antidot lattices can be used to engineer
application specific coercive field.

For application driven adjustment of the magnetic properties,
however, a quantitative description of the geometric scaling of the
coercivity in antidot lattices is desirable and has been sought for in
several studies [12–19]. Modeling is based on pinning of domain
walls at point defects [20]. Therefore, it is assumed that the defect
size, i.e. the antidot diameter d, is larger than the width of the
domain wall, and that the length of the domain wall is determined
by the width w of the material bridge between two adjacent holes
[12–19,21]. Following work on coercivity scaling in flat magnetic
wires [22] a −w1/ dependency of the coercivity in antidot lattices
is assumed [12–16]. Because flexible nanolithography approaches
like e-beam or focused ion beam techniques have slow writing
speeds, it is challenging to get sufficiently large samples for many
measurement techniques and it is difficult to manufacture a large
r B.V. This is an open access article
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number of samples. Thus, previous studies relied on a very limited
number of samples [12–17] and different magnetic materials were
rarely compared [19,21]. Hence, the validity of a strict

−w1/ dependency has so far been inconclusive [18]. Here, we
present an extensive parametric study of antidot lattices in films of
Fe, Ni, and NiFe and discuss modeling of their coercivities relying
on a broader data base.
2. Methods

Therefore, 20 nm thin films of these materials were deposited
by ion beam sputtering on Si(001) and capped by 2 nm Al. Sub-
sequently, 20�20 μm2 antidot patterns with different lattice
parameters were etched by a focused Gaþ ion beam in a FEI Nova
600 NanoLab DualBeam with an Raith ELPHY Multibeam pattern
generator. Such a set of 21 square antidot lattices with diameters d
ranging from 25 to 525 nm and lattice constants a of 200, 400, and
600 nm are shown in Fig. 1. For each value of a seven lattices have
been produced with linearly increasing d from ·a1/8 to ·a7/8 . It has
been shown by Castán-Guerrero et al. [17] that the coercivity and
the magnetization reversal process are not changed by the antidot
lattice being embedded in a continuous film or standing freely as
isolated island.

Hysteresis loops of the individual antidot lattices were re-
corded using a Durham Magneto Optics NanoMOKE3 equipped
with an air cooled vector electromagnet, capable of generating in-
plane fields up to 120 mT. Measurements were conducted in
longitudinal geometry and the laser beam was focussed with an
aspheric lens (f¼11 mm) at an incidence angle of 45° onto the
sample. This results in an imaging resolution of 1 μm and an area
of smaller than 5�5 μm2 that contributes to the magnetic signal.
An exemplary set of three hystereses of the pristine Fe thin film
and two antidot lattices hosted in it is shown in Fig. 2 where the
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Exemplary SEM image of the nano-patterned magnetic thin film with 21
different antidot lattice structures and enlargement of the antidot lattice with hole
spacing a¼400 nm and diameter d¼150 nm.

Fig. 2. Exemplary set of hysteresis loops of a pristine 20 nm Fe thin film and two
square antidot lattices with different lattice parameters. The coercivity of the Fe
thin film of 24 Oe increases to 65 Oe in an antidot lattice with small holes
(a¼400 nm and d¼50 nm). The coercivity further increases to 130 Oe for an an-
tidot lattice with larger holes (a¼400 nm and d¼200 nm).

Fig. 3. Angle dependent coercivity of the pristine thin films and lower end of the
coercivity range of the antidot lattices. While Fe is in-plane isotropic, the Ni thin
film features an in-plane anisotropy. The coercivity of NiFe is so small that it only
manifest as an isotropic point in the center of the diagram. For all antidot lattices
the coercivity is larger than in the unstructured material. Thus, the anisotropies of
the pristine films are not relevant in the nano-structured areas.
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drastic increase of coercivity through the nano-structuring is
apparent.

The intrinsic anisotropies of the unstructured magnetic thin
films, which are shown in Fig. 3, are completely suppressed in the
antidot lattice, because the coercivity is increased beyond any
value that occurs in the native films. Hence, measurements were
taken along the 0° and 90° directions of the antidot lattices, as
indicated in Fig. 1, and both values were taken into account for
subsequent analysis.
3. Results and discussion

The resulting coercivities of each antidot lattice are shown in
Fig. 4 as function of their respective bridge width = −w a d. In
previous studies [12–19] a small number of antidot lattices in a
narrow range has been analyzed and a simple w1/ relation could
be fitted to the data. In our more extensive dataset, however, it
was not possible to achieve an acceptable fit of the coercivity by
using a w1/ relationship. This is exemplarily shown for Fe in Fig. 4
(a). Furthermore, Castán-Guerrero et al. [21] proposed to use an
effective bridge width weff to account for material damage around
the holes using five data points for antidot lattices . Indeed, ac-
counting for a damaged area wdamage by assuming

= −w w weff damage and a w1/ eff dependency can numerically de-
scribe our experimental data. However, the resulting fit para-
meters are not physically meaningful as a negative damaged area
would be required to describe the NiFe data.

As the strict w1/ model is derived from long flat wires, it does
not take the pinning efficiency of the constriction into account
[22]. This cannot be directly transferred to antidot lattices as the
holes are not always larger than the domain wall width. Therefore,
we extended the model with a non-integer exponent of w to:

⎛
⎝⎜

⎞
⎠⎟ = + ·

( )
H w H D

w
1

1c c
oe

p
0

where Hc is the coercive field, Hc
0 is the coercive field of the un-

structured film, Doe is the scaling factor of the observed coercivity
enhancement, and p is a non-integer exponent as model para-
meter. By using two model parameters both the strength and the
efficiency of the domain wall pinning can be addressed. The
parameters obtained from fitting the coercivity data to Eq. (1) are
listed in Table 1 and the best fits are shown as dashed lines in
Fig. 4. Globally an coefficient of determination R2 value of 0.9 was
calculated, indicating an acceptable fit of the data to our suggested
model.

When comparing the domain wall energies [23] γB, that are
listed in Table 1, and Doe there is a similar trend in both. D oe

Fe is one
order of magnitude larger than D oe

Ni that is in turn one order of
magnitude larger than D oe

NiFe. The ratio of D oe
Ni and D oe

Fe compares
quantitatively to the ratio of their respective domain wall energies
at 0.14 and 0.18 respectively. This strong impact of the domain wall
energy on Doe is to be expected, because the reduction of the
domain wall length between two holes is the main source of do-
main wall pinning in antidot lattices [24,25]. In turn this strong
domain wall pinning leads to an increase of coercivity. However, as
the scaling factor Doe depends on the exponent p in this model, it
is not a direct measure of the domain wall energy. This is also
evident from the fact that D oe

NiFe is in comparison much smaller
than would be expected from the domain wall energies alone.

Both p and, to some extent, Doe are a measure of the capability
of the bridges in the antidot lattice to stabilize a shortened domain



Fig. 4. Coercivities of the antidot lattices in (a) Fe, (b) Ni, and (c) NiFe depending on the bridge width = −w a d. The different symbols indicate the different lattice constants
a. The best fits according to Eq. (1) are shown as solid lines. Additionally, for Fe a best fit for a strict w1/ relationship is shown as gray dotted line for comparison.

Table 1
Parameters of the best fits of the measurements shown in Fig. 4 according to Eq. (1)
for Fe, Ni, and NiFe. Additionally, domain wall energies γB and exchange lengths lex
from Kronmüller [23] are shown for comparison.

Fe Ni NiFe

Hc
0 (Oe) 23.85 16.4 1.1

( )−D Oe nmoe p ( )± ·7 3 105 ( )± ·9 8 104 ( )± ·4 4 103

p ±1.6 0.1 ±1.3 0.2 ±0.8 0.2

γ ( ) = · ·A KmJ m 2B
2

1 [23] 2.1 0.39 0.058

( ) =l nm A
Kex
1
[23]

21 42 240
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wall in-between two adjacent holes. Thus, indicating these con-
strictions are less efficient pinning centers in the case of NiFe.
Considering the exchange lengths [23] lex that are listed in Table 1,
it becomes evident that an assumption that the holes are larger
than the domain wall width does not hold for all materials. In the
case of NiFe the exchange length lex is much larger than for Fe and
Ni, and for some antidot lattices even larger than the diameter d of
the holes that are supposed to act as pinning centers for the do-
main walls. Thus, making a reduction of p plausible as the antidots
do not act as efficient pinning sites and cannot drive up the
coercivity in NiFe as strongly as in Fe or Ni. Because the pinning
centers in an antidot lattice are circular holes, the width and the
length of the material bridge between two antidots does not scale
independently. Thus, the pinning strength and the domain wall
length enforced by this artificial lattice of pinning sites are not
independent. Additionally, considering previous work by others
[22,26] on antidot lattices and thin wires it is to be expected that a
dependency of Doe and p on the film thickness may exist. While
the introduction of p in Eq. (1) allows to account for varying pin-
ning efficiencies of antidot lattices in different materials and a
physical basis of Doe and p can be found, an ab initio calculation
from micromagnetic properties is not possible, because their
mutual dependence on these properties is complex and additional
influences are likely.
4. Conclusion

In summary, we have measured antidot lattices with 21 dif-
ferent geometries in 3 magnetic thin films to gain a broad data
basis for modeling of the coercivity scaling in these nano-struc-
tured systems. By extending previous models and allowing the
best fit to deviate from a w1/ law, we were able to model the
coercivity enhancement in Fe, Ni, and NiFe and to provide a phy-
sical basis for the model parameters. The coercivity increase de-
pends both on the domain wall energy through the reduction of
the domain wall length when pinned between two holes, and the
exchange length being sufficiently short in comparison to the hole
diameter to allow for efficient pinning.
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