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1. Introduction

Let us first recall some basic facts concerning special numbers and expansions. By
 n
k


we denote the Stirling number of

the first kind (the number of ways of partitioning a set of n elements into k nonempty cycles, see [1]). It is set
 n
0


= 0 if

n > 0,

0
0


= 1,

 n
k


= 0 for k > n or k < 0. The Stirling numbers of the first kind fulfill the recurrence formula

n
k


= (n − 1)


n − 1

k


+


n − 1
k − 1


. (1)

If n > k then using formula (1) in each step to the last term of the resulting sum we getn
k


=

k
j=1

(n − j)


n − j
k + 1 − j


. (2)

Stirling numbers of the first kind have the following generating function (see [2, pp. 50 and 135])

(1 − t)−u
= 1 +


1≤k≤n

n
k

 tn

n!
uk. (3)

We use common notations for the falling factorial

(x)k = x(x − 1) · · · (x − k + 1)
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and for the rising factorial (Pochhammer’s symbol)

x(k)
= x(x + 1) · · · (x + k − 1).

Wedenote by Bn,k = Bn,k(x1, x2, . . . , xn−k+1) (see [3], [2, p. 133]) the exponential partial Bell polynomials in infinite number
of variables x1, x2, x3, . . .. The polynomials are defined by the formal double series expansion in variables t and u

exp

u

m≥1

xm
tm

m!


= 1 +


n≥1

tn

n!

 n
k=1

ukBn,k(x1, x2, . . .)

. (4)

We denote by P r
n the potential polynomials (see [2, Theorem B p. 141]) which are defined for each complex number r by

1 +


n≥1

gn
tn

n!

r

= 1 +


n≥1

P r
n
tn

n!
(5)

and

P r
n = P r

n(g1, g2, . . . , gn) =


1≤k≤n

(r)kBn,k(g1, g2, . . .). (6)

Formula (5) is a particular case of the Faá di Bruno formula and P r
n (given by (6)) is the nth derivative (in a point x = a) of

the function (G(x))r , where G(x) is given as the convergent power series G(x) = 1 +


n≥1 gnt
n/n!, t = x − a, G(a) = 1.

We investigate expansions, which involve the falling factorials, for the Euler Gamma function and for the integral (18).
The last is expressed in terms of the Riemann Zeta function. For the coefficients of our series we give simple recurrence
formulae. Some series for the Riemann Zeta function based on falling factorials have been studied, for example, in [4], who
demonstrated the importance of such expansions. The coefficients of their expansion are expressed in terms of the values
of the Zeta function in integers.

The article is organized as follows. In Section 2 we present the construction of the expansion, based on falling factorials,
for the Euler Gamma function. For its coefficients we give the recurrence formula and an explicit formula involving the
Stirling numbers of the first kind. In Section 3 we present the basic properties of the derivative polynomials which are
used in the next sections. Section 4 is devoted to the construction of the expansion for integral (18). For the coefficients
of the expansion we give the recurrence formula and an explicit formula, which uses the coefficients of the Mittag-Leffler
polynomials. In Section 5 we examine the rate of convergence of the series introduced in Sections 2 and 4. Moreover, we
show the results of two numerical experiments. The paper is concluded in Section 6.

2. The Euler Gamma function

Substituting in the integral

Γ (s + 1) =


∞

0
xse−xdx

x = −log(1 − t) we have

Γ (s + 1) =

 1

0
(−log(1 − t))sdt =

 1

0
ts

1
t
log

1
1 − t

s

dt =

 1

0
ts

1 +

t
2

+ · · ·

s

dt. (7)

Our first aim is to find the values of the Bell polynomials Bn,k for the sequence (1/2, 2!/3, 3!/4, . . .). Using expansion (4) we
get

exp

u

1
2
t +

1
3
t2 +

1
4
t3 + · · ·


= e−u exp


u

1 +

1
2
t +

1
3
t2 +

1
4
t3 + · · ·


= e−u exp


u
t
(−log(1 − t))


= e−u(1 − t)−

u
t

= e−u

1 +


1≤k≤n

n
k

 tn

n!

u
t

k
= e−u


1 +


1≤k≤n

n
k

 tn−kuk

n!



=


1 −

u
1!

+
u2

2!
−

u3

3!
+

u4

4!
− · · ·


+

∞
j=0


1≤k≤n

(−1)j
n
k

 tn−kuk+j

n!j!
.

Putting n − k = α ≥ 0, k + j = β ≥ 1, (n = k + α, j = β − k) we see that the coefficient of tαuβ is

β
k=1


k + α

k


(−1)β−k

(k + α)!(β − k)!
=

1
(α + β)!

β
k=1

(−1)β−k

k + α

k


α + β

β − k


. (8)
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Table 1
Coefficients cα,β .

α \ β 0 1 2 3 4 5 6

0 1 0
1 0 1 0
2 0 2 3 0
3 0 6 20 15 0
4 0 24 130 210 105 0
5 0 120 924 2380 2520 945 0

By denoting

cα,β =

β
k=1

(−1)β−k


α + k
k


α + β

β − k


,

we write the value of the Bell polynomial Bα,β for the sequence (1/2, 2!/3, 3!/4, . . .) as

Bα,β =
α!

(α + β)!
cα,β . (9)

The following Table 1 gives the first few values of cα,β .

Lemma 1. Numbers cα,β fulfill the recurrence formula

cα,β = (α + β − 1)(cα−1,β + cα−1,β−1). (10)

Proof. Putting into (10)

cα−1,β =

β
k=1

(−1)β−k


α + k − 1
k


α + β − 1

β − k


,

cα−1,β−1 =

β−1
k=1

(−1)β−1−k


α + k − 1
k


α + β − 2
β − 1 − k


,

and adding similar terms we see that formula (10) is equivalent to

cα,β = (α + β − 1)
β

k=1

(−1)β−k


α + k − 1
k


α + β − 2

β − k


. (11)

From the other side

cα,β =

β
k=1

(−1)β−k


α + k
k


α + β

β − k



=

β
k=1

(−1)β−k


α + β

β − k

 k
i=1

(α + k − i)


α + k − i
k + 1 − i



=

β
m=1

(α + β − m)


α + β − m
β + 1 − m

 m
i=1

(−1)m−i


α + β

m − i



=

β
m=1

(−1)m−1(α + β − m)


α + β − 1
m − 1


α + β − m
β + 1 − m



= (α + β − 1)
β

m=1

(−1)m−1


α + β − 2
m − 1


α + β − m
β + 1 − m


, (12)

wherewe introduced the new parameterm by the formulam− i = β−k. If we putα+k−1 = α+β−m (i.e. k−1 = β−m)
the formula (12) converts to (11).

At the beginning of the above calculation we used the formula (2) and then formulae
m
i=1

(−1)m−i


n
m − i


= (−1)m−1


n − 1
m − 1


,



G. Rza̧dkowski / Journal of Computational and Applied Mathematics 236 (2012) 3710–3719 3713

(n − m)


n − 1
m − 1


= (n − 1)


n − 2
m − 1


,

which are easy to verify. �

Therefore using (5) and (9) we write the integrand in (7) in the form

(−log(1 − t))s = ts

1 + t

s
2

+ t2


2
3!

s +
3
4!

s(s − 1)


+ t3


6
4!

s +
20
5!

s(s − 1) +
15
6!

s(s − 1)(s − 2)


+ · · ·


= ts


1 +

∞
α=1

tα

α!

α
β=1

(s)βBα,β



= ts +

∞
α=1

tα+s
α

β=1

(s)β
cα,β

(α + β)!
(13)

and finally for the integral (7) we get the following expansion

Γ (s + 1) =
1

s + 1
+

1
s + 2

·
s
2

+
1

s + 3


2
3!

s +
3
4!

s(s − 1)


+
1

s + 4


6
4!

s +
20
5!

s(s − 1) +
15
6!

s(s − 1)(s − 2)


+ · · ·

=
1

s + 1
+

∞
α=1

1
α + s + 1

α
β=1

(s)β
cα,β

(α + β)!
. (14)

By denoting

gα,β = gα,β(s) = (s)β
cα,β

(α + β)!
,

and using (10) we write for the coefficients gα,β the recurrence formula

gα,β =
α + β − 1

α + β
gα−1,β +

s − β + 1
α + β

gα−1,β−1.

Thus formula (14) can be rewritten in the following form

Γ (s + 1) =
1

s + 1
+

∞
α=1

1
α + s + 1

α
β=1

gα,β , (15)

which ismore suitable for numerical computations. The convergence of the series (14) and (15)will be discussed in Section 5.

3. Derivative polynomials

Let {a1, a2, . . . , an} be a permutation of the set {1, 2, . . . , n}. Then {aj, aj+1} is an ascent of the permutation if aj < aj+1.

The Eulerian number

n
k


is defined as the number of permutations of the set {1, 2, . . . , n} having k permutation ascents

(see [1, p. 267]). For example for n = 3 the permutation {1, 2, 3} has two ascents, namely {1, 2} and {2, 3}, and {3, 2, 1} has
no ascents. Each of the other four permutations of the set has exactly one ascent. Thus


3
0


= 1,


3
1


= 4, and


3
2


= 1.

Consider a function x = x(t) which satisfies Riccati’s differential equation with constant coefficients

x′(t) = ax2 + bx + c = a(x − α)(x − β), (16)

where a, b, c are real numbers, a ≠ 0 and the roots α, β are real or complex conjugate numbers. Examples of such functions
and equations are:

1. x(t) = tan t, x′(t) = x2 + 1,
2. x(t) = tanh t, x′(t) = −x2 + 1,
3. x(t) = 1/(1 + et), x′(t) = x2 − x.

In the paper [5] (see also [6]) it is proved that if a function x(t) satisfies Eq. (16), then the nth derivative of x(t) can be
expressed by the following formula:
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x(n)(t) = an
n−1
k=0


n
k


(x − α)k+1(x − β)n−k, (17)

where n = 2, 3, . . ..
The polynomials of the variable x on the right hand side of (17) are a particular case of the derivative polynomials which

were introduced in [7] and recently intensively studied (see for example [8,9,5,6,10]). Let us denote byQn+1(x) the derivative
polynomial of the nth derivative of the function x(t) = 1/(1 + et) (where α = 0, β = 1), of degree n + 1. Thus for n ≥ 2

Qn(x) =

n−2
k=0


n − 1

k


xk+1(x − 1)n−1−k.

The polynomial Qn(x) (n ≥ 2) is divisible by x(x − 1). We will denote by Pn−2(x) the polynomial of degree n − 2 resulting
from the operation. Thus for any n ≥ 0 we obtain

Pn(x) =

n
k=0


n + 1

k


xk(x − 1)n−k.

In the paper [11] (see also [8,9,5]) it is proved that the polynomials Qn(x) can be expressed in terms of the Stirling numbers
of the second kind

 n
k


(number of the ways of partitioning a set of n elements into k nonempty subsets, see [1]), namely

Qn(x) =

n
k=1

(−1)n−k(k − 1)!
n
k


xk.

Then one can easily check that

Pn(x) =

n+1
k=1

(−1)n+1−kk!

n + 1

k


xk−1.

It will be useful for us to have the expansion of Pn(x) at the point x0 = 1/2. By rewriting the polynomial in the form with
unknown coefficients

Pn(x) =

n
j=0

pn,j


x −

1
2

j

,

one can verify that the following recurrence formula holds

pn+1,j = (j + 1)

pn,j−1 −

1
4
pn,j+1


.

From results of [11] it follows that for n = 1, 2, . . . the polynomial Pn(x) has exactly n simple zeros which all are real and
lie in the interval (0, 1). Moreover, the zeros of the polynomials have the interlacing property.

4. The Riemann Zeta function

It is well known that if Re s > 0 then
∞

0
ts−1 1

1 + et
dt = ζ (s)(1 − 21−s)Γ (s). (18)

Integrating n + 1 times by parts the left hand side of (18) we obtain successively
∞

0
ts−1 1

1 + et
dt = −

1
s


∞

0
ts


1
1 + et

′

dt =
1

s(s + 1)


∞

0
ts+1


1

1 + et

′′

dt

= · · · =
(−1)n+1

s(s + 1) · · · (s + n)


∞

0
ts+n


1

1 + et

(n+1)

dt. (19)

Substituting in (19) x = 1/(1 + exp(t)) we obtain

ζ (s)(1 − 21−s)Γ (s) =
(−1)n

s(s + 1) · · · (s + n)

 1/2

0


log

1 − x
x

s+n Qn+2(x)
x(x − 1)

dx

=
(−1)n

s(s + 1) · · · (s + n)

 1/2

0


log

1 − x
x

s+n

Pn(x) dx, (20)

where the polynomials Qn(x) and Pn(x) have been defined in the previous section.
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Our next aim is to find a power series expansion of the function (log((1− x)/x))r by using the potential polynomials (6).
Since

log
1 − x
x

= log
1 + (1 − 2x)
1 − (1 − 2x)

= 2(1 − 2x)

1 +

1
3
(1 − 2x)2 +

1
5
(1 − 2x)4 + · · ·


,

we have to find the expansion of the function
1
2t

log
1 + t
1 − t

r

=


1 +

1
3
t2 +

1
5
t4 + · · ·

r

.

In order to do this we will compute the Bell exponential polynomials Bn,k(0, 2!/3, 0, 4!/5, 0, 6!/7, . . .). By using (4) we get

exp

u

1
3
t2 +

1
5
t4 +

1
7
t6 + · · ·


= e−u exp


u

1 +

1
3
t2 +

1
5
t4 +

1
7
t6 + · · ·


= e−u exp


u
2t

2

t +

1
3
t3 +

1
5
t5 +

1
7
t7 + · · ·


= e−u exp


u
2t

log
1 + t
1 − t


= e−u


1 + t
1 − t

 u
2t

.

It is well known that the function ((1 + t)/(1 − t))x is a generating function for the Mittag-Leffler polynomialsMk(x)
1 + t
1 − t

x

=

∞
k=0

Mk(x)
k!

tk, |t| < 1.

A first few Mittag-Leffler polynomials are as follows

M0(x) = 1, M1(x) = 2x, M2(x) = 4x2, M3(x) = 8x3 + 4x,
M4(x) = 16x4 + 32x2, M5(x) = 32x5 + 160x3 + 48x.

Bateman [12] considers polynomials gk(x) = Mk(x)/k! and gives for them the following recurrence formula

ngn(x) = (n − 2)gn−2(x) + 2xgn−1(x), (21)

with which he refers to [13]. Multiplying both sides of (21) by (n − 1)! we get

Mn(x) = (n − 1)(n − 2)Mn−2(x) + 2xMn−1(x). (22)

If Mn(x) =
n

k=0 an,kx
k then the recurrence formula (22) yields

an,k = (n − 1)(n − 2)an−2,k + 2an−1,k−1. (23)

Lemma 2. Numbers an,k fulfill the following formula

an,k =

k−1
m=0

2m(n − 1 − m)(n − 2 − m)an−2−m,k−m. (24)

Proof. Formula (24) follows by using formula (23) in each step to the last term of the resulting sum. �

Therefore

e−u

1 + t
1 − t

 u
2t

= e−u
∞
n=0

Mn(u/2t)
n!

tn = e−u
∞
n=0

1
n!

n
k=0

an,k
 u
2t

k
tn

=


∞
j=0

(−1)j
uj

j!


∞
n=0

n
k=0

1
n!

an,k
uk

2k
tn−k

=

∞
α=0

α
β=0

β
j=0

(−1)j
1
j!

1
(α + β − j)!

1
2β−j

aα+β−j,β−j uβ tα

=

∞
α=0

α
β=0

1
(α + β)!

β
j=0

(−1)j


α + β

j


1

2β−j
aα+β−j,β−j uβ tα,

and we see that, in our case, the value of the Bell polynomial Bα,β is

Bα,β =
α!

(α + β)!

β
j=0

(−1)j


α + β

j


1

2β−j
aα+β−j,β−j. (25)

Let us denote
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Table 2
Coefficients bα,β .

α \ β 0 1 2 3 4 5

0 1 0
1 0 0
2 0 2 0
3 0 0 0
4 0 24 40 0
5 0 0 0 0
6 0 720 2688 2240 0
7 0 0 0 0 0
8 0 40320 245376 443520 246400 0

bα,β =

β
j=0

(−1)j


α + β

j


1

2β−j
aα+β−j,β−j. (26)

The following Table 2 gives the first few values of bα,β .

Lemma 3. Numbers bα,β fulfill the recurrence formula

bα,β = (α + β − 2)(α + β − 1)(bα−2,β + bα−2,β−1). (27)

Proof. Assume that α ≥ 4. Since the last term in (26) is zero then as the upper limit of the sumwe can take β − 1. We have

bα−2,β =

β−1
j=0

(−1)j


α + β − 2
j


1

2β−j
aα+β−2−j,β−j, (28)

bα−2,β−1 =

β−2
j=0

(−1)j


α + β − 3
j


1

2β−1−j
aα+β−3−j,β−j. (29)

By adding similar terms in (28) and (29) we see that formula (27) is equivalent to

bα,β = (α + β − 2)(α + β − 1)
β−1
j=0

(−1)j


α + β − 3
j


1

2β−j
aα+β−2−j,β−j. (30)

From the other side

bα,β =

β−1
j=0

(−1)j


α + β

j


1

2β−j
aα+β−j,β−j

=

β−1
j=0

(−1)j


α + β

j


1

2β−j

β−j−1
i=0

2i(α + β − j − i − 1)(α + β − j − i − 2)aα+β−j−i−2,β−j−i

=

β−1
m=0

1
2β−m

(α + β − m − 1)(α + β − m − 2)aα+β−m−2,β−m

m
k=0

(−1)k


α + β

k



=

β−1
m=0

(−1)m

2β−m


α + β − 1

m


(α + β − m − 1)(α + β − m − 2)aα+β−m−2,β−m

= (α + β − 1)(α + β − 2)
β−1
m=0

(−1)m

2β−m


α + β − 3

m


aα+β−m−2,β−m,

wherem = i + j. Thus formula (27) is proved. At the beginning of the above calculation we used formula (24) and then the
following formulae

m
k=0

(−1)k
n
k


= (−1)m


n − 1
m


,

n − 1
m


(n − m − 1)(n − m − 2) =


n − 3
m


(n − 1)(n − 2),

which are easy to check. �
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Using formula (5) and the values of the Bell polynomials (25) we get
log

1 − x
x

r

=


log

1 + (1 − 2x)
1 − (1 − 2x)

r

= 2r(1 − 2x)r

1 +

(1 − 2x)2

3
+

(1 − 2x)4

5
+ · · ·

r

= 2r(1 − 2x)r

1 +

2
3!

(1 − 2x)2r + (1 − 2x)4

24
5!

r +
40
6!

r(r − 1)


+ (1 − 2x)6

720
7!

r +
2688
8!

r(r − 1) +
2240
9!

r(r − 1)(r − 2)


+ · · ·


= 2r(1 − 2x)r


1 +

∞
m=1

(1 − 2x)2m
m

k=1

b2m,k

(2m + k)!
(r)k


. (31)

Therefore since 1/2

0
(1 − 2x)γ dx =

1
2(γ + 1)

,

then, putting in (20) say n = 0 (P0(x) = 1) we get

ζ (s)(1 − 21−s)Γ (s) =
2s−1

s


1

s + 1
+

2s
3!(s + 3)

+
1

s + 5


24
5!

s +
40
6!

s(s − 1)


+
1

s + 7


720
7!

s +
2688
8!

s(s − 1) +
2240
9!

s(s − 1)(s − 2)


+ · · ·


=

2s−1

s


1

s + 1
+

∞
m=1

1
s + 2m + 1

m
k=1

b2m,k

(2m + k)!
(s)k


. (32)

By denoting here

zm,k =
bm,k

(m + k)!
(s)k,

and using the recurrence formula for bm,k we see that coefficients zm,k fulfill the recurrence formula

zm,k =
m + k − 2
m + k

zm−2,k +
s − k + 1
m + k

zm−2,k−1.

Therefore the above expansion can be rewritten in the form

ζ (s)(1 − 21−s)Γ (s) =
2s−1

s


1

s + 1
+

∞
m=1

1
s + 2m + 1

m
k=1

z2m,k


, (33)

which is more useful for numerical computations. The convergence of the series (32) (and (33)) is investigated in Section 5.

5. Numerical experiments

Flajolet and Odlyzko [14, Theorem 3A p. 227] proved that if a, b are any complex numbers and a, b ∉ {0, 1, 2, . . .} then
the Taylor coefficients {fn} of the function (analytic on the open unit disk and having one singularity at z = 1 on the unit
circle)

f (z) = (1 − z)a

1
z
log

1
1 − z

b

satisfy

fn = [zn]f (z) ∼
n−a−1

Γ (−a)
(log n)b


1 +


k≥1

e(a,b)
k

logk n


(34)

with

e(a,b)
k = (−1)k


b
k


Γ (−a)

dk

dsk


1

Γ (−s)


s=a

.
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Table 3
The partial sums of (15) for s = −1/2.

n = nth partial sum of (15)

20 1.77460. . .
50 1.77315. . .
73 1.77289. . .

0.7

0.5

–0.5

10.5

z
0

z
1

z
2

z
80

Rez

Im z

0

Fig. 1. The partial sum of the series (37) at points sk = 1/2 + ik/5; k = 0, 1, . . . , 80.

How to treat the limit case when, for example, a is a nonnegative integer is shown briefly later in this paper (see the remarks
on pp. 231–232). There is a slightly expanded but entirely similar discussion in the book [15] by Flajolet and Sedgewick (see
Theorem VI.2 page 385 and the remarks on pp. 386–387). From this it follows, for instance, that expression (34) has a limit
when a goes to zero (the first term is zero because we take 1/Γ (0) = 0 and in the next terms the quantity Γ (−a) is
cancelled). Therefore we get the following estimate for the nth Taylor coefficient of the function (−log(1 − z)/z)b

[zn]

1
z
log

1
1 − z

b

= O

b(log n)b−1

n


. (35)

The coefficient of tα+s in (13)
α

β=1

(s)β
cα,β

(α + β)!

is the αth Taylor coefficient of the function (−log(1 − t)/t)s. By (35) we see that the series (14) (and therefore (15)) are
absolutely convergent and the terms of the series have the estimate

1
α + s + 1

α
β=1

(s)β
cα,β

(α + β)!
= O


|s|(logα)Res−1

α |α + 1 + s|


, (36)

as α → ∞. Similar reasoning can be made for the function

f (z) =


1
2z

log
1 + z
1 − z

b

,

which is analytic on the open unit disk and has two singularities (at z = 1 and z = −1) on the unit circle. Flajolet and
Sedgewick [15, Theorem VI.5 p. 398] also discuss the case of multiple singularities and prove that the contributions from
each of the singularities are to be added. From this it follows that the rate of convergence of the series (32) (and (33)) is the
same as in the previous case.

Wewill show now the results of two numerical experiments. The first is associated with formula (15). The Table 3 below
gives the values of the partial sums of (15) for s = −1/2. The exact value of the sum of the series is Γ (1/2) =

√
π =

1.772 45 . . . .
These calculations confirm the, above obtained, estimates of the rate of convergence of the expansion (15).
The second experiment is related to formula (33).Wehave computed the values of the 35th (the upper limit of summation

form is 35) partial sum of the series

1
s + 1

+

∞
m=1

1
s + 2m + 1

m
k=1

z2m,k = s(1 − 21−s)21−sΓ (s)ζ (s) (37)

at 81 equally spaced points of the interval {s = 1/2 + it}; 0 ≤ t ≤ 16. The result has been shown in Fig. 1, where zk is the
value of the partial sum at the point s = sk = 1/2 + ik/5; k = 0, 1, . . . , 80.
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6. Concluding remarks

Expansions similar to (33) can be established for any n ≥ 1 in (20). In fact the expansion can be seen as an expansion for
the integral

21−s−n(−1)n
 1/2

0


log

1 − x
x

s+n

Pn(x) dx =
s(n+1)

2s+n−1
ζ (s)(1 − 21−s)Γ (s), (38)

where s(n+1)
= s(s + 1) · · · (s + n) denotes the rising factorial.

If we choose s ∈ C such that 1/2 < Re s ≤ 1 and ζ (s) ≠ 0 then it can be seen from (38) that the left hand side (i.e. our
expansion) goes to infinity for n → ∞. Therefore if for any s ∈ C (1/2 < Re s < 1) we had indicated a nonnegative integer
n such that the evaluation, at this point s, of the expansion of the left hand side of (38) is different from zero then the RH
would follow.
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