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SUMMARY

The synaptonemal complex (SC) is a conserved
protein complex that stabilizes interactions along ho-
mologous chromosomes (homologs) during meiosis.
The SC regulates genetic exchanges between homo-
logs, thereby enabling reductional division and the
production of haploid gametes. Here, we directly
observe SC assembly (synapsis) by optimizing
methods for long-term fluorescence recording in
C. elegans.We report that synapsis initiates indepen-
dently on each chromosome pair at or near pairing
centers—specialized regions required for homolog
associations. Once initiated, the SC extends rapidly
and mostly irreversibly to chromosome ends. Quan-
titation of SC initiation frequencies and extension
rates reveals that initiation is a rate-limiting step in
homolog interactions. Eliminating the dynein-driven
chromosome movements that accompany synapsis
severely retards SC extension, revealing a new role
for these conserved motions. This work provides
the first opportunity to directly observe and quantify
key aspects of meiotic chromosome interactions
and will enable future in vivo analysis of germline
processes.

INTRODUCTION

Meiosis is the specialized cell division program that produces

haploid gametes from diploid precursors and is therefore essen-

tial for sexual reproduction. A unique aspect of meiosis is that

homologous parental chromosomes (homologs) are partitioned

into different daughter cells. This reductional segregation re-

quires physical connections to be established between homo-

logs during the protracted meiotic prophase that precedes

the meiotic divisions. Pairing between homologs enables the

formation of linkages known as chiasmata, which are products

of crossover recombination. However, recombination can lead

to chromosome rearrangements if it occurs ectopically, i.e., be-

tween homologous sequences that are not syntenic. Alignment

of homologs along their entire lengths may help to ensure that
Cell
exchanges occur only between homologous sequences on

appropriate partner chromosomes.

Chromosomes achieve intimate side-by-side alignment in a

stepwise fashion. During early meiotic prophase, special sites

on each chromosome establish connections through the nuclear

envelope to the microtubule cytoskeleton (or actin cables,

in budding yeast) and initiate movements along the nuclear

periphery through the action of dynein and/or other motors

(Hiraoka and Dernburg, 2009; Rog and Dernburg, 2013). In

most species, this is a meiotic function of telomeres, but in

C. elegans, this role has been acquired by a region near one

end of each chromosome known as a pairing center (PC) (Mac-

Queen et al., 2005; Sato et al., 2009). The resulting large-scale

chromosome motions facilitate homolog pairing, although the

mechanisms by which homology is recognized remain unclear.

Assembly of the synaptonemal complex (SC; also known as

synapsis) is required to achieve stable, lengthwise homolog

alignment (MacQueen et al., 2002; Page and Hawley, 2001;

Sym et al., 1993). In many organisms, initiation of synapsis de-

pends on recombination intermediates, which are hypothesized

to trigger SC assembly by mediating long-lived local DNA base-

pairing interactions (Page and Hawley, 2004). However, recom-

bination-independent mechanisms also bring homologs into

proximity in early prophase. For example, in mouse spermato-

cytes, homologous chromosome territories become juxtaposed,

even in the absence of breaks or synapsis (Ishiguro et al., 2014).

In the nematode C. elegans and the dipteran Drosophila mela-

nogaster, recombination-independent pairing mechanisms

have acquired greater robustness, to the extent that homolog

pairing and synapsis occur normally in the absence of recom-

bination (Dernburg et al., 1998; McKim et al., 1998). Whether

local pairing is mediated by recombination or other mechanisms,

how chromosomes progress from initial, localized associations

to complete synapsis and lengthwise alignment remains poorly

understood.

A major challenge in understanding the mechanisms that

contribute to homolog interactions is that pairing and synapsis

occur over many hours or days, commonly within internal

reproductive organs. Another experimental obstacle is that

pairing and synapsis occur between intact chromosomes as

they interact with the nuclear envelope, precluding straightfor-

ward reconstitution of these processes in vitro or in cell-free

systems. Due to these challenges, our current understanding is
Reports 10, 1639–1645, March 17, 2015 ª2015 The Authors 1639

mailto:afdernburg@lbl.gov
http://dx.doi.org/10.1016/j.celrep.2015.02.032
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.02.032&domain=pdf


largely based on cytological analysis of fixed meiocytes, com-

bined with molecular genetics. To gain insight into the dynamics

of homologous chromosome interactions, we developed quanti-

tative time-lapse imagingmethods that enabled us to interrogate

synapsis in living animals.

RESULTS AND DISCUSSION

C. elegans offers many advantages for analysis of germline

processes, including powerful molecular genetics, organization

of nuclei within a syncytial gonad in a spatio-temporal gradient,

and a simple karyotype (2N = 12). Adult hermaphrodites are

transparent and continuously undergo oogenesis, enabling

in vivo imaging of meiotic nuclei (Baudrimont et al., 2010;

Wynne et al., 2012). Standard methods for immobilizing living

worms for imaging use paralytic drugs and/or friction, but

we and others have found that these approaches result in an

arrest of meiotic nuclei (Kim et al., 2013; Wynne et al., 2012).

This arrest is evident by cessation of the dynein-driven chromo-

some motions that normally occur during early prophase

(Wynne et al., 2012). We found that, even in the absence of

paralytic drugs or exposure to fluorescence illumination,

worm immobilization led to arrest across the gonad, typically

within 15–30 min (Kim et al., 2013; n = 46; Figure S1A; Movie

S1). Whereas this limited temporal window has been sufficient

to characterize some aspects of prophase chromosome dy-

namics (Baudrimont et al., 2010; Wynne et al., 2012), the pro-

cess of synapsis occurs over several hours and was therefore

inaccessible to in vivo imaging.

We sought to mitigate the experimentally induced arrest to

enable long-term imaging of germline processes. We speculated

that immobilization might induce this arrest because it impairs

eating. Nutrient withdrawal rapidly triggers behavioral and

metabolic changes in C. elegans through serotonergic signaling

(Chase and Koelle, 2007; Flavell et al., 2013), so we tested

whether the arrest could be suppressed by serotonin. Consistent

with this idea, we found that immobilization in the presence of

serotonin allowed chromosome motion to continue unabated

for much longer (42.8% of animals after 1 hr [n = 320]; Figures

S1B and S1C; Movie S2). Throughout this work, we visualized

immobilized worms supplemented with serotonin using a spin-

ning-disc confocal microscope, which enabled long-term high-

resolution multicolor 3D imaging without apparent phototoxicity

(see below).

We also developed fluorescent reporters suitable for long-

term imaging of synapsis. The C. elegans SC is comprised of

at least four proteins that assemble at the interface between

paired axes: SYP-1, -2, -3, and -4. Each requires the other three

to associate with meiotic chromosomes (Colaiácovo et al., 2003;

MacQueen et al., 2002; Smolikov et al., 2007, 2009). We engi-

neered worms carrying a single-copy syp-3 transgene tagged

with the emerald variant of GFP (hereafter EmGFP-SYP-3),

which was validated as a reporter by a variety of assays for

meiotic progression and chromosome segregation (Figure S2).

Most experiments described below were carried out using her-

maphrodites expressing EmGFP-SYP-3 and lacking wild-type

SYP-3, which maximized the fluorescence associated with the

SC, but because we detected slight meiotic perturbation in this
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strain, we validated our key conclusions in strains exhibiting no

meiotic defects (see below).

Upon entering meiosis, nuclei traverse the ‘‘transition zone’’

region of the gonad. This zone corresponds to the classically

defined stages of leptonema and zygonema, during which ho-

mologs pair and synapse. Transition zone nuclei are marked

by asymmetrical distribution of chromosomes within the nucleus

and the aggregation of the nuclear envelope proteins SUN-1 and

ZYG-12 as they associate with PCs. This SUN/KASH pair con-

nects chromosomes to the microtubule cytoskeleton (Hiraoka

and Dernburg, 2009; Sato et al., 2009). In fixed gonads,

EmGFP-SYP-3 localization mirrored that of endogenous

SYP-3: in the earliest stages of meiosis, EmGFP-SYP-3 was

detected in small nuclear aggregates, and as nuclei traversed

the transition zone, it formed multiple filaments, each at the

interface between a pair of chromosomes (Figures 1A, 1B, and

S3A; Movie S3).

These fluorescently tagged proteins, together with our long-

term immobilization technique, allowed us to directly observe

and analyze the assembly of SCs in vivo. Within transition zone

nuclei, we observed many examples of individual SC filaments

that rapidly extended after they were first detected. These SCs

usually appeared one at a time within a nucleus, but occasion-

ally, two or three filaments appeared in close succession (Fig-

ures 2A and 2B; Movies S4 and S5). We performed manual

tracing of filaments within 3D image stacks to determine their

contour lengths (Figure S1D). It was evident from inspection of

these data that each filament underwent growth at a fairly con-

stant rate, eventually reaching amaximum length 4–6 mm, similar

to the length of complete SCs measured in fixed samples (Fig-

ures 2B–2D and 3A). To determine the rates of SC extension

for individual filaments, their lengths as a function of time were

analyzed by segmented linear regression. The median rate was

150 nm/min (mean = 170; SD = 70; range 80–300), correspond-

ing to complete synapsis of a chromosome pair in 25–40 min

(range 13–75 min). We obtained comparable rates from animals

that expressedwild-type SYP-3 in addition to the tagged protein,

indicating that absence of untagged SYP-3 does not alter the

kinetics of SC extension (Figures 3B and 3C). SC elongation

rates were not markedly affected by the time elapsed since the

beginning of image acquisition (Figure 3A) or the image acquisi-

tion rate (Figure 3B), indicating that SC assembly is not highly

photosensitive under our conditions. Neither nascent nor fully

formed SC filaments underwent significant shortening beyond

small fluctuations, likely reflecting measurement errors (e.g., Fig-

ure 3A), indicating that large-scale de-synapsis events are rare

and that synapsis is likely irreversible, at least once a filament

has reached a threshold length that permits detection.

Previous studies have demonstrated that SC assembly in

C. elegans normally depends on PCs and that homology within

the PC regions is sufficient for otherwise nonhomologous chro-

mosomes to synapse (Hayashi et al., 2010; MacQueen et al.,

2005; Penkner et al., 2007; Sato et al., 2009). These and other

observations have suggested that PCs act as sites of synapsis

initiation, although this idea has not been directly tested.

We marked PCs by expressing the nuclear envelope protein

SUN-1 fused at its C terminus to the monomeric red fluorescent

protein mRuby (hereafter SUN-1-mRuby) and crossed this
s



Figure 1. Fluorescent Reporters for the Synaptonemal Complex

(A) Maximum intensity projections of 3D images of the transition zone region

of a fixed gonad from an EmGFP-SYP-3; syp-3; SUN-1-mRuby hermaphro-

dite, stained with antibodies against SYP-2 and DAPI. EmGFP-SYP-3

and SUN-1-mRuby were visualized by their intrinsic fluorescence. Meiosis

progresses from left to right in these images. Each image shows two super-

imposed channels. Pink arrowheads point to examples of SC aggregates

(polycomplexes). The scale bar represents 5 mm. See also Figures S1 and S2.

(B) Projection of the transition zone region from a live EmGFP-SYP-3; syp-3

worm. Meiotic progression is from left to right. Pink arrowheads mark exam-

ples of polycomplexes. The scale bar represents 5 mm. A 3D rendering of the

same image stack is shown in Movie S3. See Figure S3A for an image of an

entire gonad.

(C) Maximum intensity projections of transition zone nuclei from a SUN-1-

mRuby adult hermaphrodite stained with antibodies against SUN-1 and

HIM-8 and DAPI. SUN-1-mRuby was visualized by its intrinsic fluorescence.

SUN-1 immunofluorescence colocalizes with SUN-1-mRuby. HIM-8,

marking the X chromosome PCs, colocalizes with one of the SUN-1 patches.

The scale bars represent 1.5 mm. See Figure S3B for an image of an entire

gonad.
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marker into our SC-labeled strain (Figures 1C and S3B). In nuclei

from animals expressing both fluorescent reporters, nascent SC

filaments were always apposed to a patch of SUN-1 (n = 28; Fig-

ures 2C and 2D; Movies S6 and S7), providing direct evidence of

initiation at or near PCs. Together with the quantitative analysis

above, these observations demonstrate that synapsis of each

homolog pair initiates only once and that PCs are the primary

sites for initiation. Once nucleated, the SC extends along the

chromosome at a constant rate.

Next, we wished to investigate the dynamics of synapsis

throughout the nucleus and to quantify the rates of synapsis

elongation relative to initiation and to pairing at PCs. Our ability

to track and measure SC filaments was facilitated by the sparse-

ness of SCs during early stages of synapsis (e.g., Figures 1

and 2). This observation indicates that initiation of SC assembly

on different chromosome pairs is staggered and infrequent rela-

tive to the rate of extension. We used two independent methods

to determine the frequency of synapsis initiation, which yielded

highly concordant values. First, we measured the time that

elapsed between the first and second initiation events in nuclei

where these events were clearly observed in our time-lapse re-

cordings (e.g., Figure 3C) and found that the average interval

was 22 min (SD = 15; median = 21; n = 12). Because there are

five unsynapsed homolog pairs at this stage, this corresponds

to an initiation frequency of 0.009 events per chromosome pair

per minute if we assume that initiation occurs independently

for each pair. Second, among nuclei in which two SC filaments

were observed in high-resolution fixed images, we determined

how many contained two elongating filaments versus one elon-

gating and one complete filament (Figure 3D). This ratio, com-

bined with our measured SC extension rate obtained by in vivo

imaging, yielded a very similar initiation rate of 0.011 events

per pair per minute. Importantly, pairwise association between

homologous PCs was not rate limiting for synapsis, because

homologously paired PCs lacking SCs were often observed in

fixed images (Figures S4A and S4B).

We found that the six chromosome pairs do not synapse in a

stereotyped order (Figures S4A and S4B), consistent with prior

analysis (Nabeshima et al., 2011). Additional simulations and

observations of fixed nuclei validated our assumption that the

probability of initiation per unit time is proportional to the number

of unsynapsed pairs and therefore that the likelihood that any

given pair will initiate synapsis is largely independent of the

number of pairs that have already synapsed (Figure S4C). These

observations, together with our measured synapsis initiation fre-

quency and synapsis elongation rate, allowed us to simulate the

process of synapsis for whole nuclei. We found that a median

time of 3.4–4.1 hr is required for all six homolog pairs to initiate

synapsis and that 3.9–4.6 hr are necessary to complete synapsis

(allowing 30 min for the last pair to fully synapse). This number is

in good agreement with the estimated 5 hr spent in the transition

zone, which nuclei exit once all chromosomes achieve synapsis

(Crittenden et al., 2006; Fox et al., 2011). Together, our observa-

tions are consistent with the idea that initiation of synapsis be-

tween each pair of homologs is a stochastic process that occurs

independently of the synapsis status of other chromosomes.

Prior analysis of fixed samples has shown that stable pairing

along the length of homologs requires synapsis, whereas pairing
Reports 10, 1639–1645, March 17, 2015 ª2015 The Authors 1641
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Figure 3. Quantification of SC Initiation and

Extension

(A) Plots of elongating SC filaments in selected

nuclei. Data for each SC are shown in a different

color. The ‘‘elongating’’ and ‘‘constant’’ portions of

the plots are designated with light green and blue

arrows, respectively. The portion of each plot from

which the elongation rate was determined is

shown as a red line. Notably, new filaments appear

and elongate at similar rates even after more than

50 min of imaging, indicating that SC assembly is

not markedly affected by our imaging conditions.

(B) Plots showing the distribution of SC elongation

rates based on many individual examples from

the indicated genotypes. Median values are indi-

cated by red bars, and their numerical values

are reported above the distribution. The shaded

distributions reflect estimated rates based on

analysis at lower temporal resolution. Note that,

under the slower acquisition conditions, animals

were subjected to 10- to 20-fold less illumination

light, yet the elongation rate was equivalent to

that measured in data sets with higher temporal

resolution, indicating that SC assembly is not

highly photosensitive under our conditions.

(C) An example of synapsis progression in an

EmGFP-SYP-3; SUN-1-mRuby hermaphrodite

imaged at low temporal resolution (every 10 min).

Two nascent filaments appear between time

points 0:10:00 and 0:30:00. The scale bar repre-

sents 1 mm.

(D) Estimation of initiation rates based on analysis

of fixed nuclei. We identified nuclei with two visible

SC filaments in high-resolution 3D images of

fixed gonads stained with antibodies against SC

proteins and classified each filament as either

‘‘partial’’ (< 3.5 mm) or ‘‘complete’’ (R3.5 mm). Left: the ratio of nuclei with two incomplete (elongating) filaments versus nuclei with one complete filament and one

elongating filament. Right: expected ratios derived from simulations with varying initiation frequencies and elongation rates; the x axis indicates the simulated

initiation frequency, whereas the different curves correspond to different elongation rates: the blue curve reflects the median measured rate (149 nm/min),

whereas the gray curves correspond to the minimum and maximum observed elongation rates (80 and 300 nm/min, respectively). Our measured rate of

SC elongation and the ratio between nuclei harboring one versus two elongating filaments yield an initiation frequency of 0.011 per chromosome per minute

(range: 0.005–0.019). See also Figure S4.
at the PC region is synapsis independent (MacQueen et al.,

2002). We wondered whether elongation of the SC simply stabi-

lizes interactions between axes as they bump into each other or

whether instead SC assembly generates forces that actively

draw paired chromosomes into full alignment. To test this, we

explored whether PC-led chromosome motion, which elongates

chromosomes and contributes to alignment (Nabeshima et al.,

2011), might affect the formation of the SC. We have previously

shown that the activity of dynein generates long-range, proces-
Figure 2. In Vivo Imaging of SC Assembly

(A) Maximum intensity projections showing a single nucleus at selected time poin

present at the beginning of image acquisition, and new filaments appear between

elapsed since the beginning of image acquisition is reported as h:mm:ss. The sc

(B) Projections from selected time points showing a single nucleus from a 3D imag

scale bar represents 1 mm. Bottom: a plot showing contour length of the SC filame

segmented linear regression is shown in red. Purple arrowheads indicate values

(C and D) Partial Z projections from selected time points showing nuclei from EmG

1-min intervals. In each series, a nascent SC filament is marked with a blue arro

below. The slope of the elongating portion of the plot is shown in red. Purple

corresponding full time courses are included as Movies S6 (C) and S7 (D).

Cell
sive chromosome motions that enhance the rate of homolog

pairing at PCs (Sato et al., 2009; Wynne et al., 2012). Because

dynein-driven forces are normally necessary for synapsis initia-

tion, we tested the role of these motions in SC extension by

comparing two mutants: sun-1(jf18) and htp-1(gk174). In both

of these mutants, synapsis occurs in the absence of dynein ac-

tivity but SC forms primarily between nonhomologous chromo-

somes (Baudrimont et al., 2010; Penkner et al., 2007; Sato

et al., 2009; Wynne et al., 2012). However, the two mutations
ts from a series of 3D images acquired at 1-min intervals. One complete SC is

time points 0:06:00 and 0:33:00. The full recording is shown in Movie S4. Time

ale bar represents 1 mm.

e series acquired at 20 s intervals; the full recording is shown in Movie S5. The

nt as a function of time. The slope of the elongating portion of the plot based on

for the time points shown above.

FP-SYP-3; syp-3; SUN-1-mRuby hermaphrodites. 3D images were acquired at

whead. The scale bars represent 1 mm. Filament lengths over time are plotted

arrowheads indicate the time points represented in the images above. The

Reports 10, 1639–1645, March 17, 2015 ª2015 The Authors 1643



Figure 4. Dynein-Driven Chromosome Motion Promotes SC

Elongation

(A and B) Partial Z projections of selected time points of nuclei imaged every

1 min. The nascent filament is marked with a blue arrowhead. The scale bars

represent 1 mm. Filament lengths over time are plotted below. The slope of the

elongating portion of the plot is shown in red. Purple arrowheads indicate

the time points shown above. (A) A nucleus from an EmGFP-SYP-3; syp-3;

sun-1(jf18) hermaphrodite. Note that the two synapsed chromosomes barely

move relative to each other, reflecting the absence of dynein-driven chro-

mosome motions (the full recording is shown in Movie S8). (B) A nucleus from

an EmGFP-SYP-3; syp-3; htp-1(gk174) hermaphrodite (the full recording is

shown in Movie S9).

(C) Representative plots of elongating filaments from the indicated genotypes.

Times are relative to the initiation of SC assembly.

(D) Distributions of SC elongation rates measured from the indicated geno-

types. The median is indicated by a red bar, and its numerical value is reported

above the distribution.
have very different effects on dynein-driven chromosome mo-

tion, which is abrogated in sun-1(jf18) mutants but only subtly

reduced in htp-1(gk174) (Baudrimont et al., 2010; Couteau and

Zetka, 2005; Martinez-Perez and Villeneuve, 2005). We found

that SC extension was severely retarded in sun-1(jf18) hermaph-

rodites but occurred at nearly the wild-type rate in htp-1(gk174)

mutants (sun-1: median = 25 nm/min; mean = 26; SD = 12;

range 8–48; Figures 4A, 4C, and 4D; Movie S8; htp-1: median =

110 nm/min; mean = 130; SD = 55; range 70–280; Figures 4B–

4D; Movie S9). The rate of SC extension in sun-1(jf18);

htp-1(gk174) double mutants, which lack active chromosome

movement, was similar to sun-1(jf18) single mutants (median =
1644 Cell Reports 10, 1639–1645, March 17, 2015 ª2015 The Author
34 nm/min; mean = 34; SD = 10; range 23–55; Figure 4D). The

slightly reduced rate in htp-1 compared to wild-type may reflect

slower and/or less-frequent motion in htp-1(gk174) animals

(Baudrimont et al., 2010) or a minor contribution of homology

to the efficiency of synapsis extension. Interestingly, in all geno-

types examined, the rate of elongation was quite consistent

along the length of chromosomes. Altogether, these results sug-

gest that chromosome movement promotes SC extension.

Because SUN-1 is embedded in the nuclear membrane, it is

unlikely to directly contribute to extension of the SC along paired

chromosomes, but we cannot rule out the possibility that SC

elongation is inhibited in sun-1(jf18) mutants for reasons other

than reduction of chromosome motion.

We speculate that PC-led chromosome motion may facilitate

SC extension by creating hydrodynamic forces that act along

the chromosomes to promote an elongated, roughly parallel

configuration and/or to reduce the distance or increase collision

frequencies between axes. SC assemblymaymediate alignment

by sequential stabilization of local collisions, thereby acting as a

ratchet (Movie S10). In the absence of chromosome motions, as

in the sun-1(jf18) mutant, SC assembly may still act as a Brow-

nian ratchet, relying primarily on thermal fluctuations to bring

unsynapsed axes adjacent to the growing SC into proximity.

Dragging chromosomes through the nucleoplasm may also pro-

mote SC assembly by facilitating the removal of intervening

obstacles, such as other chromosomes. However, the absence

of long pauses during SC elongation even in sun-1(jf18) mutants

suggests that such obstructions do not typically persist for

longer than a few minutes.

Our refinement of imagingmethods forC. elegans has enabled

us to further harness the potential of this model system and to

directly observe and quantify the dynamic process of synapsis.

We find that synapsis initiates at or near PCs and then proceeds

to ‘‘zip’’ together entire chromosomes at a rapid and constant

rate. Furthermore, we show that dynein-driven chromosome

motions greatly accelerate the rates of SC assembly and chro-

mosome alignment, adding to our understanding of the functions

of these unique meiotic chromosome dynamics. Our findings

directly demonstrate that synapsis is largely irreversible and is

a rate-limiting step in the homologous chromosome interactions

necessary for faithful execution of meiosis. The tools we have

developed also open the door to investigate a variety of cellular

and subcellular dynamics in this experimental system.

EXPERIMENTAL PROCEDURES

All strains were maintained using standard methods (Brenner, 1974). Immuno-

fluorescence was performed as previously described (Phillips et al., 2009).

Single-copy transgenes were generated by MosSCI (Frøkjær-Jensen et al.,

2012; Frøkjaer-Jensen et al., 2008). For live imaging, adult hermaphrodites

were immobilized on freshly prepared 7.5% agarose pads overlayed with

100 nm polystyrene beads (Kim et al., 2013) and serotonin at a final concen-

tration of 25 mM. Worms were overlaid with coverslips that were sealed to

the slide and imaged immediately afterward. Images were acquired using a

spinning-disc confocal microscope at ambient temperature, using a 633 1.4

NA oil objective at 0.5 mm z spacing. Time-lapse series were segmented,

tracked, and aligned based on overall fluorescence of EmGFP-SYP-3. Fila-

ments in informative nuclei were traced by hand from 3D reconstructions.

SC length plots were subjected to segmented linear regression. Simulations

were performed by considering the synapsis state of six homolog pairs using
s



custom code. Full details are available in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and ten movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.02.032.
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