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Abstract

We shall prove that a connected graph G is projective-planar if and only if it has a 2n-fold
planar connected covering obtained as a composition of an n-fold covering and a double covering
for some n¿ 1 and show that every planar regular covering of a nonplanar graph is such a
composite covering.
c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

Our graphs are simple and 3nite. A graph G̃ is called an (n-fold) covering of a graph
G with a projection p : G̃→G if there is an n-to-one surjection p : V (G̃)→V (G)
which sends the neighbors of each vertex v∈V (G̃) bijectively to those of p(v). In
particular, if there is a subgroup A in the automorphism group Aut(G̃) such that
p(u)=p(v) whenever �(u)= v for some �∈A, then G̃ is called a regular covering.
This group A is called the covering transformation group of G̃. It is easy to see that
a 2-fold (or double) covering is necessarily a regular one.
A graph is said to be projective-planar if it can be embedded in the projective

plane. Negami [10] has discussed the relationship between planar double coverings
and embeddings of graphs in the projective plane, and established the following char-
acterization of projective-planar graphs:

Theorem 1 (Negami [10]). A connected graph is projective-planar if and only if it
has a planar double covering.
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Furthermore, he has proved the following theorem, which extends Theorem 1, ana-
lyzing the connectivity and group actions of regular coverings.

Theorem 2 (Negami [11]). A connected graph is projective-planar if and only if it
has a planar regular covering.

These theorems motivated him to propose the following conjecture. This is called
“the 1–2–∞ conjecture” or “Negami’s planar cover conjecture”:

Conjecture 1 (Negami [11]). A connected graph is projective-planar if and only if it
has a planar covering.

There have been many papers on studies around this conjecture, but the suGciency
is still open. At present, we have the following theorem, combining the results in
[2,4,7,8,11,12]. Note that K1;2;2;2 is isomorphic to the graph obtained from the octahe-
dron by adding an extra vertex and edges joining it to all vertices of the octahedron.

Theorem 3 (Archdeacon [2]; Fellows [4]; HlinIenJy [7] and Negami [11,12]). If
K1;2;2;2 has no planar covering, then Conjecture 1 is true.

In this paper, we shall present a new aspect of coverings of graphs. An n-fold
covering or a covering projection p : G̃→G is said to be (n1; n2)-composite if there are
an n1-fold covering p1 : G̃→G′ and an n2-fold covering p2 : G′ →G with p=p2p1,
and hence n= n1n2. In addition, if n1¿1 and n2¿1, then it is said to be composite.
We often say that p or G̃ factors through G′.
The following two theorems are our main results in this paper.

Theorem 4. A connected graph G is projective-planar if and only if it has an (n; 2)-
composite planar connected covering for some n¿1.

Theorem 5. Every planar connected regular covering of a nonplanar connected graph
is (n; 2)-composite for some n¿1

Theorem 4 will be proved in Section 2 by graph minor arguments while Theorem
5 will be proved in Section 3, related to “faithful embeddings”. The latter implies that
the former extends Theorem 2. Since it is easy to construct an (n; 2)-composite planar
covering which is not regular. Theorem 4 is strictly stronger than Theorem 2.

Archdeacon and Richter [3] have shown that if there is an m-fold planar covering
of a nonplanar graph, then m is even. So we have an over-expected question; is any
2n-fold planar covering of a nonplanar graph (n; 2)-composite? 1 The positive answer
to this would imply Conjecture 1. In Section 1, we shall show a connection between

1 Our subsequent work has already shown that the answer to this question is negative.
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the diNerent notions of coverings independently developed in topological graph theory
and in topology to give a certain strategy to attack this question and also to clarify the
notion of composite coverings.

1. Permutation voltage and subgraphs of �1

In topological graph theory, the notion of “voltage graphs” has been developed to
control coverings of graphs (see [6]). On the other hand, there is a general theory of
“covering spaces” in topology. They are usually discussed in diNerent 3elds, but they
are equivalent to each other as far as we deal only with graphs. In this section, we
shall show how they are related and discuss conditions for a covering of a graph to
be composite.
First, we shall sketch a theory of covering spaces in topology for the special case

both spaces are graphs. Let G and G̃ be graphs, regarded as topological spaces, as-
suming that G is connected. A covering p : G̃→G is a surjective continuous map with
p(V (G̃))=V (G) which induces a local homeomorphism at each point. Then this map
p naturally induces a homomorphism p# : 1(G̃)→ 1(G) between their fundamental
groups.
The most important fact is that this homomorphism p# is injective and that G̃

corresponds to (or is associated with) a subgroup H =p#(1(G̃)) in 1(G). The fold
number (or the covering index) n of G coincides with the index of H in 1(G);
n=(1(G) : H). Conversely, given a subgroup H in 1(G), there is a covering of G
which corresponds to H . A closed walk W in G based at a 3xed vertex x0 can be
lifted to a closed walk in G̃ if and only if the homotopy class [W ] belongs to H .
This criterion suggests how to construct G̃ with H . (A covering p : G̃→G is regular
if and only if H is normal in 1(G). In this case, the covering transformation group
A is isomorphic to 1(G)=H .)
Let pi : G̃i →G (i=1; 2) be two coverings of G associated with subgroups Hi in

1(G). They are said to be equivalent to each other if there is a homeomorphism
h : G̃1 → G̃2 with p1 =p2h. According to the classi3cation theorem of covering spaces,
G̃1 is equivalent to G̃2 if and only if H1 is conjugate to H2 in 1(G), that is, there is
an element g∈ 1(G) with gH1g−1 =H2. This conjugation with g just corresponds to
the re-choice of a base point for 1(G̃i).

Considering the relationship between subgroup containment and composition of cov-
erings, we can conclude easily that:

Lemma 6. An n-fold covering p : G̃→G associated with a subgroup H in 1(G) is
(n1; n2)-composite if and only if there is a subgroup H ′ of index n2 in 1(G) which
contains H as a subgroup of index n1.

Now we shall review a permutation voltage graph, which gives us a concrete way
to construct coverings of a graph. Let G be a connected graph and let Ẽ(G) denote the
set of directed edges uv and vu for uv∈E(G). Let Sn denote the nth symmetry group.
A permutation voltage (or a voltage simply here) is any assignment � : Ẽ(G)→ Sn
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such that �(vu)= (�(uv))−1 in Sn. Put �uv = �(uv) and call it a voltage of an edge uv.
(Note that an ordinary voltage graph exhibits a regular covering and does not work
for irregular coverings.)
Given a permutation voltage � : Ẽ(G)→ Sn, we can construct an n-fold covering

p : G̃→G, as follows. Let N = {1; : : : ; n} and put V (G̃)=V (G)×N . Join two vertices
(u; i) and (v; j) with an edge whenever uv∈ Ẽ(G) and �uv(i)= j. Then the projection
p : V (G̃)→V (G) can be de3ned by p((u; i))= u. This covering is often called the
covering derived from �.
To modify a permutation voltage to be more algebraic, we extend it for closed walks

based at a 3xed vertex x0. Let W = x0u1 : : : umx0 be a closed walk in G and de3ne its
voltage as the product �W = �x0u1�u1u2 · · · �umx0 in Sn. Since two homotopic closed walks
based at x0 have the same voltage, this de3nes a homomorphism � : 1(G)→ Sn. We
call this � the permutation voltage for G̃.
Here, we shall show the relationship between the permutation voltage � and the

subgroup H for a given covering p : G̃→G. To recognize it, we should consider what
�(H) is. Let SX denote the group of all permutations over a set X . For example,
Sn = S{1;:::;n} = SN in particular. Put p−1(x0)= {x1; : : : ; xn} and choose one of them,
say x1. Recall that 1(G̃) is the group of closed walks based at x1 and it projects
bijectively to H . This implies that a closed walk W based at x0 belongs to H if and
only if �W (1)= 1∈N , and hence we have:

Lemma 7. H is conjugate to �−1(SN−{1}) in 1(G).

To de3ne a permutation voltage � from a given subgroup H in 1(G), we shall
consider the coset decomposition of 1(G) for H :

1(G)=H ∪ g2H ∪ · · · ∪ gnH;

where g1; : : : ; gn ∈ 1(G) are representatives of these cosets with g1 = 1. Let g be any
element of 1(G). Then ggiH must be one of giH ’s, say gjH . De3ne �g : N →N
by this correspondence �g(i)= j. This �g must be a permutation over N and can be
regarded as an element in Sn = SN . Thus, we have a homomorphism � : 1(G)→ Sn
with �(g)= �g. This is nothing but our permutation voltage and we have for this � so
de3ned:

H = �−1(SN−{1}); �(H)= �(1(G))∩ SN−{1}:

The permutation voltage � over Ẽ(G) can be de3ned as follows. Let T be a spanning
tree in G with a root x0. Then p−1(T ) consists of a disjoint union of trees, isomorphic
to T . Enumerate them as T1; : : : ; Tn with xi ∈V (Ti). First, we set �(uv)= idN for each
edge uv∈E(T ), where idN stands for the identity in Sn. Let uv be any edge not
in E(T ) and put p−1(u)= {u1; : : : ; un} and p−1(v)= {v1; : : : ; vn} with ui; vi ∈V (Ti).
Corresponding to uv, there are n edges in G̃ which join {u1; : : : ; un} bijectively to
{v1; : : : ; vn}. This bijection de3nes a voltage �(uv)∈ Sn.
The above formulation will suggest some hint to decide whether or not a given

covering G̃ of a graph G is composite. For example, consider the normalizer N (H)
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of H in 1(G), that is, the maximal subgroup in 1(G) which contains H as a normal
subgroup. If N (H)= 1(G), then H is normal in 1(G) and hence G̃ is a regular
covering. By Theorem 5, especially if it is planar but G is not, then it is composite.
If N (H) coincides with neither 1(G) nor H , then G̃ factors through the covering of
G associated with N (H) and hence it is composite, again. If N (H)=H , then we can
say nothing with only such an abstract argument. When can we exclude the third case,
assuming the planarity of G̃?
As another hint, consider the subgroup �(H) in Sn, which is a more concrete

object than a subgroup in a free group. (Note that 1(G) is a free group of rank
�(G)= |E(G)|− |V (G)|+1 for every connected graph G.) According to our argument
after Lemma 7, we have ker �⊂H . This implies that (1(G) : H)= (�(1(G)) : �(H))
= n. Thus, we have:

Lemma 8. An n-fold covering G̃ associated with a subgraph H in 1(G) is composite
if and only if there is a subgraph H ′ in Sn such that �(H)$ H ′ $ �(1(G)).

2. Projective-planarity with coverings

In this section, we shall prove Theorem 4. As well as for Conjecture 1, we need to
analyze the coverings of K1;2;2;2. First we shall prepare the following lemma to decide
whether or not K1;2;2;2 has an (n; 2)-composite planar covering. We can 3nd similar
lemmas in [1,12]. Since our proof proceeds similarly, we shall only sketch it. Note
that the same conditions in the lemma imply that G is not projective-planar.

Lemma 9. If a connected graph G satis<es the following three conditions (i), (ii) and
(iii), then G has no planar covering:

(i) There exist two disjoint subgraphs F1 and F2 of G each of which is isomorphic
to either K4 or K2;3.

(ii) Each vertex of Fi is adjacent to a vertex in G − V (Fi) for i = 1; 2.
(iii) Both G − V (F1) and G − V (F2) are connected.

Proof. Suppose that G has a planar covering p : G̃→G and embed it on the plane.
Then we can choose a component F of either p−1(F1) or p−1(F2), say the former, so
that every inner face of F contains no component of p−1(F2). This implies that each
vertex of F is adjacent to a vertex of G̃−V (F) which lies in the outer face of F , and
hence F would be outer planar. However, this is impossible; it is easy to see that any
covering of K4 and of K2;3 is not outer planar.

The following lemma implies that K1;2;2;2 has no (n; 2)-composite planar connected
covering for any n¿1.

Lemma 10. Every connected double covering of K1;2;2;2 has no planar covering.
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Proof. The graph K1;2;2;2 can be regarded as the join of a graph T isomorphic to K2;2;2

with an extra vertex x. Let {a1; a2; b1; b2; c1; c2} be the six vertices of T labeled so that
two vertices are adjacent only when they have diNerent alphabets. Then there are eight
triangles aibjck (i; j; k ∈{1; 2}) and T can be embedded on the sphere so that it forms
the octahedron with faces aibjck .

Consider subgraphs in K1;2;2;2 isomorphic to either K4 or K2;3 and categorize them
into the following three:

1. Each of the subgraphs induced by {ai; bj; ck ; x} is isomorphic to K4.
2. The union of any cycle u1u2u3u4 of length 4 in T with a path u1xu3 forms a

subgraph isomorphic to K2;3.
3. The union of three paths a1b1a2, a1b2a2, a1cka2 forms a subgraph isomorphic to

K2;3. Any permutation over {a; b; c} generates this type of a subgraph.

Let p : K̃ →K1;2;2;2 be a connected double covering and let F be a subgraph in
K1;2;2;2 of one of the above three types. Suppose that F can be lifted isomorphically
to K̃ , that is, p−1(F) consists of two components, say F1 and F2, and each of them
is isomorphic to F . It is clear that conditions (i) and (ii) in Lemma 9 hold for these
F1 and F2. We shall examine the three cases in turn to show that condition (iii) of
Lemma 9 holds.
First suppose that F is of the 3rst type. Let J be any component of p−1(T −V (F)).

If J is joined to only one of F1 and F2 with edges, say F1, then J must be a cycle of
length 3 obtained as a lift of a3−ib3−jc3−k and J ∪F1 induces one component of K̃ ,
isomorphic to K1;2;2;2. This implies that K̃ is disconnected, which is contrary to our
assumption of K̃ . Otherwise, all components of p−1(T − V (F)) are joined to F2 with
edges and they form a connected subgraph K̃ − V (F1) with F2. Thus, condition (iii)
holds in this case and hence K̃ has no planar covering by Lemma 9.
Suppose that F is of the second type. Similarly to the previous case, let J be any

component of p−1(T − V (F)) and suppose that J is joined to only F1 with edges.
First assume that F contains the cycle C = a1b1a2c1 as u1u2u3u4 and the path a1xa2
as u1xu3. Then J is a lift of an edge b2c2 and the both ends of J are adjacent to
all vertices of the lift C̃ of C in F1. Let ã1 and x̃ be the lifts of a1 and x in F1,
respectively. Then J ∪{ã1; x̃} induces a subgraph in K̃ which projects isomorphically
to a subgraph of the 3rst type. Thus, we can assume that J is joined to F2 in this
case and hence K̃ − V (F1) is connected. This implies that K̃ has no planar covering
by Lemma 9.
In the remaining cases with F of the second type, we can 3nd those subgraphs

already discussed in the previous cases, as follows. If F consists of the above C and
the path b1xc1, then either the subgraph induced by F1 contains a subgraph isomorphic
to K4, or there is a path in K̃ projecting to a1xa2. On the other hand, if F consists of
the cycle C′ = a1b1a2b2 and the path a1xa2, then J consists of a single vertex which
projects to c1 or c2, say c1, and the vertex is adjacent to all vertices of the lift of C′.
In this case, there is a subgraph in K̃ which projects to C ∪ a1xa2.
Finally, suppose that F is of the third type. Then p−1(T − V (F)) has two com-

ponents and each of which consists only of an edge projecting to c3−kx. If one of
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the components is joined only to F1 with edges, then we can 3nd a subgraph in K̃
isomorphic to K4 and conclude that K̃ has no planar covering, as well as in the previ-
ous case. Otherwise, condition (iii) in Lemma 9 holds and K̃ has no planar covering,
again.
To complete the proof, it suGces to show that every double covering of K1;2;2;2 has

a subgraph isomorphic to K4 or K2;3 which can be lifted isomorphically. To describe a
possible double covering, we use a voltage assignment to E(K1;2;2;2) with Z2 = {T0; T1}.
This is equivalent to a permutation voltage � : Ẽ(K1;2;2;2)→ S2 since S2 is isomorphic
to the additive group Z2. We may assume that each edge incident to x has voltage T0
since they form a spanning tree of K1;2;2;2 and consider only the voltages over edges
of T . The voltage of a path or a cycle is de3ned as the summation of the voltages
along it. Any path can be lifted isomorphically while a cycle can be lifted as a cycle
of the same length if and only if its voltage is T0.
Consider the 3ve paths of length 2 between a1 and a2 in K1;2;2;2, given as a1bia2,

a1cia2 (i=1; 2) and a1xa2. Then at least three of them must get the same voltage,
either all T0 or all T1. In the former case, one of the three paths may be assumed to
be a1xa2 and they form a subgraph of the second type, which is isomorphic to K2;3.
Since all cycles in the subgraph has voltage T0, it can be lifted isomorphically to the
double covering of K1;2;2;2 derived by the voltage. In the latter case, the three paths
form a subgraph of the third type and all cycles in the subgraph has voltage T1+ T1= T0.
Thus, it can be lifted isomorphically, too.

The argument in our proof of Theorem 4 proceeds very similarly to the proof of
Theorem 3 and will be applied to similar theorems in further studies. So we shall
prepare an abstract formulation for its general use, as follows.
A graph H is called a minor of a graph G if H can be obtained from G by

contracting and deleting some edges. Let GY be a graph with a vertex v of degree 3
and let v1, v2 and v3 be the three neighbors of v. A Y -' transformation is to add
three new edges v1v2, v2v3 and v3v1 after deleting v. Let G' denote a graph obtained
from GY by a Y -' transformation. Let P be a property or a class of connected graphs
closed under taking connected minors and under Y -' transformations. (We say that G
has the property P if G belongs to P.) In addition, if every graph belonging to P
has a planar covering, then P is said to be projective-planar-like.

Lemma 11. Every connected graph with a projective-planar-like property P is pro-
jective-planar if K1;2;2;2 does not have the property P.

Proof. We must show that if a connected graph G is not projective-planar, then G does
not have the property P. Since P is closed under taking connected minors, it suGces
to show that every minor-minimal graph among those graphs that are not projective-
planar does not have the property P. Such minor-minimal graphs have been already
identi3ed in [1,5]; they are 35 in number and three of them are disconnected. We do
not need those disconnected ones.
Furthermore, it has been known that the 32 minor-minimal graphs can be classi3ed

into 11 families, up to Y -' transformations, and that every member in 10 families not
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including K1;2;2;2 does not have any planar covering. Each member in the exceptional
family can be deformed into K1;2;2;2 by Y -' transformations. Thus, the last condition
of a projective-planar-like property implies that those minor-minimal graphs in the 10
families do not have the property P. Since P is closed under Y -' transformations,
it remains to show that K1;2;2;2 does not have the property P. The assumption of the
lemma however guarantees this. This completes the proof.

For example, the property of having a planar covering is a trivial projective-planar-
like property. Thus, if we take it as P, then Theorem 3 follows from Lemma 11.
Theorem 4 is just a corollary of this lemma, too.

Proof of Theorem 4. The necessity follows from Theorem 1 with n=1, so it suGces
to show the suGciency. Let Pn be the class of all connected graphs that have (n; 2)-
composite planar connected coverings. It is clear that Pn is projective-planar-like. By
Lemma 10, K1;2;2;2 does not have the property Pn for any n¿1. Thus, the theorem
follows immediately from Lemma 11.

3. Regular planar coverings

Let G be a graph and F2 a closed surface. An embedding f : G→F2 is said to be
faithful if there is a homeomorphism h : F2 →F2 with hf=f� for any automorphism
� : G→G. The notion of faithful embeddings was 3rst introduced in [9] and the author
pointed out there that any embedding of a 3-connected planar graph in the sphere is
faithful, which is just a consequence of the uniqueness of its dual, proved by Whitney
[13]. This fact has played an essential role in the proof of Theorem 2 in [11].
Furthermore, the author has established the following theorem on the connectivity of

regular coverings in [11]. Let G0; : : : ; Gn−1 be n disjoint copies of a connected graph
G′ and choose two vertices v′ and v′′ of G′. Let v′i and v′′i be the vertices of Gi

corresponding to v′ and v′′, respectively. Identify v′i with v′′i+1 for i≡ 0; : : : ; n−1mod n.
The resulting graph G̃=G0 ∪ · · · ∪Gn−1 is called a cyclic chain. Clearly, G̃ is a regular
covering of the graph G obtained from G′ with v′ and v′′ identi3ed. The cyclic group
Zn of order n acts on G̃ so that it shifts Gi to Gi+1.

Theorem 12 (Negami [11]). Every connected regular covering of a 3-connected graph
is either 3-connected or a cyclic chain.

Following carefully the whole arguments in [11], including the proofs of the above
and Theorem 2, we can conclude another useful fact for graphs with lower connectivity,
as shown below. Here we shall split the fact into two lemmas, purely combinatorial
and topological, for the convenience of studies in future.
In general, if a connected graph G splits into two connected subgraphs G′ and F

such that G′ ∩F = {u1; : : : ; uk}⊂V (G) and that both G′ and F contain vertices other
than u1; : : : ; uk , then we call (F; {u1; : : : ; uk}) a k-fragment with a k-cut {u1; : : : ; uk}.
Let G̃ be a regular covering of a connected graph G with the covering transformation
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group A. A k-fragment (F;U ) is said to be equivariant under A if either F = �(F) or
F ∩ �(F)⊂U for any element �∈A.

Lemma 13. Let p : G̃→G be a connected regular covering of a connected graph G
with a covering transformation group A. If G̃ is neither 3-connected nor a cyclic
chain, then there is either a 1-fragment (F̃ ; {u}) of G̃ which projects into G isomor-
phically or a 2-fragment (F̃ ; {u; v}) equivariant under A with one of the following
three conditions:

(i) p(u) �=p(v) and F̃ projects to F isomorphically.
(ii) p(u)=p(v) and F̃ − {u; v} projects to F − p(u) isomorphically.
(iii) p(u)=p(v) and F̃ is a 2-fold covering of F .

where we set F =p(F̃).

Let GF and G̃F be the graphs obtained from G and G̃, respectively, by replacing
F with an edge p(u)p(v) and �(F̃) with an edge �(u)�(v) for each �∈A in Case (i).
Put GF =G − V (F − p(u)) and G̃F = G̃ − ⋃

�∈A �(V (F̃ − {u; v})) in the other cases,
including the case of a 1-fragment, say Case (iv). It is clear that the projection p
induces naturally a regular covering pF : G̃F →GF and that its covering transformation
group AF is isomorphic to A.

Lemma 14. With the same notation as above, if G is nonplanar and G̃ is planar,
then GF is nonplanar and G̃F is planar.

Proof of Theorem 5. Let G be a nonplanar connected graph and G̃ a 2n-fold planar
connected regular covering with a covering transformation group A. First suppose that
G̃ is 3-connected. Embed G̃ on the sphere S2. Since the embedding is faithful, each
element � in A can be regarded as an auto-homeomorphism over S2. We may assume
that the group A acts on S2 so as to realize the symmetry of G̃. Any 3xed point of
this action lies in a face of G̃ embedded on S2.
Let A0 be the set of orientation-preserving homeomorphisms �∈A. It is clear that

A0 is a subgroup in A of index at most 2. Consider the quotient space S2=A0 by
the action of A0. Then S2=A0 must be an orientable surface. By calculation of Euler
characteristic, we can conclude that S2=A0 is homeomorphic to the sphere and G̃=A0 is
embedded there. (See the proof of Theorem 2 in [11] for the details.) If A=A0, then
G= G̃=A= G̃=A0 would be embeddable in the sphere, contrary to the nonplanarity of
G. Thus, A0 has index 2 in A. In this case, G̃ is an n-fold covering of G̃=A0 while
G̃=A0 is a 2-fold covering of G with the covering transformation group A=A0

∼= Z2.
Therefore, G̃ is (n; 2)-composite since it factors through G̃=A0.
Now we shall proceed to the general case, using induction on the order of G. The

initial step of induction is the case when G̃ is 3-connected. Suppose that G̃ is not 3-
connected. If G̃ were a cyclic chain, then shrinking all parts Gi but one in G̃ embedded
on the plane yields a planar embedding of G, contrary to the nonplanarity of G. Thus,
there is a 1- or 2-fragment of G̃ equivariant under A, described in Lemma 13. Use the
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same notation as in the lemma. By the induction hypothesis, G̃F is (n; 2)-composite
and there are an n-fold covering p′

F : G̃F →G′
F and a 2-fold covering p′′

F : G
′
F →GF

with pF =p′′
Fp

′
F .

In each case of (i) to (iv), we can construct a 2-fold covering p′ : G′ →G which
G̃ factors through, as follows:

(i) Replace each of two lifts of the edge p(u)p(v) in G′
F with a copy of (F; {p(u);

p(v)}).
(ii) Put w=p(u)=p(v). Then (F̃ ; {u; v}) projects to a 1-fragment (F; {w}) in G.

If p′
F(u) �= p′

F(v), then attach two copies of (F̃ ; {u; v}), say (F1; {u1; v1}) and
(F2; {u2; v2}), to G′

F so that u1=v2=p′
F(u) and v1=u2 =p′

F(v). If p
′
F(u)=p′

F(v),
then there is another vertex w′ in G′

F which projects to w in GF . Attach two copies
of (F; {w}), say (F1; {w1}) and (F2; {w2}), to G′

F so that w1 =p′
F(u) and w2 =w′.

(iii) The same argument as in the previous case works formally with the same symbols.
(iv) Let u′1 and u′2 be the two vertices of G′

F which project to p(u). Attach two
disjoint copies of (F̃ ; {u}), say (F1; {u1}) and (F2; {u2}), to G′

F so that u1 = u′1
and u2 = u′2.

Therefore, G̃ is (n; 2)-composite and the induction completes.
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