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0. Introduction 

The aim of the work is to extend the results of the theory of monads ( = triples) and 
apply them to new situations: local rings, fields, inner spaces, locally compact spaces, 
locally compact groups, complete ordered sets, etc. We use the notion of multiad- 
junction developed in [4]. 

Take, for example, the category Locc of commutative local rings and local 
homomorphisms. The forgetful functor U : Locc+ Set has a left multiadjoint. There 
is on the category Set a trace of this multiadjunction: first, the spectrum relative to U 
which is a functor S : SetoP + Set given by S(E) = Set of prime ideals of the ring 
Z[(X)],~~ of polynomials with coefficients in Z, of the variables (x) where x runs 
through E. Second, a functor T which assigns to a pair (E, I) of a set E and a prime 
ideal I E S(E), the set T(E, I) of rational fractions P/Q E Z((X>),,~ such that QB I, 
and two natural transformations. This trace is called a multimonad on Set. It is 
remarkable that the category Locc can be reconstructed from this multimonad, a 
local ring appearing then as a triple (E, I, e) of a set E, a member I of S(E) and a 
structural map T(E, I) + E fulfilling two axioms. 

Any functor U : A-, B which has a left multiadjoint generates a multimonad on B 
and we characterize the categories A which can be reconstructed from this multi- 
monad and which are called multimonadic. These categories are naturally equipped 
with a comonad so we get standard resolutions in the homological sense. The 
multimonadic categories on Set can be characterized in the following way: they are 
regular, with connected limits, with coequalizers of coequalizable pairs, their 
equivalence relations are effective, their forgetful functors preserve coequalizers of 
equivalence relations and reflect isomorphisms. But they need not have products, 
and this is totally different from monadic categories on Set. Local rings, fields, inner 
spaces, locally compact spaces, locally compact groups, complete ordered sets are 
examples. The descriptions of these well known objects in terms of multimonads, are 
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not ordinary. A locally compact space is described by its relatively compact subsets, a 
complete ordered set by its nonempty upper bounded subsets, a local ring by the 
rational fractions defined on it. 

1. Categories of S-objects 

1.0. Let B be a category and S : BoP + Set be a functor. An S-object is a pair (B, i) of 
an object B of B and an element i of SB. A S-morphism (B, i) + (B’, i’) is a morphism 
g : B + B’ of B which satisfies Sg(i’) = i. They form a category B,,. The functor 
U, : B,, + B is defined by U,(B, i) = B and U,(g) = g. It is a small fibers discrete 
fibration i.e. a fibration, the fibers of which are small discrete categories i.e. sets. It is 
said associated to the functor S. 

The small fibers discrete fibrations can be described as the functors P :X + B which 
satisfy the two following data 

(1) for any object B of B, {X E Obj(X) : PX = B} is a set, 
(2) for any object X of X and any morphism g : B + PX, there exists a unique 

morphism f with codomain X such that Pf = g. Then, all the morphisms of X are 
Cartesian for P. A small fibers discrete fibration P has a left multiadjoint, the families 
(le : B + PX)px=B of morphisms from B to P being universal. The spectrum relative 
to P is then the functor Specp : BoP * Set defined by Spe+(B) = fiber of P in B and 

Specp(g)(X) = g*(X). 
It is easy to see that the correspondences described above, between the functors 

S : BoP + Set and the small fibers discrete fibrations on B, are inverse of each other, up 
to isomorphisms. From now on, discrete fibration means small fibers discrete 
tibration. 

1.1. Proposition. A functor has a left multiadjoint if and only if it is the composite of a 

functor having a left adjoint with a discrete fibration. This factorization is unique up to 
isomorphisms and the jibration is then associated to the spectrum of the functor. 

Proof. (a) The sufficient condition is a consequence of the fact that the composite of 
two functors which have left multiadjoints, has a left multiadjoint [4]. Let U : A + B 
be a functor having a left multiadjoint. For any object B of B, let (gi: B --, 

UAi)ieSpecU(B) be a universal family of morphisms from B to U. Let denote P : X --, B 
the discrete fibration associated to the functor SpecU : BoP + Set. For any object A of 
A, the morphism lUA : UA + UA factorizes in a unique way in the form 1~~ = 
(UfA)gi* where iA E SpecU( UA) and fA : Ai, + A. For any morphism f: A + A’ of A, 
one has SpecU( Uf)(iA,) = i_+ One defines then a functor V : A+ X by VA = (UA, i,J 
and Vf = Uf. For any morphism g : B + B’ of B and any I’m SpecU(B’), the morphism 
givg: B + UAif factorizes in a unique way in the form gi*g = (Uflgi where i = 
SpecU(g)(i’) and f : Ai + Ai*. One defines then a functor F : X + A by F(B, i) = Ai 
and Fg = f. Let us show that F is left adjoint to V. One defines a natural trans- 
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formation 

a:Hom*(F(*), -)+Homx(., V(-)) 

by defining a(B.r).A : HomdV% i), A)+ Hom(U3, & VA) by a(B.i),A(f) = (uf)gi 

for f :Ai + A. For any object A of A and any object B of B, the map 

‘iaSpecU(B) aCBvi).A is composed of the following bijections: 

II HomA(Ai, A) = Horn&J, UA) = Horn&?, P(UA, ia)) 
isSpec”(B) 

z LI Homx((B, i) , (UA, iA)) = u Homx((B, i), VA). 
icSpecu(B) iCSpecu(B) 

It is thus a bijection and so is any map a(B.i),A. It follows that CY is an isomorphism. 
(b) Let U = QW be another factorization of U, where the functor W : A --* Y has a 

left adjoint and where Q : Y + B is a discrete fibration. For any object (B, i) of X, 
there is a unique morphism y : Y + WAi of Y such that Qy = g, : B + UAi. Let us 
denote R(B, i) the domain of y. If g : (B, i)+ (I?‘, i’) is a morphism of X, there is a 
unique morphism Rg : R(B, i)+ R(B’, i’) of Y such that Q(Rg) = g. So one defines a 
functor R : X+ Y which satisfies QR = P. For any object A of A, there is a canonical 
morphism Ai, --, A and a morphism RVA = R( UA, iA) + WAi, and then, a 
morphism RVA + WA. The relation QRVA = PVA = QWA implies the equality 
RVA = WA, and the relation WRV = PV = QW implies the equality RV = W. It 

follows that R is a discrete fibration, the fibers of which must be reduced to one 
element, because RV = W has a left adjoint. So R is an isomorphism. 

For any functor U : A + B which has a left multiadjoint, one chooses a functor 
Spec” : Bop+ Set, and, for any object B of B, a universal family (gi : B + 

UAi)ieSpec”(B) of morphisms from B to U. Alternatively one chooses a discrete 
fibration P: X-+ B and an adjunction (F, V, a) such that PV = U. 

2. Multimonads 

2.0. A multimonad on a category B is a pair (S, T) of a functor S : B”” + Set and a 
monad T on the category of S-objects. 

If T=(T,s,p), BEB, B’EB, ~ESB, i’ESB’, and f:(B’,i’)+(B,i), one 
denotes: T(B, i) = (‘I;B, me(i)) and Tf = Td The axioms of the monad T can be 
expressed by the commutativity of the two following diagrams: 
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2.1. Proposition. Any functor U: A-* B which has a left multiadjoint generates a 
multimonad on B. 

Proof. By Proposition 1.1.. the functor U: A-* B is of the form U = PV with P the 
discrete fibration associated to the spectrum relative to U and where V : A+ X has a 
left adjoint F. The adjunction (F, V) generates a monad Ton X. The pair (SpecU, T) 
is then a multimonad on B, which is said, generated by U. 

2.2. Algebras. If (S, T) is a multimonad on B, a ST-algebra is a triple (B., i, 6) such 
that (B, i) is an S-object and ((B, i), b) is a T-algebra, a ST-homomorphism of 
ST-algebras (B, i, 6) + (B’, i’, 6’) is a T-homomorphism ((B, i), 6) + ((B’, i’), 6’). 
They constitute the category BT, which is, indeed, the category of T-algebras. 

With the notations of 2.0, a ST-algebra is thus a triple (B, i, 6) of an object B of B, 
an element i of SB and a morphism b: TtB+ B such that Sb(i)=mn(i) and the 
following two diagrams commute: 

and a ST-homomorphism f : (B, i, 6) + (B’, i’, 6’) is a morphism f : B + B’ such that 
Sf(i’) = i and the following diagram commutes 

6 I b' 

B’ 
f 

of T-structure B,?,-, B 
forgetful of ST-structure, composite of UT with the discrete fibration 
U, : B,, + B. Observe that B,, = Bys and U, = Uf. 

2.3. Proposition. The functor UT : BT, + B has a left multiadjoint. It generates the 
multimonad (S, T) on B and, for any functor U : A+ B which has a left multiadjoint 
and generates (S, T), there exists a unique functor K : A-, BT,, called the comparison 
functor, which satisfies U?K = U and preserves the universal families of morphisms. 
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Proof. One knows that the functor UT: 8’ jS+ B,, has a left adjoint FT and that it 

generates the monad T on B,,. The relation U’f = U,UT implies that UT has a left 
multiadjoint and that the spectrum relative to UT is S. So (S, T) is the multimonad 
generated by UT. Let U: A+ B be a functor having a left multiadjoint and 
generating (S, T). It factorizes in the form U = U,V with V having a left adjoint F 
and generating the monad T on B lI. There exists then, a unique functor K : A + BT 

satisfying UTK = V and KF = F’. But this last condition is equivalent to say that, for 
any object B of B, if (gi : B + UAi)i,ss is a universal family of morphisms from B to 

U, then (gi : B + UTKAi)i,ss is a universal family of morphisms from B to Uf, that is 
to say, K preserves universal families of morphisms. 

3. Multimonadic categories 

3.0. Definition. A functor U : A+ B is multimonadic if it has a left multiadjoint and 
if the comparison functor K : A-, BT, is an equivalence. The category A is then said 
to be multimonadic on B. 

It is obvious that a functor is multimonadic if and only if it is the composite of a 
monadic functor with a discrete fibration. In particular, a discrete 
multimonadic. 

3.1. Theorem. A functor U : A-, B is multimonadic if and only if 
(1) it has a left multiadjoint, 
(2) it reflects isomorphisms, 

fibration is 

(3) the pairs of parallel morphisms of A, whose image by U has a split coequalizer, 
have a coequalizer preserved by U. 

Proof. (a) Lemma. A discrete fibration creates isomorphisms and split coequalizers: 
let P:X+ B be a discrete fibration. Let X be an object of X and g : B + PX be an 
isomorphism of B. There is a unique morphism x : Y --*X of X such that P.r = g. The 
morphism x being Cartesian, there exists a unique morphism y :X --, Y of X such that 
xy = lx and Py =g-‘. The relation P( yx) = g-‘g = lB implies yx = 1 Y. So x is 
isomorphic. Let (x, y) :X=: Y be a pair of parallel morphisms of X such that the pair 
(Px, Py) : PXSPY has a split coequalizer in B [9]. 
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Let k : PY + C, h : C + PY, 1: PY + PX be morphisms of B satisfying k(Px) = 
k(Py), kh = lc, (Px)f = lP,, (Py)l= hk. The morphism x being Cartesian, there is a 
unique morphism t : Y-+X such that xt = 1 v and Pr = 1. Let s : 2 + Y be the unique 
morphism such that Ps = h. The morphism s being Cartesian, there is a unique 
morphism z : Y + 2 such that sz = yt and Pz = k. The relation P(zs) = kh = lc 
implies zs = lz and the relation P(zx) = k(Px) = k(Py) = P(ry) implies zx = ry. So, 
one gets a split coequalizer of (x, y). 

(b) Proof of the theorem. Let U : A+ B be a functor having a left multiadjoint and 
U = PV, with V : A -* X and P : X+ B, its canonical factorization. The functor U is 
multimonadic if and only if the functor V is monadic. By the theorem of J. Beck 
characterizing monadic categories [9], the functor V is monadic if and only if it 
reflects isomorphisms and if the pairs of parallel morphisms whose image by V have 
split coequalizers, have coequalizers preserved by V. Because the functor P creates 
isomorphisms, V reflects isomorphisms if and only if U reflects them. Because P 
creates split coequalizers, for any pair (f, f’) : AZ A' of parallel morphisms of A, 
(Vf, Vf’) has a split coequalizer if and only if (Uf, Uf’) has one. The result follows. 

We are going to prove that, in the preceding characterization, in most cases, it is 
sufficient to consider those pairs of morphisms which are equivalence relations. Note 
that the categories we are dealing with, need not have products, so we consider 
kernel pairs of nonempty sets of morphisms with common domain instead of kernel 
pairs of one morphism. 

3.2. Theorem. If B is a category with kernel pairs, a functor U: A-, B is mulri- 
monadic if and only if 

(1) it has a left multiadjoint, 
(2) it reflects isomorphisms, 
(3) A has kernel pairs, 
(4) the equivalence relations of A whose image by U is contractible and has a 

coequalizer, have a coequalizer preserved by U. 

Proof. Let P: X+ B be a discrete fibration. 
(a) P creates kernel pairs: let (Xi :X + Xi)icI be a nonempty family of morphisms of 

X and let (m, n) : K=: PX be a kernel pair of (Px, : PX + PX, JIGI. There is a unique 
morphism y : Y * X such that Py = m, and a unique morphism I : Z +X such that 
Pz = n. The relation P(xiy) = (Pxi)m = (Pxi)n = P(x,z) for some i E 1, implies Y = Z. 
It is then easy to see that (y, z) is a kernel pair of (.G),~I. 

(b) P preserves and reflects equivalence relations: for any objet X of X and any 
object B of B, one has 

Homn(B, PX) = LI Homx(Z, X) 
PZ=B 
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in a natural way; for two parallel morphisms (x, y) :X = Y, the two pairs of maps 

Horn@, PX 9; PY) and II Homx(Z, X _“, Y) 
PY PZ=B Y 

are also isomorphic. It follows that Horn@, PX) “, PY) is an equivalence 
PY 

relation if and only if IIpzzB Homx(Z, X &J Y) is one, that is to say if 

Homx(Z, X & Y) is an equivalence relation fYOr any Z such that PZ = B. Thus, 
Y 

(x, y) is an equivalence relation in X if and only if (Px, Py) is an equivalence relation 
in B. 

(c) P preserves and reflects contractible equivalence relations: Suppose that 
(Px, Py) : PX=: PY is a contractible equivalence relation i.e. there is a morphism 
m : PY + PX such that (Px)m = lpy and P( y)mP( y) = (Py)m(Px). There is a unique 
morphism s : Y + X such that xs = lx and Ps = m. The relations 

P(y.sy) = (Py)m(Py) = (Py)m(Px) =P(ysx) 

imply ysy = ysx. So (x, y) is a contractible equivalence relation. 
(d) P preserves and reflects effective contractible equivalence relations: the 

coequalizer of a contractible equivalence relation is split. By Lemma 3.1 (a), a 
contractible equivalence relation (m, n) of X has a coequalizer z if and only if its 
image (Pm, Pn) has a coequalizer, and by (a), (m, n) is the kernel pair of z if and only 
if (Pm, Pn) is the kernel pair of Pz. 

(e) Proof of the theorem. Let U = PV be the canonical factorization of U. Because 
B has kernel pairs, so has X. By a theorem of J. Duskin [5, p. 89, Theorem 3.21 the 
functor V is monadic if and only if: it reflects isomorphisms, A has kernel pairs (cf. 
separators) and the equivalence relations in A whose image by V is contractible and 
has a coequalizer, have a coequalizer preserved by V. Because of the results above, 
we can write these conditions for the functor U. 

3.3. Proposition. The functor LJZ : Br,+ B creates connected limits. 

Proof. Because a monadic functor creates limits, it is sufficient to show that a 
discrete fibration P :X + B creates connected limits. Let I be a nonempty connected 
category and (Xi)iEr be a diagram of X the image of which has a limit (pi : B + PXi)i.l 
in B. For any object i of I, there exists a unique morphism x, : Yi + Xi such that 
Pxi = pi. For any morphism cr : i + i’ of I, one has P(X,x,) = (PX,)pi = Px,, and thus, 
Yip = Yi and X,xi = Xi’. Because I is connected, it follows that: Vi E I, Vi’c I, Yi’= Yi. 
Denote Y the common value of Yi. One gets a projective cone (x, : Y + Xi)ger based 
on (Xi)icr. Let (Zi : Z + Xi)i,l be a projective cone based on (Xi)iEr. There is a unique 
morphism g: PZ + B such that pig = PZi for every i E I. There is then a unique 
morphism z : Z + Y such that PZ = g. Then P(xiZ) = pig = PZi implies X,Z = Zi, for 
every i E I. Such a morphism z is uniquely determined by Xiz = Zi because one has 
pi(PZ) = PZi and thus PZ = g. It follows that (Xi : Y *Xi),,1 is the limit of (Xi)i,r. 
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4. Multimonadic categories on Set 

4.0. Proposition. If (S, T) is a multimonad on Set, the category Set:* is regular, with 
effective equivalence relations, has connected limits and coequalizers of coequalizable 
pairs of morphisms, is well-powered, regularly cowell-powered and the functor 
U’f : !3etys+ Set preserves and reflects connected limits and regular epimorphisms. 

Proof. In Set, equivalence relations are contractible. By Theorem 3.2, equivalence 
relations in SetTs have coequalizer preserved by UT. Let (m, n):Xz Y be an 
equivalence relation in Set; and p : Y +Z its coequalizer. (Ufm, UTn) is an 
equivalence relation in Set and Up is its coequalizer. Then (UTm, Ufn) is the kernel 
pair of Ufp. Because UT reflects kernel pairs (Proposition 3.3), (m, n) is the kernel 
pair of p. So the equivalence relations are effective in SetTs and UT preserves regular 
epimorphisms, for any regular epimorphism is coequalizer of its kernel pair. Let 

p : Y + T be a morphism of SetTs such that Urp is a regular epimorphism. Let 
(m, n) :X = Y be the kernel pair of p, q : Y --, Z the coequalizer of (m, n) and 
k : Z --* T the unique morphism satisfying kq = p. Then (Ufm, U’fn) is the kernel 
pair of UTp and also of UTq for UTq is coequalizer of (Ufm, UTn). It follows that 
UTk : UTZ + UTT is isomorphic. Because Ulf reflects isomorphisms, k is iso- 
morphic and p =q is a regular epimorphism in Set:_ Thus UT reflects regular 
epimorphisms. For the functor Uf preserves and reflects fiber products (Proposition 
3.3), regular epimorphisms are universal in Set= lS. So the category Set:, is regular in 
the sense of M. Barr [2]. The category Set,, being well-powered, so is the category 
SetTs [lo]. Let f : X + Y and g :X + Z two regular epimorphisms in Setys such that 
UTf and UTg are isomorphic i.e. there is an isomorphism h : Uf Y + UfZ satisfying 
h(U?f) = UTg. If (m, n) is the kernel pair off, one has 

=h(UTfn)=h(UTf)(UTn)=(UTg)(U~n)= UT(gn). 

Because Uz is faithful, one has gm = gn. Then there is a unique morphism k : Y + Z 

satisfying kf = g. The relation Ufg = UT (kf) = (Ufk)( UTf) implies UTk = h. It 
follows that k is isomorphic. The category Set being cowell-powered, one deduces 
that SetTs is regularly cowell-powered. There remains to show that the pairs of 
morphisms (f, g) : XZ Y of SetfS which are coequalizable, have a coequalizer. Let 

(qi : Y + Zi)ieI be a representative set of regular quotients of Y. Let I’= 
{i E I : qif = qig}. The set I’ is not empty because there is a morphism h : Y * Z which 
coequalizes (f, g) and which factorizes, then, in the form h = rqi with i E I and r 
monomorphic, so iEI’. Because SetfS has connected limits, the kernel pair 

(m, n) : TS Y of the family (qi)ierv exists. It is an equivalence relation. Let q : Y + Z 
be the coequalizer of (m, n). There is a unique morphism k :X + T such that mk =f 
and nk = g. The relation qin = qim implies the existence of a morphism ri : Z + Zi 
satisfying riq = qi. Let us show that q : Y +Z is coequalizer of (f, g). One has 
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qf = qmk = qnk = qg. If h : Y + R coequalizes (f, g), it is of the form h = rqi with r 
monomorphic and i E I’, then qi coequalizes (f, g) and h factorizes through q in a 
unique way. 

4.1. Theorem. A functor U : A-, Set is multimonadic if and only if 
(1) it has a left multiadjoint, 
(2) it reflects isomorphisms, 
(3) A has kernel pairs, 
(4) equivalence relations in A have coequalirers preserved by U. 

Proof. It is the Theorem 3.2 for B = Set. 

4.2. Theorem. A functor LJ : A + Set is multimonadic if and only if 
(1) it has a left multiadjoint, 
(2) it reflects isomorphisms, 
(3) A has kernel pairs, 
(4) equivalence relations in A are effective, 
(5) U preserves regular epimorphisms. 

Proof. The conditions are necessary by Proposition 4.0. They imply that U 
preserves coequalizers of equivalence relations for if (m, n) is an equivalence relation 
with coequalizer p, then (m, n) is the kernel pair of p, thus (Urn, Un) is the kernel pair 
of Up and, because Up is a regular epimorphism, Up is coequalizer of (Urn, Un). 

4.3. Remarks. (a) It is easy to see that the preceding results remain valid, if instead 
of Set, one takes a category B with kernel pairs, effective equivalence relations and 
whose regular epimorphisms are split. For example, B = Set’ with I a set. 

(b) The functor P’ : Set’ + Set defined by P’((Ei)icr) = IIi,,Ei is a discrete fibra- 
tion. It is thus multimonadic. Moreover any category which is multimonadic on Set’ 
is multimonadic on Set. 

5. Examples 

5.0. Locally compact spaces 

Denote Locomp the category of locally compact (Hausdorff) spaces and proper 
continuous maps i.e continuous maps such that the inverse image of any compact 
subset is compact. The forgetful functor U : Locomp + Set has a left multiadjoint 
because it is the composite of the functor Locomp + Complreg which has a left 
multiadjoint [4, Section lo] with the forgetful functor Complreg-, Set which has a 
left adjoint. We claim that the functor U: Locomp-* Set is multimonadic, for it 
satisfies the conditions of Theorem 4.1. U reflects isomorphisms for if E, F are 
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locally compact spaces and f: E + F is a proper continuous map which is bijective, 
then f is a closed map and thus is an homeomorphism. Locomp has connected limits 
[4, Section lo], in particular kernel pairs. Let (m, n): R ZE be an equivalence 
relation in Locomp. The pair (Urn, Un) : UR = UE is an equivalence relation in Set. 

If X is a compact subset of E, the saturated subset X of X for the equivalence 
relation, is compact for X = (m(n-‘(X)) with n, m proper continuous maps. It 
follows that the quotient E/R is locally compact and that the canonical map 
p : E + E/R is proper continuous [3, Chapter I, Section 10, Prop. 171. It follows 
immediately that p is the coequalizer of (m, n) in Locomp. So the equivalence 
relations m Locomp have coequalizer preserved by U. 

The spectrum of a set E relatively to U is, by [4, Section lo], the set S(E) of sets x 
of subsets of E such that 

(1) 06.x 
(2) vXEx,vYcX, YEYZ-, 
(3) VXE.?~,VYYE,XU YE3t, 
(4) Vx E E, {x} E YL 

The spectrum relative to U is the functor S:Set”*+Set which, to any E assigns 
S(E) and, to any f : E -, E’ assigns the map S(f) : S(E’) + S(E) defined by S(fl(YC) = 
{XcE:f(X)cYl}. 

The category Set,, has S-sets for objects i.e. pairs (E, YlJ of a set E and a member 
Z?Z of S(E), and has S-morphisms for morphisms (E, .9Q + (E’, Yi?) i.e. maps f : E * E’ 

such that: VX c E, (X E YC e f(X) E Yl’). 

The functor V: Locomp+ Set,, assigns to a locally compact space E, the pair 
(E, xE) where YIE is the set of relatively compact subsets of E, and, to a proper 
continuous map the underlying map. The functor F: Set,, + Locomp left adjoint to 
V, assigns to the S-set (E, YQ and locally compact space Ex = 

{% E P(E) : % n Yl# 0) = set of ultrafilters which meet X, equipped with the topology 
induced by the topology of /3(E) [4], and to a S-map f: (E, X)+ (E’, 33 assigns the 
proper continuous map Ff: Ex + Er given by Ff(%) = { Y c E’ :f’( Y) E Q). 

Let T = (7’, 17, CL) be the monad on Set,, generated by the adjunction (F, V). The 
functor T: Set,, + Set,, assigns to (E, Yl) the pair T(E, Yl) = (Ex, 3’~) where 2% is 
the set of relatively compact subsets of E~c i.e. subsets %‘of Ex such that: VQ E P(E), 

(n 2’~ % +% E E*). The natural transformation t7E.x: E + EK assigns to .r, the 
principal ultrafilter (x) generated by x. We identify E with a subset of Ex par vE,X 

The natural transformation @E,X : (E,x)~~ + Ex is given by 

The multimonad generated by U is then (S, T). A ST-algebra is a triple 
a set E, a S-structure x on E and a map h : Ex+ E such that: 

(1) vx~E,~((x))=x, 

E,.%Ah)of 

(2) V~~cEx(A(~)~~‘($V’“U~p(E)(n~~c~j~E~)), 

(3) V%^ E (&)2x, A{A(%‘):~%‘~E}=A{X~E:{%~~(E):XE%})EY} 
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A ST-homomorphism (E, ?Z, A) + (E’, x’, A’) is a map f: E + E’ such that 

(1) tlXcE(X~SrCeff(X)~2-‘), 

(2) V%~Esu,f(A(%))=h’{YcE’:f-l(Y)&}. 

They constitute the category Setfs. 
The comparison functor W : Locomp + SetfS assigns to any locally compact space 

E, the triple (E, xE, hE) where .7ZE is the set of relatively compact subsets of E and 

AE :&c, + E is the map given by AE(%) = limE %. This functor is an equivalence of 

categories. The quasi-inverse functor assigns to a ST-algebra (E, Yl, A) the locally 

compact topological space E, the topology of which is given by the closure X = 

{AE(%) : G!l E Ex and X E %}, for any X c E. 

5.1. Complete ordered sets 

An ordered set is complete if any nonempty upper bounded subset has a supre- 

mum. If E, F are complete ordered sets, a map f: E + F is sup-conrinuous if it 

preserves the suprema of nonempty subsets. It is propersup-continuous if, moreover 

the inverse image of any upper bounded subset is upper bounded. Complete ordered 

sets and proper sup-continuous maps form the category Ordcompl. The forgetful 

functor U:Ordcompl+Set has a left multiadjoint for it is the composite of the 

functor Ordcompl-, Ord which has a left multiadjoint [4, Section 111 with the 

forgetful functor Ord- Set which has a left adjoint. 

The functor U : Ordcompl+ Set is multimonadic. We shall use Theorem 4.1 for 

the proof. U reflects isomorphisms because if f: E --, F is a bijective proper sup 

continuous map, then for any nonempty upper bounded subset Y of F, f’( Y) is also 

nonempty upper bounded and f(sup, f-‘( Y)) = sup~(fi-l( Y)) = supF Y, and thus, 

supE( f-‘( Y)) = f-l(supF Y), so f-’ is sup-continuous and also proper sup-continu- 

ous. The category Ordcompl has connected limits [4, Section 111, and thus has kernel 

pairs. Let (m, n) : R =Z E be an equivalence relation in Ordcompl. One may suppose 

that the set R is an equivalence relation on E in the usual sense and that m(~, y) =x 

and n(x, y) = y. For (x, X’)E R and (y, y’)~ R, one has: supR{(x, x’), (y, y’)} 

exists esup~(x, y) existseJ~up~(x’, y’) exists. For any x E E, denote 2 the 

equivalence class of x modulo R. Let us prove that i has a maximum in E. Because m 
iS proper sup-continuous, supR m-‘(x) = (x0, x1) exists. Then 

and 

x0 = m (x0, xi) = m (supR m-‘(x)) = supE{x} = x 

The relation (x0, xi) E R implies x1 E X and thus x1 = maxE Z. Denote F the set of 

maxima of equivalence classes modulo R. It is a representative set of equivalence 

classes; we consider it as the quotient set of E by R by denoting p : E + F the map 

given by p(x) = maxEZ Let us equip F with the order induced by the order of E. Let 

us show that the map p is order-preserving. If x =zy in E, then 

supR{k p(x)), (Yv P(y))) exists and is (Y. SUPE{P(X), p(y)I). ThuSSup&( P(Y))E 
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~andsup~{p(x),p(~)}~p(y)sosup~{p(x),p(y))=p(y)i.e.p(x)~p(y).Theorder 
preserving map p : E + F is left adjoint to the inclusion map F + E, because, for any 
XCE andyOEF, 

x C y0 e max.&) C maxE( ~70) e max&) < y. e p(x) G yo. 

It follows that p is sup-continuous. It immediately follows that p is proper, that F is 
complete and that p is the coequalizer of (m, n) in Ordcompl. So the equivalence 
relations in Ordcompl have coequalizer preserved by U. Thus, U is multimonadic. 

The spectrum of a set E relatively to U is, by [4, Section 111, the set S(E) of sets & 
of subsets of E, such that: 

(1) Ok.4 
(2) VXE&VYCE((B#YCX*YEJH), 
(3) Vx E E, {x}EA. 

The spectrum relative to U is the functor S : SetoP + Set which to E assigns S(E) and 
to f : E + E’ assigns the map S(f, : S(E’) --, S(E) defined by 

S(f)(N) = {X c E :f(X) E A’}. 

The category Set,, has S-sets for objects i.e. pairs (E, A) of a set E and a member 
Jbl of S(E), and has for morphisms (E, Al) --, (E’, A’) the maps f : E + E’ such that: 
VXCE(XEJU~f(X)EM). 

The functor V: Ordcompl+ Set,, assigns to a complete ordered set E, the set E 

equipped with the set of its nonempty upper bounded subsets and to a proper 
sup-continuous map, the underlying map. The fhnctor F : Set,, - Ordcompl, left 
adjoint to V, assigns to any S-set (E, A), the set Ju ordered by inclusion and to any 
S-map f: (E, Al) + (E’, A’) the proper sup-continuous map Ff: A + A’ given by 

FfW) =fW). 
If T= (T, v, cc) is the monad generated by the adjunction (F, V), the functor 

T : Set,, + Set,, is defined by T(E, A) = (A, A_*) where JU& is the set of nonempty 
upper bounded subsets of Ju, the map TE,~ : E + Jtl is defined by TE,.~(x) = {x} and 

the map pE,.4f :J& -*At by CLE..M@? = UXEl X. The multimonad generated by U is 

then (S, T). 
A ST-algebra is a triple (E, 4, a) of a set E, a S-structure JU on E and a map 

CT : EA --, E such that 

(1) vx, m({x)) =x9 
(2) VZ= JIG, UX& XEJll*{(o(X):XE~EJU, 

(3) and then, &JxEdp X) = a{{cT(X) :x E 2-j). 
A ST-homomorphism (E, A, v) + (E’, A’, d) is a map f : E * E’ such that 
(1) vxcE(XEJUef(X)EA'), 
(2) vxEJIC,f((T(X))=(T'(f(X)). 

They constitute the category SetTs. 

The comparison functor W : Ordcompl -, Setfs assigns to a complete ordered set E, 

the triple (E, &, crE) where & is the set of nonempty upper bounded subsets of E 

and aE :& + E is the map given by mE(X) = supEX. This functor is an equivalence 
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of categories. The quasi-inverse functor assigns to a ST-algebra (E, A, (T) the set E 

equipped with the order given by: x s y e ({x, y} E A and a{.~, y} = y). 

5.2. Local rings 

Locc is the category of (commutative unitary) local rings and local homomor- 

phisms. The forgetful functor U : Locc+ Set has a left multiadjoint as the composite 

of the functor Locc+ CRng which has a left multiadjoint [4,6.5.4] with the forgetful 

functor CRng-, Set which has a left adjoint. Let us show that U is multimonadic. It 

reflects isomorphism for a local homomorphism which is bijective is an isomorphism. 

The category Locc having connected limits [4, Section 5.41 has kernel pairs. Let 

(m, n) : R =A be an equivalence relation in Locc. One may consider that the set UR 

is an equivalence relation on UA in the usual sense and that m(x, y) = x and 

n (x, y) = y. One knows that the quotient set lJA/ UR has a ring structure denoted B, 

and that the canonical map p : A --, B is a ring homomorphism. We claim that p is 

local. The equivalence relation R satisfies the property: 

V(x, y) E R, (x, y) invertible e x invertible e y invertible. 

Let x EA such that p(x) is invertible. There is an element y of A such that 

p( y)p(x) = 1 and then p(yx) = 1. The element ( yx, 1) of R is then invertible. Thus yx 

is invertible and so is x. The ring B is then local because (x invertible) or (1 -x 

invertible) implies (p(x) invertible) or (1 -p(x) invertible). It is then easy to see that p 

is coequalizer of (m, n) in Locc. So equivalence relations in Locc have coequalizers 

preserved by U. 

The spectrum of a set E relatively to U is, by [4, Section 5.41, the set S(E) of prime 

ideals of the ring Z[(x)lxEE of polynomials of variables (x) with x running through E 

and with coefficients in Z. The spectrum relative to U is the functor S : SetoP-, Set 
which assigns to E the set S(E) and tof: E + E’ the map S(f) : S(E’) + S(E) given by 

S(f)(Z’) = {P((x,>, . . . , (x,)1 : P((f(Xl)), * * . , (fh)>) E I’]. 

The category Set,, has S-sets for objects i.e. pairs (E, I) of a set E and a prime 

ideal of Z[(X)],,~, and has for morphisms (E, I)+ (E’, I’) the maps f: E -*E’ such 

that: 

P((.YI), . - . 9 (L>) E I@ p(v(~l)L . . . > mL))) E I’. 

In the sequel, let us denote Z[E] the ring Z[(X)],.~, Z(E) the field of fractions of 

Z[E] and, for any prime ideal Z of Z[E], Z[E][ the localized ring of Z[E] at Z i.e. the 

ring of rational fractions 

R((xl), . . . , cGI>) = P((Xl), . . 7 (XA)IQ((XI), * . . , (&I>) with QkZ. 

The functor V : Locc + Set,, assigns, to a local ring A, the pair (A, I) where 

z = {P((Xl>, . . . , (x,>)EZ[AI:J’(XI,. . . , x,) is non invertible in A} and, to a local 

homomorphism, the underlying map. The functor F : Set,, + Locc left adjoint to V, 
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assigns to the S-set (E, I) the local ringF(E, I) = Z[l$, and to the S-mapf: (E, I) + 
(E’, I’) the map Ff: (E, Z)+F(E’, I’) given by Ff(R(xJ, . . . , (x,)) = 
R((fbl)), * * * , (fh))). 

If T= (?‘, q, CL) is the monad generated by the adjunction (F, V), the functor 
T: Set,, + Set,, is given by T(E, I) = (Z[& ZE.,) where ZE., is the set of polynomials 
belonging to ZIZIEII] the value in ZIEII of which has a numerator not belonging to 
Z, the map nFr : E+ F(E, I) is given by nEVI(x) =(x) and the map 

PE.I : fVE 0, ZE.I) -+ FE 4 by 

I1E.rw((SI((X1), * * - , (XII))>, * * - , (Sp((XI), . . . , (x,>)>N 

= R(Sl((Xl), * * * 9 (X”>h * * * , Sp((XlL * - * 9 (X”>)). 

The multimonad generated by U is then (S, T). 
A ST-algebra is a triple (E, Z, v) of a set E, a prime ideal Z of Z[E] and a map 

Y : ZIEII + E such that 
(1) Vx E E, 4(x)) =x. 

(2) VR(&((x,), . . . , (xd)), . . . , &((xh, . . . , bn)))) E Z(ZL%), 

R(SI((Xl), * * * 9 Cd), . . . , Sp(b-Jr . . . , (x,)))E ZLEII 

e Rb(&((xJ, . . . , (x.))), . . . , dSp((xA . . . , CGA))) E Z[Elr 

(3) In the conditions of (2) 

Y(R(Y(Si((X1), * *. , (X”>N, * - * , ~(Sp((.~l), * * * 9 (XrJ))) 

= 4R(Sl((XJ,. . . , cd), . - * , SJ(xdL * * * , (%I)))) 

A ST-homomorphism (E, Z, v) + (E’, I’, v’) is a map f : E + E’ which satisfies 

(1) VR((xi), . . . , Cd) E Z(E), 

R((x*), * * * 9 W)E WI, -a R((f(xd), . . ., (f (xn ))) E Z[E’lr 

(2) and then 

fb(R((xd,. . .v h)))) = v’W((f (xd), . . . , (f (xn )>)). 

The comparison functor W :Locc+Setys assigns to a local ring A, the triple 

(A, I,+ VJ where IA is the ring of polynomials P((xr>, . . . , (x,)) E Z[Al such that 

P(x*. a. * 9 x,) is not inversible in A and VA : Z[A],, + A is the map given by 

VA(R((XI), . . . , (x,)))=R(xI,. . .v x,)- 

This functor is an equivalence of categories. 

5.3. Other multimonadic categories on Set 

Locomp(u), Locompara, Locompdis: the objects are (Hausdorff) locally compact 
spaces which are, respectively, a-compact, paracompact, totally disconnected, and 
the morphisms are the proper continuous maps. 
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LocompGr: locally compact groups and proper continuous homomorphisms. Also 
locally compact rings, fields, modules, algebras, etc. 

Ordab: ordered abelian groups and proper order-preserving homomorphisms i.e. 
(x a 0 ef(x) 2 0). Also ordered rings, fields, etc. 

Loclat: local distributive lattices i.e. (X v y = 1 + (X = 1 or y = 1)) and local 
homomorphisms (f(x) = 1 j x = 1). 

Lot: local rings not necessary commutative and local homomorphisms. 

6. Idempotent multimonads 

A multimonad (S,T) is idemporenf if the monad T is idempotent. They are 
generated by the following functors. A functor U : A-, B is relatively full and faithful 

if, for any pair of morphisms h :X + 2, g : Y + 2 of A with the same codomain and 
for any morphism m : UX + UY of B satisfying (Ug)m = Uh, there exists a unique 
morphism f : X + Y of A such that gf = h and Uf = m. A subcategory is relatively full 

if the inclusion functor is relatively full and faithful. One can easily prove the 
following: 

(1) A discrete fibration is relatively full and faithful 
(2) the composite of two relatively full and faithful functors is relatively full and 

faithful 
(3) A functor is relatively full and faithful if its composite with a relatively full and 

faithful functor is relatively full and faithful. 

6.0. Proposition. A relatively full and faithful functor which has a left multiadjoint 

generates an idempotent multimonad and is multimonadic. 

Proof. Such a functor U: A-, B has a canonical factorization U = PV, where 
V : A + X has a left adjoint F. Let us show that V is full and faithful. V is relatively 
full and faithful by (3) above. Let n : lx + VF and E : FV+ lA be the natural 
transformations of the adjunction. For any object A of A, one has 1vA = 
( VeA)(qVA). Then there exists a unique morphism (YA :A + FVA such that VQA = 

TVA and 1A = EA(YA. The relations 

V(~AEA)(~~VA)=(VCYA)(VEA)(~)VA)= VCIA =qVA 

imply QAEA = lI;vA. Thus EA is isomorphic and SO is E. Hence V is full and 
faithful. The monad T generated by V is then idempotent and the functor V is 
monadic. The multimonad (S, T) is thus idempotent and the functor U multi- 
monadic. 

6.1. Examples. The following categories are multimonadic on Set. Their 
forgetful functors are relatively full and faithful and generate idempotent multi- 
monads. 
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K: 
Kc: 

KC(P): 
Dom: 
Red: 
Prim: 
etc. 
Kcdiff: 
etc. 
Ordt: 
OrdRng: 

OrdKc: 
etc. 
Norm(R): 
Ban(R): 
Norm Aig(R): 
Ban Alg( R): 
etc. 
Inn(R): 
Hilb( R): 
etc. 
Met: 
Metcompl: 
etc. 

Y. Diers 

fields and ring homomorphisms, 
commutative fields and ring homomorphisms, 
fields of characteristic p and ring homomorphisms, 
integral domains and injective ring homomorphisms, 
commutative reduced rings and injective ring homomorphisms, 
commutative primary rings and injective ring homomorphisms, 

. . . 

differential fields and differential homomorphisms, 
. . . 

totally ordered sets and strictly order-preserving maps, 
commutative totally ordered rings and strictly order-preserving 

maps, 
totally ordered commutative fields, 

. . . 

normed real vector spaces and norm-preserving linear maps, 
Banach spaces and norm-preserving linear maps, 
normed real algebras and norm-preserving homomorphisms, 
Banach algebras and norm-preserving homomorphism, 

. . . 

real inner spaces and scalar-preserving linear maps, 
Hilbert spaces and scalar-preserving linear maps, 

. . . 

metric spaces and isometries, 
complete metric spaces and isometries, 

. . . 

7. Multimonadic triangles. 

7.0. Theorem. Let U : A+ B, V : B+ C, W : A-* C be three functors such that W = 
VU. If Vand Ware multimonadic and ifcoequalizable pairs of morphisms in A hate 
coequalizers, then U has a left multiadjoint and is multimonadic. 

Proof. For monads, one knows that any algebra is coequalizer of two morphisms 
between free algebras. It gives here, for the multimonadic functor V, that any object 

2 of B is coequalizer of (m, n):X- - Y where X, Y are codomains of morphisms 

belonging to universal families relatively to V. So we start studying such objects. 
(a) Let C be an object of C, (hi : C --, VBj)iaJ be a universal family of morphisms 

from C to V and i an element of J. Let us construct a universal family of morphisms 

from Bi to U. 
Let (tk : C + WAk)keK be a universal family of morphisms from C to W. Denote I 

the set of k E K such that tk factorizes (in a unique Way) in the form tk = (Vgk)hj. We 
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UA 

/(j-j- 
I 

l Wa 

claim that (gk : Bi + UAk)k,r is a universal family of morphisms from Bj to u. Let 
g : Bj + UA. The morphism (Vg)hj : C + WA factorizes in a unique way in the form 
(Vg)hj = ( Wfltk with k E K. The morphism fk is of the form (V,,)hr withj’c J. But the 
relation V(( Uf)g’)hj, = ( Wf)fk = (Vg)hj implies i’ =i and (uflg’ = g. It follows that 
k E 1 and g’ = gk. So g faCtOrizes in the form g = ( Uf)gk. Let k’ E 1 and f’ : Aks + A 
satisfying g = (uf)gk = (Uf)gk’. Then 

and thus k = k’ and f =f’. 
(b) Let 2 be an object of B. By (a) there is an object X in B and a universal family 

(gi :X + uAi)i,rv an object Y in B and a universal family (hi: Y --* UBj)j,,, two 
morphisms (m, n ) : X =: Y and a coequalizer q : Y + 2 of (m, n). Denote K the set of 
i E J such that there is i E I such that the morphisms him, hjn factorize, in a necessary 
unique way, in the form him = (Ufj)gi and hjn = (U,Dj)gi and such that the pair 
(f;, pi) : Ai 3Bj has a coequalizer denoted qj : Bj + Cj 

The morphism (Uqj)hj satisfying 

factorizes in a unique way in the form (Uqj)hj = k,q We claim that (kj : Z + UCj)jeK 
is a universal family of morphisms from Z to U. Let g : Z + UA be a morphism. The 
morphism gq : Y + UA factorizes in gq = (Uf)hj with i E J. The two morphisms him, 
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hjn :X + UBi satisfying 

( U,,hjm = gqm = gqn = ( U’h in 

factorizes by a same morphism gi :X * UA; in the forms him = ( Uh)gi and hjn = 
(Upj)gi. Then 

Uwj)gi = (Uf)hjm = gqm = gqn = (Uf)hjn = U(fpj)gi 

implies fij =fpi So j E K. Then (Uf)hi = gq implies the existence of a morphism 
t : Cj + A such that (Ut)kj = g. If j’ E K and f’ : Cj*+ A satisfy g = (Ur’)kf, then 

implies j = j’ and tqj = t’qf, thus t = t’. 
(c) We have proved that U has a left multiadjoint. U reflects isomorphisms 

because W reflects them. If (m, n) is a pair of morphisms of A such that its image by 
U has a split coequalizer in B, then its image by W has a split coequalizer in C, thus 
the pair (m, n) has a coequalizer preserved by W, but also preserved by U because V 
reflects isomorphisms. By Theorem 3.1, U is multimonadic. 

7.1. Examples. By Proposition 4.0, multimonadic categories on Set have coequa- 
lizer for any coequalizable pair and thus, a forgetful functor between two multi- 
monadic categories on Set, is also multimonadic. With preceding notations, it is the 
case for the forgetful functors: OrdRng+ OrdAb, OrdAb+ Ab, LocompGr + Gr, 
Kdiff + K, OrdKc+ Ordt, Norm(R) + Met, Hilb(R) + Ban(R), etc. 
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