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.

We give a complete proof of the fact that the following problem is undecidable:

Given: A term rewriting system, where the termination of its rewrite
relation is provable by a total reduction order on ground terms,
Wanted: Does there exist a strictly monotonic interpretation in the
positive integers that proves termination?

c© 1997 Academic Press Limited

1. Introduction

Termination of a term rewriting system (TRS), i.e. the non-existence of an infinite rewrite
reduction, t1 →R t2 →R · · · , is one of the key notions in term rewriting. It is the basis
of a number of decision algorithms for properties undecidable in the general case. In this
paper we assume that TRSs have finitely many rewrite rules.

The termination of a TRS R means precisely the existence of a well-founded order >
on terms, closed under contexts and substitution—a reduction order—such that every
rule l → r in R is ordered l > r .(Manna and Ness, 1970). Such an order can always be
derived from a well-founded order on ground terms that is closed under contexts, whence
one may restrict attention to such orders.

Terminating TRSs may now be further distinguished by some additional properties >
may have. If > does not order any s > t where s is homeomorphically embedded in t
then R is called non-self-embedding. If > orders subterms, i.e. s > t holds if t is a proper
subterm of s, then R is called simply terminating. If > is total on ground terms, i.e.
s > t or t > s holds for all ground terms s 6= t, then R is called totally terminating.
Equivalently, R is totally terminating if > is the reduction order induced by a strictly
monotonic interpretation into the ordinal numbers. The smallest ordinal section for which
this is possible is then also called the termination type of R. If > is induced by a strictly
monotonic interpretation into the positive integers (the well-ordered set ω) then R is
called ω-terminating.
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These specializations form a true hierarchy, called the termination hierarchy .(Zantema,
1994).

termination ! non-self-embedding ! simple termination !
total termination ! ω-termination ! polynomial termination

There are two reasons to study the properties stronger than termination. First, they
obey better decomposition theorems. For instance, ω-termination and simple termination
satisfy direct sum modularity .(Kurihara and Ohuchi, 1990), and total termination allows
distribution elimination without linearity conditions .(Zantema, 1994). Termination itself
does not have these properties.

Second, there are tools that provide proofs for these properties. For instance, strictly
monotonic interpretations into the positive integers prove ω-termination, and so does the
recursive path order .(Meeussen and Zantema, 1993) for finite TRSs. The Knuth/Bendix
order, and strictly monotonic interpretations into the ordinal numbers each prove total
termination .(Ferreira, 1995).

It is known that termination is undecidable for TRSs, even for the restricted case of
TRS with only unary function symbols .(Huet and Lankford, 1978), and for the case of
one-rule TRSs .(Dauchet, 1992).

Each of the upper four properties is known to be undecidable .(Huet and Lankford,
1978; Plaisted, 1985; Caron, 1991; Zantema, 1995). .Huet and Lankford (1978) proved
undecidability of termination by reducing the halting problem of Turing machines to
it. .Lescanne (1994) proposed to use the technically simpler reduction from the Post
Correspondence Problem.

The present paper addresses the next question: Whether undecidability still holds for
ω-termination. We study an even more difficult problem:

Given: A totally terminating TRS R.

Wanted: Is R ω-terminating?

The question can be rephrased as: “Has R termination type ω?”. We prove by a re-
duction from the Post Correspondence Problem that this problem is undecidable. As a
consequence, ω-termination is an undecidable property of TRSs.

2. Basic Notions

We assume that the reader is familiar with termination of TRSs .(Dershowitz, 1987).
We use notation as summarized in .Dershowitz and Jouannaud (1991).

We consider a fixed signature, and may therefore write GT for the set of ground terms,
i.e. terms that do not contain variables.

Post’s well-known Correspondence Problem (PCP) is defined as follows. Given a finite
alphabet Γ, a PCP instance is a finite binary relation P ⊆ Γ+ × Γ+ on proper words
over Γ. The PCP instance P is said to have a solution γ ∈ Γ+ if

α1α2 · · ·αn = γ = β1β2 · · ·βn

holds where (αi, βi) ∈ P for all 1 ≤ i ≤ n. If Γ has at least two elements then the problem:
given P , has P a solution? is undecidable .(Post, 1946). Henceforth let Γ = {0, 1}.
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3. Plan

We start off from Zantema’s standard example of a totally terminating, not ω-terminating
TRS.

Theorem 3.1. . The one-rule TRS

h(g(x))→ g(h(h(x))) (3.1).

is totally terminating but not ω-terminating.

Proof. ( .(Zantema, 1994)) To show total termination one gives the strictly monotonic
interpretation [h](m,n) = (m,m+n), [g](m,n) = (2m+ 1, n) in pairs of positive integer
numbers, lexicographically ordered. This interpretation is strictly monotonic. Moreover
the rule is ordered by the induced interpretation order:

[h(g(t))] = [h]([g](m,n)) = [h](2m+ 1, n)
= (2m+ 1, 2m+ 1 + n) >lex (2m+ 1, 2m+ n)

= [g](m, 2m+ n) = [g]([h](m,m+ n)) = [g]([h]([h](m,n))) = [g(h(h(t)))]

holds for all t ∈ GT where (m,n) =def [t].
To disprove ω-termination one first observes that every strictly monotonic interpreta-

tion into the positive integers entails that the induced reduction order is finitely branch-
ing. We claim that [g]([t]) > [h]k([t]) holds for all k ∈ N and t ∈ GT .

Proof by induction on k: The base case, [g]([t]) > [t] = [h]0([t]), follows by the fact
that a total reduction order must order subterms. The inductive case is solved through

[h]([g]([t])) > [g]([h]([h]([t]))) > [h]k−1([h]([h]([t]))) = [h]k+1([t]),

by the fact that the rule is ordered, and by the inductive hypothesis, respectively. The
claim, [g]([t]) > [h]k([t]), follows by the cancellation rule for total reduction orders.

By the property just proven, [g]([t]) is an upper bound to infinitely many positive
integers, [h]k([t]), k ∈ N, a contradiction. 2

We will use a PCP instance, P , to switch between this system, and another system which
is ω-terminating,

h(g(x))→ g′(h(h(x))) . (3.2).

To prove ω-termination of this system, let [g](x) = x+ 3, [g′](x) = [h](x) = x+ 1 be an
interpretation into the positive integers, naturally ordered. This interpretation is strictly
monotonic and

[h(g(t))] = [h]([g]([t])) = [t] + 4 > [t] + 3 = [g′]([h]([h]([t]))) = [g′(h(h(t)))]

holds for all t ∈ GT . So system (3.2) is indeed ω-terminating.
If P has a solution, then the resulting system will have a behaviour comparable to

system (3.1), else to system (3.2).
However, this is a strongly simplified picture; the detailed technical treatment of this

idea is much more involved. Now we are going to put these ideas in a precise form.
To every letter a ∈ Γ let there be a unique new barred letter ā. By small Greek letters

we denote strings over Γ. For α = a1a2 . . . an let ᾱ =def ān ¯an−1 . . . ā1, the string of letters
of α barred and in reversed order. We will consider barred and unbarred letters also as
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unary function symbols, and strings of barred and unbarred letters as contexts. Apart
from that we fix another unary function symbol h, two 5-ary function symbols f and g,
and a constant c.

Definition 3.1. To every PCP instance P let a TRS RP be assigned that contains
exactly the rules

.h(g(α(x), c, β(z), c, u))→ f(x, ᾱ(c), z, β̄(c), u) (3.3)
.f(α(x), y, β(z), w, u)→ f(x, ᾱ(y), z, β̄(w), u) (3.4)

for each (α, β) ∈ P , and the rules

.f(c, ā(y), c, ā(w), u)→ g(a(c), y, a(c), w, h(h(u))) (3.5)
.g(x, ā(y), z, ā(w), u)→ g(a(x), y, a(z), w, u) (3.6)

for each a ∈ Γ.

RP is finite; it contains 2|P |+ 2|Γ| rules. The following claims will be proven each in one
successive section.

Theorem 3.2. . RP is totally terminating.

Theorem 3.3. . If the PCP instance P has a solution then RP is not ω-terminating.

Theorem 3.4. . If the PCP instance P has no solution then RP is ω-terminating.

These three statements together suffice to establish a proof of our claim.

Corollary. The following problem is undecidable.

Given: A totally terminating TRS R.
Wanted: Is R ω-terminating?

Proof. If the problem were decidable, then we could particularly employ the putative
procedure for TRSs of the form RP where P is a PCP instance, thanks to Theorem 3.2.
But then we could use the procedure via Theorem 3.3 and Theorem 3.4 to solve the
problem whether, given a PCP instance P , it has a solution. Contradiction to the well-
known undecidability of the PCP .(Post, 1946). 2

4. Total Termination

Usually people prove total termination by a strictly monotonic interpretation in the
positive integers, or by a lexicographic recursive path order (RPO). We surely cannot
use the first method as we intend to prove that under certain circumstances (the PCP
instance P has a solution) such an interpretation does not exist. For the same reason we
cannot use an RPO either.

To prove that RP is totally terminating, no matter whether the PCP instance P has
a solution or not, we have to employ a method that establishes total termination even
in the non-ω-termination case. The well-known Knuth/Bendix order is such a method.
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Definition 4.1. (Knuth/Bendix order .(Knuth and Bendix, 1970)) . Let &prec
be a well-founded quasiorder on F , and [ ] be a linear monotonic interpretation in the
positive integers such that [f ](x1, . . . , xn) = xi has a solution for some i only if n = 1
and f & g holds for every function symbol g ∈ F . Then &kbo ⊆ GT × GT is defined by
s = f(s1, . . . , sm) &kbo g(t1, . . . , tn) = t if

[s] > [t], or
[s] = [t], and f >prec g, or
[s] = [t], and f ∼prec g, and (sπ(1), . . . , sπ(m)) &kbo,lex (tρ(1), . . . , tρ(n)),

where f and g have lexicographic status π and ρ respectively.

Theorem 4.1. (.(Knuth and Bendix, 1970; Dick et al., 1990)) Under the condi-
tions of Definition 4.1, the Knuth/Bendix order >kbo is a reduction order.

The Knuth/Bendix order is also suitable to prove total termination, by a result of Fer-
reira.

Theorem 4.2. (.(Ferreira, 1995), Theorem 4.47) . Under the conditions of Defini-
tion 4.1, the Knuth/Bendix order >kbo can be extended to a reduction order that is total
on ground terms. Hence any term rewriting system R that satisfies lσ >kbo rσ for any
ground instance lσ → rσ of a rule l→ r in R is totally terminating.

In our setting we choose the interpretation (“weight function”) [ ] in N defined by

[c] = 1
[0](x) = [1](x) = [0̄](x) = [1̄](x) = x+ 1
[f ](x, y, z, w, u) = [g](x, y, z, w, u) = x+ y + x+ w + u+ 1
[h](x) = x

where the results are ordered by > on the positive integers, and the precedence h >prec
f >prec g >prec 1 >prec 0 >prec 1̄ >prec 0̄ >prec c, and status f left-to-right, and g
right-to-left. With that, the Knuth/Bendix order orders each rule. By Theorem 4.2 it
follows that RP is totally terminating.

5. If P has a Solution

We show in this section that in case the PCP instance P has a solution, γ ∈ Γ+ say,
then the TRS RP is not ω-terminating.

Let P have a solution γ. Then we have for all ground terms t a RP -reduction

.h(g(γ(c), c, γ(c), c, t))→(3.3) →∗(3.4) f(c, γ̄(c), c, γ̄(c), t)
→(3.5) →∗(3.6) g(γ(c), c, γ(c), c, h(h(t))) . (5.1)

For the sake of contradiction assume now that there is a strictly monotonic interpretation
[h] : N+ → N+ and [g] : N5

+ → N+ in the positive integer numbers, ordered by > that
orders RP .

Lemma 5.1. . If γ ∈ Γ+ is a solution on the PCP instance P , then for all k ∈ N and
t ∈ GT , we have [g(γ(c), c, γ(c), c, t)] > [hk(t)].
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Proof. The following proof is the same in spirit as the one of Theorem 3.1.
Let x = [γ(c)] = z and y = [c] = w be fixed. We prove that for all u =def [t] we

have [g](x, y, z, w, u) > [h]k(u), by induction on k. Since the order > is total, > orders
subterms. So [g](x, y, z, w, u) > u which solves the case k = 0. Otherwise,

[h]([g](x, y, z, w, u)) > [g](x, y, z, w, [h]([h](u))) (∗)
> [h]k−1([h]([h](u))) (ind. hyp.)

= [h]([h]k+1(u))

where the step labelled by (∗) is justified because (5.1) holds, and > is a reduction order
that orders every ground instance of a rule in RP . The claim follows by the cancellation
rule for total reduction orders. 2

By Lemma 5.1 [g(γ(c), c, γ(c), c, t)] is an upper bound to infinitely many numbers [t] <
[h(t)] < [h2(t)] < · · · . This is impossible in N+.

So, if P has a solution, the assumption that RP were ω-terminating, is false.

6. If P has No Solution

In this section finally, we are going to show that in the case P has no solution, RP
indeed can be ordered by a strictly monotonic interpretation in the positive integers.

For convenience let us get rid of h symbols. To this end we define the term rewriting
system R′P by R′P = RP \ {(3.3), (3.5)} ∪ {(6.1), (6.2)} where Rule (6.1) and (6.2) are
defined by

.g(α(x), c, β(z), c, u)→ f(x, ᾱ(c), z, β̄(c), u), (6.1)
.f(c, ā(y), c, ā(w), u)→ g(a(c), y, a(c), w, u) . (6.2)

By deletion of h symbols, every step hk(Φ(p, q, r, s, t)) →RP hk
′
(Φ′(p′, q′, r′, s′, t′)) is

mapped to a step Φ(p, q, r, s, t)→R′P
Φ′(p′, q′, r′, s′, t).

Henceforth let P be a PCP instance that has no solution.
First we derive upper bounds for the length of R′P , and so of RP , reductions (Subsec-

tion 6.1). We then encode the information about maximal reduction lengths in an inter-
pretation (Subsection 6.2) of which we finally prove that it orders RP (Subsection 6.3)
and is strictly monotonic (Subsection 6.4). It follows that RP is ω-terminating.

6.1. .upper bounds for reduction lengths

In case P has no solution one gets an upper bound for reduction lengths which can
then be used to encode part of the interpretation.

For a ground term t, let |t| denote the number of barred or unbarred letters in t not
below an f , g, or h symbol.

Lemma 6.1. . Let P be a PCP instance that has no solution. Then

1. No ground term g(p, q, r, s, t) starts a R′P -reduction with more than

min{|q|, |s|}+ 2 ·min{|p|+ |q|, |r|+ |s|}

steps at the outermost f or g position.
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2. No ground term f(p, q, r, s, t) starts a R′P -reduction with more than

min{|p|, |r|}+ 2 ·min{|p|+ |q|, |r|+ |s|}

steps at the outermost f or g position.

Proof. We show only the proof of claim 1 below; claim 2 is proven in the same spirit.
Assume for the sake of contradiction that there is a R′P -reduction starting from

g(p, q, r, s, t) which is longer. We are going to extract a solution of P from this reduction,
a contradiction to the premise.

By the form of the rules, the reduction must be a prefix of some reduction

g(p, q, r, s, t) →∗P1 g(γ(p), q′, γ(r), s′, t)
→(6.1) f(p′, ᾱ1(c), r′, β̄1(c), t)
→∗P2 f(p′′, ᾱi ¯αi−1 · · · ᾱ1(c), r′′, β̄i ¯βi−1 · · · β̄1(c), t)
→(6.2) g(αi(c), ¯αi−1 · · · ᾱ1(c), β1(c), ¯βi−1 · · · β̄1(c), t)
→∗P3 g(δ(c), q′′, δ(c), s′′, t)
→(6.1) f(. . . )
→ · · ·

where during→∗P1 every term has top symbol g, during→∗P2 every term has top symbol f ,
during →∗P3 every term has top symbol g.

We distinguish the phases P1, P2, P3 of which we deduce upper bounds of their re-
duction length.

During P1 only Rule (3.6) can be applied at the top. Therefore P1 has at most
min{|q|, |s|} top steps, since at each top step the length of the first and third argument
of the outermost g is decreased each by one.

In order to arrive at P2, one must have q′ = c = s′ and so q = γ̄(c) = s. During P2
only Rule (3.4) is applicable at the top; at most min{|p| + |q|, |r| + |s|} − 1 times since
at each top (3.4) or (6.1) step at least one letter of γ(p) and of γ(r) is consumed.

Only if p′′ = c = r′′, and so

γ(p) = α1α2 · · ·αi(c)
γ(r) = β1β2 · · ·βi(c)

does one arrive at P3, provided that (α1, β1), (α2, β2), . . . , (αi, βi) ∈ P . Phase P3 takes
at most min{|p|+ |q|, |r|+ |s|} − 1 steps again, since only Rule (3.6) is applicable at the
top, which each time consumes one letter of γ(p) and one of γ(r).

If our given reduction has length at least min{|q|, |s|}+ 2 ·min{|p|+ |q|, |r|+ |s|}+ 1,
then it must have passed the step after P3. But then q′′ = c = s′′ and so

α1α2 · · ·αi = δ = β1β2 · · ·βi

is a solution of the PCP instance P . 2

With the aim of formalizing the notion of progress, we now define mutually recursively



406 A. Geser

two functions, lenf and leng, from quadruples of ground terms to non-negative integers.

lenf (p, q, r, s) =
max{leng(a(c), q′, a(c), s′) + 1 | p = c = r ∧ q = ā(q′) ∧ s = ā(s′) ∧ a ∈ Γ} ∪
{lenf (p′, ᾱ(q), r′, β̄(s)) + 1 | p = α(p′) ∧ r = β(r′) ∧ (α, β) ∈ P}

leng(p, q, r, s) =
max{lenf (p′, ᾱ(c), r′, β̄(c)) + 1 | q = c = s ∧ p = α(p′) ∧ r = β(r′) ∧ (α, β) ∈ P} ∪
{leng(a(p), q′, a(r), s′) + 1 | q = ā(q′) ∧ s = ā(s′) ∧ a ∈ Γ}

The recursive definition follows the structure of R′P rules; if Φ,Φ′ ∈ {f, g} then lenΦ(p, q,
r, s) is defined as the maximum of all lenΦ′(p′, q′, r′, s′) + 1 such that Φ(p, q, r, s, t)→R′P
Φ′(p′, q′, r′, s′, t′). Here we take the view that max ∅ = 0 whence for instance lenf (c, c, c, c)
= 0 holds.

The call lenΦ(p, q, r, s) therefore computes the maximum length, provided it exists,
of R′P reductions starting from a ground term Φ(p, q, r, s, t). Termination of the recursive
definition, and hence totality of lenf and leng in the case where P has no solution is
ensured by Lemma 6.1. The following are immediate consequences that we will use later.

Proposition 6.1. . Let P be a PCP instance that has no solution. Then for all ground
terms p, q, r, s, and function symbols Φ ∈ {f, g},

lenΦ(p, q, r, s) ≤ 3 ·min{|p|+ |q|, |r|+ |s|} .

Proposition 6.2. . Let P be a PCP instance that has no solution. Then for every ground
instance Φ(p, q, r, s, t) → Φ′(p′, q′, r′, s′, t′) of a rule in R′P one gets lenΦ(p, q, r, s) >
lenΦ′(p′, q′, r′, s′).

6.2. an interpretation

.

Now we are going to extract an interpretation in the positive integers from this knowl-
edge. To this end we will utilize the fact that a positive integer can also be regarded as
a sequence of decimal digits. The decimal system is only preferred for its familiarity.

First let us define a few useful auxiliary functions on N+. Let `(z) denote the number
of decimal digits of the positive integer number z.

x ◦ y =def 10`(y) · x+ y,

x◦ 1 =def x, x◦ y+1 =def x
◦ y ◦ x,

revc(x, y) =def x ◦ y ◦ 4◦ `(x),

bound(x, y, z, w) =def 3 ·min{`(revc(x, y)), `(revc(z, w))} − 2 .

Let ◦ bind weaker than + or ·. Informally, x ◦ y yields the concatenation of the digit
sequences of x and y without their leading zeros. This function is obviously associative
whence one may drop parentheses. The expression x◦ y denotes the y-fold repetition of x.

A function π : N+ → GT from positive integers to ground terms is defined recursively
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as follows.

π(x′ ◦ 2) = 0(π(x′)), π(2 ◦ x′ ◦ 4) = 0̄(π(x′)), π(1) = c,

π(x′ ◦ 3) = 1(π(x′)), π(3 ◦ x′ ◦ 4) = 1̄(π(x′)), π(x) = h(c) else

With that the definitions of the interpretation functions read as follows.

[c] = 1 [0](x) = x ◦ 2 [1](x) = x ◦ 3
[h](x) = x ◦ 5 [0̄](x) = 2 ◦ x ◦ 4 [1̄](x) = 3 ◦ x ◦ 4

[f ](x, y, z, w, u) = (u · 156(lenf (π(x),π(y),π(z),π(w))+1+B)) ◦ 6

[g](x, y, z, w, u) = (u · 156(leng(π(x),π(y),π(z),π(w))+1+B)) ◦ 7

where B abbreviates for B =def (bound(x, y, z, w) + 1)(revc(x, y) + revc(z, w)).
A few words of explanation and a plan of the proof are in order. The complexity of the

construction arises from the necessity to express functions on ground terms by (strictly)
monotonic functions on positive integers being or not being interpretations of ground
terms.

The interpretation mapping of a ground term t to the positive integer number [t] is
designed such that essential information about t can be retrieved from [t]. More specifi-
cally, the last digit of [t] determines the top function symbol of t, unless that digit is 4,
in which case the first digit, too, is needed to distinguish between 0̄ and 1̄.

The function π : N+ → GT is designed to exploit this phenomenon to a certain degree.
It retrieves enough information to tell the function len a parameter tuple such that len
yields the correct maximal reduction length from a tuple of interpretations.

As on the one hand, [ ] is not surjective on N+, and on the other hand, we are only
interested in the leading string of 0, 1, 0̄, 1̄, and potentially c, we have π map all num-
bers not ending in 0, . . . , 4, or ending in 4 but not beginning with 2 or 3, to h(c), a
representative of all terms that fail to match any symbol of RP .

The function (x, y, z, w) 7→ lenf (π(x), π(y), π(z), π(w)) strictly decreases with each RP
rule, is however not monotonic. Therefore we override its growth by a function that is
strictly monotonic, revc, stretched by a factor, bound, that is monotonic and an upper
bound of lenf (Lemma 6.5). Both are invariant by RP steps (Lemma 6.3) and so do not
interfere the task to order RP .

6.3. the interpretation orders RP

.

For the proof that rules are ordered, we need a lemma saying that lenΦ is robust w.r.t.
π([ ]) and a lemma saying that revc is robust against shovelling of strings.

Lemma 6.2. . For all ground terms p, q, r, s, and function symbols Φ ∈ {f, g},

lenΦ(p, q, r, s) = lenΦ(π([p]), π([q]), π([r]), π([s])) .

Proof. Structural induction on ζ shows that for all strings ζ ∈ (Γ ∪ Γ̄)∗ of barred or
unbarred letters, and for all ground terms t,

π([t]) = ζ(t′) ⇐⇒ ∃t′′. t = ζ(t′′) ∧ π([t′′]) = t′ .

As an immediate consequence one gets that the first four arguments of Φ,Φ′ ∈ {f, g} are
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not sensitive to π([ ]). More precisely, for all ground terms p, q, r, s, t, p′, q′, r′, s′, t′,

Φ(p, q, r, s, t)→R′P
Φ′(p′, q′, r′, s′, t′)

if and only if

Φ(π([p]), π([q]), π([r]), π([s]), t)→R′P
Φ′(π([p′]), π([q′]), π([r′]), π([s′]), t) .

The claim follows by definition of lenΦ. 2

The strange exception of the interpretation of barred symbols is motivated to achieve
the following effect.

Example 6.1. We have [01c] > [10c] by

[01c] = (1 ◦ 3) ◦ 2 = 132
[10c] = (1 ◦ 2) ◦ 3 = 123

but [0̄1c] = [1̄0̄c] > [0̄1̄c] = [1̄0c] by

[1̄0̄c] = 3 ◦ (2 ◦ 1 ◦ 4) ◦ 4 = 32144
[0̄1̄c] = 2 ◦ (3 ◦ 1 ◦ 4) ◦ 4 = 23144 .

The reader will easily find out that the crucial sequence of digits to compare is the
same. Unbarred sequences are compared by their digits right-to-left, barred sequences
left-to-right. This behaviour is intended, for we aim at the following general result.

Lemma 6.3. . For all α ∈ Γ∗,

revc([α](x), y) = revc(x, [ᾱ](y)) .

Proof. By structural induction on α. If α is the empty string, then the claim is trivial.
Else let α = aα′ and let d = 2 if a = 0 and d = 3 if a = 1. Then

revc([a]([α′](x)), y) = revc([α′](x) ◦ d, y) (defn. [a])
= revc([α′](x), d ◦ y ◦ 4) (defn. revc)
= revc([α′](x), [ā](y)) (defn. [ā])
= revc(x, [ᾱ′]([ā](y))) (ind. hyp.) 2

That the given interpretation orders RP , is a consequence of the following lemma.

Lemma 6.4. . Let P be a PCP instance that has no solution. For all Φ,Φ′ ∈ {f, g}, and
k ∈ {0, 1}, if

hk(Φ(p, q, r, s, t))→ Φ′(p′, q′, r′, s′, t′)

is a ground instance of a rule in RP , then

[Φ(p, q, r, s, t)] > [Φ′(p′, q′, r′, s′, h(h(t)))]

holds.
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Proof. By the form of the rules, and Lemma 6.3, we get

revc([p], [q]) = revc([p′], [q′]) (6.3).

revc([r], [s]) = revc([r′], [s′]) (6.4).

and so, by definition of bound,

bound([p], [q], [r], [s]) = bound([p′], [q′], [r′], [s′]) . (6.5).

For abbreviation let

B =def (bound([p], [q], [r], [s]) + 1)(revc([p], [q]) + revc([r], [s])),
B′ =def (bound([p′], [q′], [r′], [s′]) + 1)(revc([p′], [q′]) + revc([r′], [s′])),
lhs =def [Φ(p, q, r, s, t)], and
rhs =def [Φ′(p′, q′, r′, s′, h(h(t)))] .

With that we get b = b′ by (6.3), (6.4), and (6.5), and so

b lhs
10
c = [t] · 156(lenΦ(π([p]),π([q]),π([r]),π([s]))+1+B)

= [t] · 156(lenΦ(p,q,r,s)+1+B) (Lemma 6.2)

≥ [t] · 156(lenΦ′ (p
′,q′,r′,s′)+2+B) (Prop. 6.2)

= [t] · 156 · 156(lenΦ′ (p
′,q′,r′,s′)+1+B)

> ([t] · 100 + 55) · 156(lenΦ′ (p
′,q′,r′,s′)+1+B) ([t] ≥ 1)

= (([t] ◦ 5) ◦ 5) · 156(lenΦ′ (p
′,q′,r′,s′)+1+B) (defn. ◦)

= [h(h(t))] · 156(lenΦ′ (p
′,q′,r′,s′)+1+B) (defn. [h])

= [h(h(t))] · 156(lenΦ′ (p
′,q′,r′,s′)+1+B′) (B = B′)

= [h(h(t))] · 156(lenΦ′ (π([p′]),π([q′]),π([r′]),π([s′]))+1+B′) (Lemma 6.2)

= brhs
10
c

and so lhs > rhs. 2

6.4. the interpretation is strictly monotonic

.

Every interpretation function [0], [1], [0̄], [1̄], [h] is strictly monotonic in N+, by strict
monotonicity of ◦.

Proposition 6.3. ◦ and revc are strictly monotonic in each parameter. bound is (non-
strictly) monotonic in each parameter.

This leaves [f ] and [g] for which strict monotonicity in each parameter is a “little more”
difficult to prove. We need an auxiliary result:

Lemma 6.5. . If P is a PCP instance that has no solution then for all x, y, z, w ∈ N+,
ground terms t, and Φ ∈ {f, g}

lenΦ(π(x), π(y), π(z), π(w)) < bound(x, y, z, w) .
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Proof. One easily establishes that

|π(x)| < `(x) (6.6).

holds for all x ∈ N+, and that

`(revc(x, y)) = 2`(x) + `(y) (6.7).

holds for all x, y ∈ N+. Therefore:

lenΦ(π(x), π(y), π(z), π(w)) ≤ 3 ·min{|π(x)|+ |π(y)|, |π(z)|+ |π(w)|} (Prop. 6.1)
≤ 3 ·min{`(x) + `(y), `(z) + `(w)} − 2 (6.6)
< 3 ·min{`(revc(x, y)), `(revc(z, w))} − 2 (6.7)
= bound(x, y, z, w) (defn. bound) 2

Finally we arrive at:

Lemma 6.6. . [f ] and [g] are strictly monotonic in every parameter.

Proof. Obviously [f ] and [g] are strictly monotonic in their last parameter. For the other
parameters, let x ≤ x′, y ≤ y′, z ≤ z′, w ≤ w′ where at least one of these inequalities is
strict.

We observe that

revc(x, y) + revc(z, w) < revc(x′, y′) + revc(z′, w′) (6.8) .

holds by strict monotonicity of revc, and that

bound(x, y, z, w) ≤ bound(x′, y′, z′, w′) (6.9) .

by monotonicity of bound. Let Φ ∈ {f, g}, and let

lhs =def [Φ](x, y, z, w, u),
rhs =def [Φ](x′, y′, z′, w′, u) .

Then we have:

log156b
lhs

10u
c = lenΦ(π(x), π(y), π(z), π(w)) + 1

+ (bound(x, y, z, w) + 1)(revc(x, y) + revc(z, w))
< bound(x, y, z, w) + 1

+ (bound(x, y, z, w) + 1)(revc(x, y) + revc(z, w)) (Lemma 6.5)
=(bound(x, y, z, w) + 1)(revc(x, y) + revc(z, w) + 1)
≤(bound(x, y, z, w) + 1)(revc(x′, y′) + revc(z′, w′)) (6.8)
≤(bound(x′, y′, z′, w′) + 1)(revc(x′, y′) + revc(z′, w′)) (6.9)
≤ lenΦ(π(x′), π(y′), π(z′), π(w′)) + 1

+ (bound(x′, y′, z′, w′) + 1)(revc(x′, y′) + revc(z′, w′)) (lenΦ(...) ≥ 0)

= log156b
rhs

10u
c

So log156b lhs10uc < log156b rhs10uc, and so lhs < rhs. 2
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7. Conclusions

A term rewriting system is called totally terminating if it is ordered by a strictly
monotonic interpretation into a well-ordered set, and ω-terminating, if it is ordered by
a strictly monotonic interpretation into the positive integer numbers. Both are special
forms of termination of term rewriting systems, and the latter is a proper special case
of the former. We have proven that the question whether a totally terminating term
rewriting system is even ω-terminating is undecidable.

To this end we encoded instances, P , of the Post Correspondence Problem into term
rewriting systems RP in such a way that RP is always totally terminating; and ω-
terminating exactly if P has no solution.
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