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Abstract One of the major challenges in microarray analysis, especially in cancer gene expression

profiles, is to determine genes or groups of genes that are highly expressed in cancer cells but not in

normal cells. Supervised machine learning techniques are used with microarray datasets to build

classification models that improve the diagnostic of different diseases. In this study, we compare

the classification accuracy among nine decision tree methods; which are divided into two main cat-

egories; the first is single decision tree C4.5, CART, Decision Stump, Random Tree and REPTree.

The second category is ensample decision tree such Bagging (C4.5 and REPTree), AdaBoost (C4.5

and REPTree), ADTree, and Random Forests. In addition to the previous comparative analyses,

we evaluate the behaviors of these methods with/without applying attribute selection (A.S.) tech-

niques such as Chi-square attribute selection and Gain Ratio attribute selection. Usually, the

ensembles learning methods: bagging, boosting, and Random Forest; enhanced classification accu-

racy of single decision tree due to the natures of its mechanism which generate several classifiers

from one dataset and vote for their classification decision. The values of enhancement fluctuate
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between (4.99–6.19%). In majority of datasets and classification methods, Gain ratio attribute

selection slightly enhanced the classification accuracy (�1.05%) due to the concentration on the

most promising genes having the effective information gain that discriminate the dataset. Also,

Chi-square attributes evaluation for ensemble classifiers slightly decreased the classification accu-

racy due to the elimination of some informative genes.

� 2011 Faculty of Computers and Information, Cairo University.

Production and hosting by Elsevier B.V. All rights reserved.
Table 1 Microarray data decision table.

Samples Attributes (genes) Category

Gene 1 Gene 2 . . . Gene m

1 G(1,1) G(1,2) . . . G(1,m) ALL

2 G(2,1) G(2,2) . . . G(2,m) ALL

. . . . . . . . . . . . . . . ALL

. . . . . . . . . . . . . . . AML

n G(n,1) G(n,2) . . . G(n,m) AML
1. Introduction

The genome ribonucleic acid (RNA) expression studies allow

systematic approaches to understand the relationship between
gene expression profiles and disease states or different develop-
mental stages of a cell. Microarray analysis provides quantita-

tive information about the whole transcription profile of cells
that make possible drug and therapeutics improvement, dis-
ease diagnosis, and comprehensible basic cell biology.

A DNA microarray technique allows to simultaneously
observing the expression levels of thousands of genes during
significant biological processes and across collections of re-
lated samples [1].

The datasets from microarray analysis, that enables the
measurement of molecular signatures of diverse cells, becomes
an important application of data mining, artificial intelligence

and machine learning techniques to provide bioinformatics
knowledge. In practical, supervised machine learning tech-
niques used with microarray datasets to build classification

models that improve the diagnostic of different diseases which
easy to interpreted [2,3].

1.1. Biological background

Cells are the fundamental working units of every living system.
All the instructions needed to direct their actions are contained

within the chemical deoxyribonucleic acid or shortly DNA. A
DNA molecule is a double-stranded polymer composed of
four basic molecular units namely nucleotides. The nitrogen

bases include adenine (A), guanine (G), cytosine (C) and thy-
mine (T). The genome provides a template for the synthesis
of a variety of RNA molecules. The process of transcribing a

gene’s DNA sequence into RNA is called gene expression. A
gene’s expression level indicates the approximate number of
copies that gene’s RNA produced in a cell and it is correlated
with the amount of the corresponding proteins made. This

mechanism controls which genes are expressed in a cell and
acts as a ‘‘volume control’’ that increases or decreases the level
of expression of particular genes as necessary [4].

1.2. Microarray data format

A gene expression data set from a microarray experiment can
be represented by a real-valued.

Expression matrix ¼ fGði; jÞj1 6 i 6 n; 1 6 j 6 mg

where the columns G ¼ f~g1; ~g2; . . . ; ~gmg form the expression

patterns of genes, the rows S ¼ f~S1; ~S2; . . . ~Sng.
An example of a gene expression microarray dataset for

Leukemia is shown in Table 1. the table organizes data into
m columns (genes) and n rows (samples) where m mostly varies

from thousand to hundred thousand according to the accuracy
of microarray image processing technique, while n is always
less than 200 samples according to the previously collected
datasets [5]. Category column presents the actual class of the
sample. For the shown example AML stands for acute myeloid

leukemia disease and ALL represents acute lymphoblastic.
Our study provides a performance comparison of nine deci-

sion tree methods. The rest of this paper is organized as the fol-

lows. In Section 2, we present brief challenges that faced in
cancer classification area. In Section 3, we provide problem
definitions. In Section 4, we exploit decision tree and micro-

array classification. In Section 5, we discuss related works in
this domain. In Section 6, we explore the methodologies used
in this work. In Section 7, we describe experimental setup. In
Section 8, we present results and analysis. In Section 9, we con-

clude the paper.

2. Cancer classification challenges

Gene classification as domain of research poses a new challenges
due to its unique problem nature. First, challenge comes from

the unique nature of the available gene expression dataset; where
most of these datasets has sample size below 200, vs. thousands
to hundred thousands of genes presented in each tuples. Second,

only a few numbers of these (genes) presents relevant attributes
to the investigated disease. Third, comes from the presence of
noise (biological and technical) inherent in the dataset. Fourth

challenge arises from the application area, for instance accuracy
is an important criterion in cancer classification task, but it is not
the only goal, in cancer domain we want to achieve, biological
relevancy as well as classification accuracy.

3. Problem definition

There is no single classifier superior over the rest, for instance
the classification accuracy is depend on the classification meth-
od, gene selection method, and dataset [7,8].

In this study we will use the notation provided by Ying Lu
et al. [9].

Let X1;X2; . . . ;Xm be random variables for genes G1;
G2; . . . ;Gm respectively, where Xi has domain dom (Xi) which
is the range of expression values for gene Gi.



Table 2 Confusion matrix.

Predicted class

Actual class C1 C2

C1 TP FN

C2 FP TN
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Let C be the random variable for the class labels, and

domðCÞ ¼ f1; . . . ;Kg, where K is denotes a total number of
classes.

Let t ¼ ft:X1; t:X2; . . . ; t:Xmg denotes a size m tuple of

expression values for m genes. Let T = {(t1, c1), (t2, c2)... (tn,
cn)} Denoting a training set of n tuples, where
i ¼ f1; 2; . . . ; ng, ci 2 dom(C) is the class label of tuple ti.

Let the test set be S ¼ ft1; t2; . . . ; tlg where l is the size of the
test set.

Find a classification function Class, which gave maximal

classification accuracy on S, where the classification accuracy
calculated by divide number of correct classified instances on
total number of instances.

Accuracy ¼ TPþ TN

TPþ FNþ FPþ TN
ð1Þ

� True positive (TP) = the number of predicted positive cases
that are actually positive.

� True negative (TN) = the number of predicted negative
cases that are actually negative.
� False positive (FP) = the number of predicted positive

cases that are actually negative.
� False negative (FN) = the number of predicted negative
cases that are actually positive. Table 2 illustrates the con-

fusion matrix for positive and negative tuples.

4. Decision tree and microarray classification

One of the main advantages of decision trees is the ability to
generate understandable knowledge structures, i.e., hierarchi-

cal trees or sets of rules, a low computational cost when the
model is being applied to predict or classify new cases, the abil-
ity to handle symbolic and numeric input variables, provision

of a clear indication of which attributes are most important for
prediction or classification [10].

There are two disadvantages that also represented a major

weakness in using decision tree for microarray analysis prob-
lems in the past. The first one is their instability that is tightly
connected with the second disadvantage – i.e., difficulties to
branching the trees when the number of samples is too low.

Instability of decision trees was successfully solved by ensem-
bles methods where multiple trees built from different subsets
of the initial dataset were built to improve the robustness of

the final classifier. Unfortunately, ensembles of classifiers pos-
ses very low level of their knowledge understand-ability and
are not appropriate for interpretation of the acquired knowl-

edge. There were some studies that approached the problem
of knowledge extraction from ensembles of classifiers [11],
but all of them are too limited to be helpful for practical

use. Quality of branching in decision tree is of fundamental
importance to the final success of classifier.

Due to high cost per experiment in microarray studies it is
nowadays still acceptable for studies with 100 or yet less sam-
ples to represent benchmarking datasets for evaluation of the

most complex classifiers [12]. Most of the microarray data to-
day is collected in centralized repositories containing large
numbers of samples like Gene Expression Omnibus (GEO)
by National Center for Biotechnology Information (NCBI)

or ArrayExpress by European Bioinformatics Institute (EBI)
[13]. Unfortunately such repositories are too large and contain
data coming from various sources using different protocols to

serve as a benchmarking collection of datasets. Our study
takes advantage of one of the largest publicly available repos-
itories of gene expression measurements that were collected by

EBI. Which is currently one of the most appropriate collec-
tions of gene expression samples for evaluation of classification
methods [11].
5. Related works

There is a numerous algorithms produced to construct classifi-
cation models from the old nearest neighbor analysis and deci-
sion tree to the new SVM support vector machines [6]. For
instance, Xiaosheng Wang et al. [5] compare the performance

of NB (Naive Bayes), DT (Decision Tree), SVM Support Vec-
tor Machine) and k-NN (k-nearest neighbor) algorithm with
several attribute selection (chi-square, information gain, Re-

lief-F and symmetric uncertainty) the average accuracy in their
study was between 69.33% and 90.01%. Peter et al. [14] uses
Partial Least-Squares (PLS) regression as a feature selection

method, and compare performance of several ensemble models
the predictive accuracy in their study was between 61.2 and
99.4. Hong Hu et al. [7] provide new ensample method and
compare it with several famous ensample method, the accuracy

was between 60% for Prostate dataset and 98.9% for Lung
Cancer dataset. Aik Choon et al. [15] comparisons, between
single decision tree algorithm and ensemble based decision tree

(Bagging, AdaBoost) Algorithm. The accuracy was between
52.38% and 93.29%. Table 3 shows the relevant works on can-
cer classification.
6. Methodologies

6.1. Classification methods

In this experimental study we focus on nine public decision tree
methods, some of these methods build single decision tree such
as C4.5, CART, REPTree, RandomTree, and Decision-
Stump. The other are ensample decision tree such as ADTree,

Random Forests, Bagging, and AdaBoost. These methods are
described briefly as the following:

C4.5 algorithm top-down decision tree base proposed by

Quinlan [16]. The algorithm is a successor of ID3, which deter-
mines at each step the most predictive attribute, and splits a
node based on this attribute. Every node represents a decision

point over the value of some attribute.
The split criterion calculated as the following:

– Calculate the expected information needed to classify a
tuple in D

InfoðDÞ ¼
Xm
i¼1

pilog2ðpiÞ ð2Þ

where,pi is theprobability thatan tuple inDbelong toclassCi.



Table 3 Relevant works on cancer classification. where AdaBoos (Ad), Bagging (Ba).

Authors Dataset Att. Sel. Classifier accuracy [%]

Xiaosheng Wang et al. [5] Colon NB C4.5 SVM k-nn

Chi 88.71 90.32 87.1 87.1

Inf. 85.48 85.48 87.1 87.1

RF 87.1 85.48 87.1 87.1

SU 87.1 91.94 87.1 88.71

Highest accuracy Average accuracy

Colon 91.94 83.1074

Cns 90 72.3362

DLBCL 87.93 70.7054

Leukemia1 97.22 92.013

Lung 100 97.9547

Prostate 96.08 90.9766

Breast 88.46 69.3911

Leukemia2 98.25 87.593

Peter J. Tan et al. [14] Dataset single C4.5 RF Ad C5.0 MML Oblique Forest

Leukemia PLS dimensionality 94.3 96.2 95.7 96.7

Breast 65.2 71.2 67.9 69.2

Central nervous 61.2 64.5 63.2 65.9

Colon 80.9 84.7 82.7 88.8

Lung 98 96.2 98.2 99.4

Prostate 83 90.6 88.1 91.3

Prostate 65 69.3 51.5 53.2

Hong Hu. et al. [7] Dataset C4.5 RF Ad C4.5 Ba C4.5

Breast 62.9 61.9 61.9 66

Lung 95 98.3 96.1 97.2

Lymphoma 78.7 80.9 85.1 85.1

Leukemia 79.2 86.1 87.5 86.1

Colon 82.3 75.8 77.4 82.3

Ovarian 95.7 94.1 95.7 97.6

Prostate 33.3 52.4 33.3 42.9

Aik Choon Tan et al. [15] Dataset C4.5 Ba C4.5 Ad C4.5

Leukemia 91.18 91.18 91.18

Breast 63.16 89.47 89.47

tumors outcome 85 88.33 88.33

Colon 95.16 93.55 90.32

Lung 92.62 93.29 92.62

Prostate 67.65 73.53 67.65

Prostate outcome 52.38 85.71 76.19
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– Calculate the expected information required to classify a
tuple from D based partitioning by A.

InfoAðDÞ ¼
Xm
i¼1

j Dj j
j D j � InfoðDjÞ ð3Þ

The term
jDj j
jDj acts as the weight of the jth partition.

– Calculate information gain of attribute A.

GainðAÞ ¼ InfoðDÞ � InfoAðDÞ ð4Þ

– Calculate split information of attribute A

SplitInfoAðDÞ ¼
Xm

j¼1

j Dj j
j D j � log2

j Dj j
j D j

� �
ð5Þ

– Calculate gain ratio:

GainRationðAÞ ¼ GainðAÞ
SplitInfoAðDÞ

ð6Þ
The attribute with the maximum gain ratio is selected as best
splitting attribute.

CART (Classification and Regression Tree), it is analysis
which is based on the paper by Breiman et al. [17]. Is binary
decision trees, which split a single variable at each node.
CART approach can also produce classification trees, which

depends on the type of the dependent variable (categorical or
numerical) CART Similar to C4.5 but use Gini index as split
criteria that calculated as the following

GiniðDÞ ¼ 1�
Xm
i¼1

p2i ð7Þ

The Gini index of attribute A for a binary spilt is calculated as
the following:

GiniAðDÞ ¼
j D2 j
j D j GiniðD1Þ þ

j D2 j
j D j GiniðD2Þ ð8Þ

RandomTree: is constructing a tree that randomly selected
attributes at each node. It performs no pruning.
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DecisionStump: is an algorithm builds simple binary deci-

sion ‘stumps’ (1 level decision tress) for both nominal and nu-
meric classification task. It deal with mission values by
extending a third branch from the stump or treating ‘missing’
as a separate attribute value. It does regression (based on

mean-squared error) or classification (based on entropy) [18].
REPTree: algorithm is a fast decision tree learner it is also

based on C4.5 algorithm and can produce classification (dis-

crete outcome) or regression trees (continuous outcome). It
builds a regression/decision tree using information gain/vari-
ance and prunes it using reduced-error pruning (with back-

fitting).
ADTree: Applied Alternating decision trees, it is a general-

ization of decision trees, voted decision trees and voted deci-

sion stumps. The algorithm boosting procedures to decision
tree algorithms to produce accurate classifiers. The classifiers
are in the form of a majority vote over a number of decision
trees but having a smaller and easier to understand classifica-

tion rules [19].
Figure 1 Overview of the ensemble classifier.

Table 4 Description of microarray dataset where AML: acute

adenocarcinomas, SQ: squamous cell carcinomas, COID carcinoids,

colon, PA: patient, CO: control.

Dataset Sample no. Gene no.

Breast 62 16383

Breast1 86 16382

Colon 36 7458

Lung2 88 16382

Prostate 146 12626

Prostate2 108 12554

Prostate3 188 16383

Lung1 197 10937

Multi tissues 103 16383

Leukemia 72 7130

Lymphoma 60 16381
Random forests: ensemble decision tree methods by resam-

pling attributes, produced by Leo Breiman [19]. This early ran-
dom decision trees method combines bagging and random
feature selection methods to generate multiple classifiers. Ran-
dom Forests based on CART method.

Bagging: produced by Leo Breiman [20,21] it uses a boot-
strap technique to resample the training data sets D. To form
a resampled data set Di. Each sample in D has a probability of

1/n of being drawn in any trial. The most often predicted class
label will be the final classification result.

AdaBoost: The Boosting method was first developed by

Freund [22]. The initial classifier is constructed from the origi-
nal data set where every sample has an equal distribution ratio
of 1. In the Boosting method training data set Di, the distribu-

tion ratios are made different among samples depending on
their prediction accuracy in the previous data set Di�1. If a
sample has a lower prediction accuracy rate in Di�1, it will
be given a higher weight in Di and therefore get a higher pos-

sibility to be selected in Di. Fig. 1 illustrates an overview of the
ensemble classifier.

6.2. Data preprocessing

Among thousands of genes whose expression levels are mea-

sured, not all are wanted for classification. We need to select
a few numbers of genes highly related with classes for classifi-
cation, which is called informative genes.

Chi-square (v2) attributes evaluate. The chi-square (v2)
method evaluates features individually by measuring their
chi-squared statistic with respect to the classes. The v2 value

v2ðaÞ ¼
X
m¼V

Xn
i¼1

½Aiða ¼ mÞ � Eða ¼ mÞ�2
Eiða ¼ mÞ ð9Þ

where V is the set of possible values for a, n the number of clas-
ses, Ai(a = V) the number of samples in the ith class with

a= v, and Ei(a = v) the expected value of Ai(a = v);
Ei(a = v) = P(a = v)P(ci)N, where P(a= v) is the proba-

bility of a= v, P(ci) the probability of one sample labeled with
the ith class, and N the total number of samples [23].
myeloid leukemia, ALL: acute lymphoblastic leukemia, AD:

and NL: normal lung. BR: Breast, PR: prostate, LN: lung, CO:

Category

Tumor Normal

43 19

43 43

18 18

69 19

65 81

92 16

92 96

AD NL SQ COID

139 17 21 20

BR PR LN CO

26 26 28 23

ALL AML

46 26

PA CO

40 20
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Gain ratio features evaluation. Expected information (en-

tropy) is used to sort the attribute in D, according to higher
informative gene and eliminate the attribute with low gain ra-
tio see Eqs. (7) and (8).

6.3. Datasets

In this study, we select eleven microarray datasets these dataset

were breast cancer, breast1 cancer, lung2 cancer, prostate can-
cer (normal prostate tissue adjacent to tumor vs. tumor tissue),
prostate2 cancer, Prostate3 cancer, and lymphoma, these data-

set were collected from EBI,
http://www.ebi.ac.uk/array-express and multi tissues [24],

lung1 cancer [24], colon tumor [25], Leukemia [24], were col-

lected from GEO repository. The latest four dataset had been
extensively tested in many previous studies [25–27]. Table 4
provides briefly description of microarray dataset.

7. Experimental setup

Eleven dataset was collected from EBI and GEO, used to eval-

uate classification performance. These datasets were described
briefly in Table 3.

All experiments described in this paper were performed

using libraries from Weka 3.7.1 machine learning environment
[28]. A lot of studies used Weka in classification task, for
examples [26,29]. Nine selected decision tree classifiers are used

to build the classification models, these classifier was briefly de-
scribed above (Section 6.1), as well as two type of attribute
selection (Chi-square, Gain Ratio) were used to reduce the ini-
tial set of available genes, and evaluate the performance of

these methods, on elected subset of attribute.
Each classification method was used ‘‘as it is’’ in Weka

environment which means that no additional parameter tuning
Figure 2 Cancer classification system.
was performed before or during classification performance

comparison. Each feature selection method was used in combi-
nation with all nine classification models included in compar-
ison. As well as we evaluate AUC of the classification
method using, each test we used 10-fold cross-validation. For

bagging and AdaBoost method we used (C4.5) and REPTree
as a classifiers and applying 10 iterations each experiment.

We summarize our machine learning work for DNA micro-

array in three main stages. First stage is attribute selection, sec-
ond is choosing appropriate predictor, and third is produced
model evaluation as shown in Fig. 2.
8. Results and analysis

We report the results from nine methods that used to study the
usefulness of the decision tree to predict disease status. For
each method we evaluated classification accuracy on the origi-

nal dataset (without attribute selection) and also by using Chi-
square and Gain ratio as attribute selection.

First, we applied the methods on breast cancer Fig. 3 shows
the accuracy of the methods. We notes that Random Forest,

AdaBoost (C4.5), and AdaBoost (REPTree) gave higher accu-
racy on original dataset (98.39%), AdaBoost (C4.5) perform
higher accuracy with Chi-square attribute selection (96.77)

and Gain ratio attribute selection (98.39%).
Second, we applied the methods on colon cancer Fig. 4

shows accuracy of the methods. We notice that AdaBoost

(C4.5) perform higher accuracy on original dataset (100%),
and RandomForest, CART, AdaBoost(C4.5), Ada-
Boost(REPTree) and Bagging(REPTree) gave the same and
higher accuracy with Gain ratio attribute selection (97.22%),

while DecisionStump gave higher accuracy with Chi-square
attribute selection (97.22%).

Third, we applied the methods on leukemia dataset; Fig. 5

shows the accuracy of the method. We notice that Bag-
ging(REPTree) perform higher accuracy on original dataset
(93.06%), AdaBoost(REPTree) perform higher accuracy with

Chi-square Attribute selection (95.83%) and gain ratio attri-
butes selection (97.22%).

Fourth, we applied the method on lung1 dataset Fig. 6

shows the accuracy of the methods, we notice that Ada-
Boost(REPTree) gave higher accuracy on the original dataset
(95.43%) and with Chi-square Attribute selection (94.42%),
while Bagging(C4.5) gave higher accuracy with Gain ratio

attribute selection (93.91%).
Fifth, we applied the methods on lung2 dataset Fig. 7 shows

the accuracy of the methods, we notice that CART, Ada-

Boost(C4.5) gave higher accuracy on the original dataset
(97.73%), while CART gave higher accuracy with Gain ratio
attribute selection (98.86%), and AdaBoost(C4.5) gave higher

accuracy with Chi-square Attribute selection (97.73%).
Sixth, we applied the methods on lymphoma dataset Fig. 8

shows the accuracy of the method, we notice that Random

Forest, Bagging(REPTree) and AdaBoost(C4.5) gave high per-
formance on original dataset(100%), while ADTree, Decision-
Stump, CART AdaBoost(C4.5), Bagging(REPTree), and
REPTree gave accuracy with Gain ratio attribute selection

(100%) while Random Forest AdaBoost(C4.5) gave higher
accuracy with Chi-square attribute selection (100%).

Seventh, we applied the methods on prostate dataset

Fig. 9 shows the accuracy of the methods, we notice that

http://www.ebi.ac.uk/array-express


Figure 4 Accuracy of the methods on colon dataset.

Figure 3 Accuracy of the methods on breast dataset.

Figure 5 Accuracy of the methods on leukemia dataset.

Figure 6 Accuracy of the methods on lung1 dataset.
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Figure 7 Accuracy of the methods on lung2 dataset.

Figure 8 Accuracy of the methods on lymphoma dataset.

Figure 9 Accuracy of the methods on prostate dataset.
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Bagging(REPTree) gave higher accuracy on the original data-
set (75.34%), with Chi-square Attribute selection (72.60%)

and Gain ratio attribute selection (75.92%).
Eigth, we applied the methods on prostate2 dataset Fig. 10

shows the accuracy of the methods, we notice that Ada-

Boost(C4.5), AdaBoost(REPTree) and Bagging(C4.5) gave
higher accuracy on the original dataset (91.67%), Bag-
ging(C4.5) gave higher accuracy with Chi-square Attribute

selection (90.74%) and Gain ratio attribute selection
(91.67%), also we applied the method on the rest datasets.
Table 5 summarized the minimum and maximum accuracy
of these methods.
By calculating the average accuracy for all methods on each
dataset, from Fig. 11 we notice AdaBoost (C4.5) gave higher

average accuracy on original dataset (91.23%) and with using
Chi-square Attribute selection (90.83%) and Bagging (REP-
Tree) gave higher average accuracy Gain ratio attribute selec-

tion (92.64%).
Also, we notice the ensamples decision tree is significantly

improving the accuracy of single decision tree classifier such

as (C4.5 and REPTree).
In this study we intended to use several dataset from the

same cancer types to focus on the following facts: it is
important to classify the samples produced from the same



Figure 10 Accuracy of the methods on prostate2 dataset.

Table 5 Summarized the accuracy of the methods on these Breast1, Multi tissues and Prostate3 dataset.

Gain ratio A. S. Chi-square A. S. Original data

Method % Method % Method %

Breast1 Max. Acc. Ad(C4.5) 98.39 Ad(C4.5) 86.05 Ba(REPTree) 81.40

Min. Acc. RT 67.44 ADTree 75.58 RT 77.91

Multi tissues Max. Acc. Ad(C4.5) 97.09 Ad(REPTree) 95.15 CART 94.17

Min. Acc. DS 44.66 DS 47.57 DS 46.60

Prostate3 Max. Acc. RF 98.94 RF 100 Ad(C4.5) 99.47

Min. Acc. ADTree 86.70 DS 86.7 DS 86.70

Figure 11 Average accuracy of the methods for all dataset.
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laboratory, as well as the same preprocessing algorithm, and

same microarray type.

9. Conclusions

This experimental study compares classification performance
of different nine decision tree algorithms via using of eleven

cancerous microarray datasets. These algorithms include five
single decision tree (C4.5, REPTree, CART, DecisionStump,
and RandomTree) as well as four ensample decision tree meth-

ods AdaBoost (C4.5), AdaBoost (REPTree), Bagging (REP-
Tree), Bagging (C4.5), ADTree. In addition, the effect of
attribute selection on building decision tree based models is
investigated.
From the obtained results we can highlights some interest-

ing conclusions: The ensample method (AdaBoost, Bagging
and Random Forest) significantly improve the classification
accuracy of single decision tree, Due to building several classi-

fier and voting techniques. Accuracy of AdaBoost (C4.5) out-
performs other ensample methods on original dataset without
using of attribute selection. AdaBoost (REPTree), AdaBoost

(C4.5) outperform other method with Chi-square attribute
evaluation, Bagging (REPTree) outperform other method with
Gain Ratio attribute.

Gain ratio attribute selection significantly improves classi-

fier accuracy on majority of the dataset and classification
method, but chi-square attribute selection didn’t significantly
improve the classification accuracy, as well as it decreases
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classifier accuracy such as C4.5, due to the elimination of some

informative genes. By analyzing the results obtained with mul-
ticlass microarray datasets (lung1. Multi-tissues dataset) we
noticed that CART and AdaBoost (C4.5) outperform other
methods on the original dataset. While AdaBoost (REPTree)

outperforms with Chi-square attribute selection. Usually, Bag-
ging (C4.5) and AdaBoost (C4.5) outperform with Gain ratio
attribute selection.

Lastly, decision trees are particularly attractive for biolo-
gists due to their interpretability, being able to highlight which
genes are actually influencing the classification task as well as

results show that decision tree classifiers might play an impor-
tant role in microarray analysis in the future.

But small numbers of genes shared to constrict tree from

microarray dataset is still critical criteria because missing such
genes mean missing classification result.
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