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1. Introduction

Denote by Ej(x) an elementary matrix obtained from I, by changing the (j,j — 1)th entry to x.
Matrices of the form E;(x) or EjT(x) are called elementary bidiagonal matrices. An n-by-n matrix A has
an elementary bidiagonal factorization if it can be factorized as
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n—1k+1 1 n
A= (H [ Ej(ajk)) D( [T II E,»T(ﬂkn)

k=1 j=n k=n—1 j=k+1

where D is diagonal, and the parameters ;i and B; are zero or nonzero. Throughout the paper, let us
denote the bidiagonal matrices

1
0 1
B = 0 1 (1)
Op—it11 1
ani 1
and
1 0
1 0
G= 1 Bin—it1 (2)
1 ﬂin
1

fori =1,...,n — 1.Notice that Ej(x)E;(y) = Ei(y)Ej(x) if |i — j| # 1.Thus, the elementary bidiagonal
factorization above can be easily written as

A=By- - By1DCy—1---Cy, (3)

which is called the bidiagonal factorization of A. Most previous contributions in the literature have
been devoted to get a bidiagonal factorization of the form (3), see [3-7]. For example, it is well
known that the bidiagonal factorization always exists for a nonsingular totally nonnegative matrix
[3,6]. In view of applications, the bidiagonal factorization is very useful. Given this factorization, Koev
[9,10] presented new algorithms that compute the inverse, LDU decomposition, eigenvalues, and SVD
of totally nonnegative matrices to high relative accuracy, independent of the conventional condi-
tion number. The idea of using bidiagonal factorizations can also be applied to solve linear systems,
see [8].

Therefore, it is natural to consider necessary and sufficient conditions for a matrix to have a bidi-
agonal factorization of the form (3). Fiedler and Markham [1,2] first studied the interesting problem,
and provided the necessary and sufficient conditions for a matrix A to have a bidiagonal factorization
of the form (3) with all the parameters «;; and Bj; nonzero. To present their main result, we next need
to list some notations. Let N = {1,...,n}, Ny C N and N, C N. Denote by A(N;|N3) the submatrix of
A with rows and columns indexed by N1 and N, respectively. In the sequel, we only consider matrices
of order n on the complex field C.

Definition 1 [2]. Let A € C™*". If all the submatrices
Ali—j+1,...,i1,2,...,j) foranyi>j
and
A(1,2,...ilj—i+1,...,j) foranyi<j

are nonsingular, then A is called totally nonsingular.
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The main result by Fiedler and Markham is the following theorem.
Theorem 2 [1,2]. Let A € C"*" be nonsingular. Then A is a totally nonsingular matrix if and only if it
admits a factorization of the form
A=B- Bp_1DCyp_1---Cq
where D is a nonsingular diagonal matrix, all subdiagonal entries o are nonzero, and all superdiagonal

entries fBjj are nonzero.

However, the condition that all the parameters «;; and B;; are nonzero can be weakened as shown
by the following example.

Example 1. Let

1 1 0
A=1(2 1 0 |.
0 3 1

Then A can be factorized as
A = B1B, DG G
where D = diag(1, —1, 1), but the parameters
31 =0, a1 =2, ap=-3, P13=0 Pp=1 p3 =0

Therefore, our aim of this paper is to provide necessary and sufficient conditions for a matrix to
have a bidiagonal factorization of the form (3) with some of the parameters of the bidiagonal factors
equal to zero. For our main result, we first introduce a new class of matrices as follows.

Given a matrix A € C™". Consider the (i, j)-place of A with i >]. Let t be the maximal integer,
1<t<j,suchthatA(i —j+t|1,2,...,t — 1) is a zero or void matrix. Then

A(ij) =A({—j+¢...i6t+1,...,))

is called a relevant submatrix in the (i, j)-place by referring to [1]. Similarly, for the (i, j)-place with i <,
let t be the maximal integer, 1<t <i, such that A(1,2,...,t — 1|j — i + t) is a zero or void matrix.
Then

Ag =At+1,.. il —i+t....))

is called a relevant submatrix in the (i, j)-place. In general, we call all these matrices relevant submatrices.
For example, let

A=

O O * *
O O % *
* K K Kk
* ¥ * O

where *x means the corresponding entry is nonzero. Then the relevant submatrix in the (4, 3)-place is
A43) = A(4|3), and the relevant submatrix in the (4, 4)-place is A4y = A(3,4/3,4).
Definition 3. Let A € C"™*". If the relevant submatrices in all places of A satisfy that

detAgj) # 0andi>j = detAs) # 0, whenever i>s>r2>j, (4)
and

detAgj) # 0andi<j = detA(s) # 0, whenever j>r>s>i, (5)

then A is called almost totally nonsingular.
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Example 2. Let

11 0 0
2 3 3 0
A=1l3 5 17 4
00 2 7

Thus, A1y = (3) is nonsingular, and A1), A1), A32), A(22) and A(33) are nonsingular; A(43) and A44)
are nonsingular; A(12), A(23) and A(34) are nonsingular. Therefore, it is verified that A is almost totally
nonsingular.

Our main result is the following theorem.

Theorem 4. Let A € C™*" be nonsingular. Then A is almost totally nonsingular if and only if it admits a
factorization of the form

A=B;---By_1DCph1---C
where D is a nonsingular diagonal matrix, all subdiagonal entries o (i > j) satisfy that

ajj # 0= ay # 0, whenever i>s >r>j; (6)
and all superdiagonal entries B (i < j) satisfy that

Bij # 0= B #0, whenever j>r > s>i. (7)
The proof will be given in the final part.
Remark 1. Suppose that A = (a;) € C"™" is almost totally nonsingular. If A1y is nonsingular, i.e,
an1 # 0, then we have by (4) thatay; #0,...,a,—11 #F 0, and

Agy =AGl—j+1,...,i1,2,...,j) is nonsingular for any i > j;
if A(1p) is nonsingular, i.e, aj, # 0, then we have by (5) thatay; #0,...,a,—1 # 0,and

Agy =A,2,...,i[j—i+1,...,))is nonsingular for any i <j.

So A is totally nonsingular. Thus, it shows that the class of almost totally nonsingular matrices is a
proper extension of the class of totally nonsingular matrices. This also means that Theorem 4 is a
proper extension of Theorem 2 by Fiedler and Markham.

2. Almost totally nonsingular matrices

In this section, we will provide some results on almost totally nonsingular matrices. Given a matrix
A = (a;j) € C™" with no zero row and no zero column. Denote

jo=1fort=1,2,...:
ir = max {i|a,-‘,-H # 0}
je = min {jla; +1; # 0} . (8)
Analogously, denote
o=1fort=12...:
jo = max {jla;_; # 0]
i = min {i|ai5r+] + o} . 9)

In the sequel, we write the index sets
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I={i1v~~-vil}v _]Z{.jlr"'vjl—]}v TZ{’{lv"'v;T—l}v .7:{.711"'1.;T} (10)

wherei; =n and]’r = n.Ifi; < ir4 for all t, then we say that the index set [ is strictly increasing.

Definition 5. Given a matrix A = (g;;) € C"™*" with strictly increasing index sets I, J, T and J by (10).

Ifagj =0foralliy <i<igx41,1<j<jix(k=1,...,1—1);anda; =O0forall 1 <i <§k,1~'k < j<Jjk4+1
(k=1,...,r—1),thenwesayAhasa (I,J; I,]) zero pattern.

Theorem 6. Suppose that a nonsingular matrix A € C™" is almost totally nonsingular. Let the index sets
I, J, I and J be obtained by (8) and (9), respectively. Then A has a (I,]; I,]) zero pattern, i.e., A is of the
following form

(11)

where % means the corresponding entry is nonzero.

Proof. Since A = (aj) is nonsingular, by using the procedures (8) and (9), it is true to assume that the
index sets I, J,Tand] are of the from (10). Furthermore, both the index sets I andJ are strictly increasing.
Now assume that ay; # 0 for some i, < i’ <igyq and 1<j < jj with i’ minimal (1 < k < [). Obviously
i’ # ix + 1; otherwise j > ji by (8), a contradiction. So i, < i’ — 1 <ik41, and thus

ay_15 =0 forall 1<s < ji (12)

by the minimality of i’. Now let us choose ayy # Owith1< j’ < jr minimal. According to the minimality
of j/, we have A(i’|1,2, . ..,j’ — 1) = 0. Thus it follows that the relevant submatrix

Ay = Al
isnonsingular. Since A is almost totally nonsingular, it follows by (4) that the relevant submatrix A1 j7)
is nonsingular, which is impossible because A1 j, = 0 by (12). Therefore, we get that a;; = 0 for any
ix <i<igxyrand1<j < ji(k =1,...,1 —1).Applying the same argument to AT, we have that aj =0
forany 1<i < ik and]’k <j<]~'k+1 k=1,...,r—1).
Next we show that the index set ] is strictly increasing. In fact, if we assume that there exists a k
such that jy—1 > ji (2 <k <), according to the conclusion above, then

aQj,,1 = 0, A2 = o,..., iy jx = o,..., Qi jk_1—1 = 0.
So the relevant submatrix A, j,) = 0. However, since
Adi+1jo = Alik + 1ljic)

is nonsingular, A, ) is nonsingular because A is almost totally nonsingular, a contradiction. So the
index set ] is strictly increasing. Similarly, we have that the index set I is strictly increasing. Thus A has
a (I,]; 1]) zero pattern of the form (11). [

According to Theorem 6, we immediately have the following result.
Corollary 7. Suppose that a nonsingular matrix A € C"™" is almost totally nonsingular. If A(i|1,

...,j) =0 for some i>j, then A(i,...,n|1,...,j) =0; if A(1,...,ilj) =0 for some i<j, then
AQ,...,ilj,...,n) =0.
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Theorem 8. Suppose that a nonsingular matrix A € C"™*" is almost totally nonsingular. Then A has a
factorization A = BDC, where D is a nonsingular diagonal matrix, B (C) is unit lower (upper) triangular.

Proof. SetN, = {1,2,...,k}fork = 1, 2,..., n.We start the proof by proving that A(Ny|N) is nonsin-
gular for all k. Now assume that A(N¢|N;) is singular for some 1 < t < n with t minimal. Then we must
have that a;y = a;y = - - - = ax = 0; otherwise it is easy to verify by (4) that the relevant submatrix
A 1s nonsingular because A is almost totally nonsingular. From that it follows that

o if Aty = A(N¢|N¢), then A(N¢|N;) is nonsingular, a contradiction;
o if Ay = A(r, ..., tr,...,0) (r<t), then A(r|1,...,r — 1) = 0, and thus using Corollary 7 we
have
det A(N¢|N;) = det A(N;—1|N;—1) - detA(r, ... t|r,...,t) #0

by considering that t is minimal, a contradiction.

So A(t|1,...,t) = 0. However, we have from Corollary 7 that A(t, . ..,n|1,...,t) = 0, which implies
that A is singular, a contradiction. Hence, we must have that A(N|Ny) is nonsingular for all k, and the
result follows. [

3. Bidiagonal factorizations

Theorem 9. Let A € C™" be nonsingular. Then A is almost totally nonsingular if and only if it can be
factorized as A = BDC, where D is a nonsingular diagonal matrix, and B (C) is a unit lower (upper)
triangular and almost totally nonsingular matrix.

Proof. First assume that A is almost totally nonsingular. According to Theorem 8, it is sufficient to
show that both B and C are almost totally nonsingular. Now consider the relevant submatrix Bjj) =
B(i—j+¢t,...itt+1,...,j)foranyi>j.SoB(i —j+t|1,2,...,t — 1) = 0witht maximal by the
definition. Since A = BDC, it is not difficult to show that

Ali—j+t[1,2,...,t —1) = 0 with t maximal;

otherwise if there exists t; > t such that A(i —j + t1|1,2,...,t; — 1) = 0, then it is easy to show
that B(i —j + t1|1,2,...,t1 — 1) = 0, a contradiction. Thus the relevant submatrix A¢j) = A(i —j +
t,...itt+1,...,j),and

AG—j+t1,2,...,t=1)=0=>A>G{—j+¢t...,n|1,2,...,t — 1) = 0 (by Corollary 7)
=Bli—j+¢...,n1,2....t —1)=0.

Hence, we have
Adi) = BaipDCo) (13)

where D¢y = D(t, ..., jlt,...,j) and Cj = C(t,...,jlt, ..., j). Therefore, since A is almost totally
nonsingular, it follows from (13) that

det Bgj) # 0andi>j = detAg) # 0
= detA¢) # 0 whenever i2s>r>j
= detB() 70 whenever i>s>r>j.

Thus the lower triangular matrix B is almost totally nonsingular. Similarly, we have that the upper
triangular matrix C is almost totally nonsingular.

Conversely, let us consider the relevant submatrix Agj) = A(i —j +t,...,ilt,t +1,...,j) for any
i>2j.SoA(i—j+1t]1,2,...,t —1) = 0 with t maximal by the definition. Since A = BDC, it is not
difficult to show that
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B(i—j+t|1,2,...,t —1) = 0 with t maximal;

otherwise if there exists t; > t such that B(i —j + t1|1,2,...,t; — 1) = 0, then it is easy to show
that A(i —j+ t1]1,2,...,ty — 1) = 0, a contradiction. Thus the relevant submatrix B(;;y = B(i —j +
t,...,it,t+1,...,j),andB(i—j+ ¢t ...,n|1,2,...,t — 1) = 0 by Corollary 7. Hence, we get

Adj = BapDii)C) (14)
where Dy = D(t,...,j|t,...,j) and Cj = C(t,...,jlt,...,j). Therefore, since B is almost totally
nonsingular, it follows from (14) that

detAgj) # 0andi>j=> detBg # 0

= detB;) 70 whenever i>s>r>j
= detAgs) # 0 whenever i>s>r2>j.

Similarly, we have
detAgj) # 0andi<j = detA(r) # 0 whenever j>r>s>i.

So A is almost totally nonsingular. [

Example 3. Let

1 -5 0 0
7 =33 4 0
0o -6 -8 3
o —-12 0 27

A=

Then A is almost totally nonsingular. It is easy to show that

1 1 1 -5 0 0
7 1 2 1 2 0

A=IDU=19 _3 4 1 2
0 -6 6 1 9 1

where L, D and U are almost totally nonsingular, respectively.

Lemma 10. Let B = BB, - - - B;_1 = (b;j) where all subdiagonal entries c;j satisfy (6). If oys = 0, then
bij =0foralli>randj<s.

Proof. To prove the result, we apply induction on the order n of B. The case n = 2 is trivial. Now assume
that the result is true for all orders less than n. Observe that

1 1
1 0 1
1 0 1
op—it1,1 1 0 1

Bi

1 Op—it22 1

1
= En—it1(@n—it1,1) ( B ) .

1

Hence, it is not difficult to show that
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B = Eq(atn1) (1 B, )En—l(Oln—l,l) <1 B, > - Ea(on) (1 B >

n—1
=B (U g ) (U oy )
=En(an1).-.52(a21)<1 BB, ) (15)

Set ars = 0. Then ojj = 0 for all i>r and j <s because of the condition (6). Thus, if s = 1, obviously
bj1 = 0 for all i >r by (15); if s > 1, then oj; = O for all i >r, and thus by applying our inductive
assumption, we easily conclude that the result is true by (15). [

Lemma 11. Suppose H = B, - - - By_1 = (hyj) forany 1 <k <n — 1. Then H is a lower banded matrix
with at most k nonzero subdiagonals, where h;j = 0 for any i — j > k and hjj = aj;1 - - - o for any
i—j=xk.

Proof. To prove the result, we apply induction on k. The case k = 1 is trivial. Now assume that the
result is true for any r with r < k. Then it is easy to show that the result is true if we consider the form
H = Bn—k(an(kfl) t 'Bn—l)
by using the inductive assumption. [J
Next we point out some important facts that will be used. Suppose B = By - - - B,—1 where all

subdiagonal entries «j; satisfy the condition (6). Now consider the relevant submatrix B(5) = B(r —
s+t,...,rit,t+1,...,s) forany r >s. Then

B(r —s—+t|1,...,t — 1) = 0 with t maximal. (16)

Thus the following statements are true:

e Since B(r —s + t|1,...,t — 1) = 0, we must have
Qr—stt1 = 0,&r—s4¢2 =0,..., 0r—stre—1 = 0. (17)
In fact, if we assume that oy g1 = - -+ = Wr—syrk—1 = 0and oy # 0 (k<t — 1), then

using Lemma 11 it is not difficult to show that
B(r —s+tlk) = (Bn—(r—s+t)+k By )(r —s+tlk) = Ok4+1k " Or—stt,k #0

by considering (6), a contradiction.
e If oy 5 0, then

Ur—sttt F 0, 0r—ste1041 F 0. 0 # 0. (18)

In fact, if &y —s+i; = 0 (t <i<s), by Lemma 10, then B(r —s +1i,...,n|1,...,i) = 0. So B(r —
s+ i+ 1|1,...,i) = 0, which contradicts (16).
o It follows that

detB(s) # 0 = ars # 0; (19)
otherwise if o = 0, by Lemma 10, then B(r,...,n|1,...,s) = 0. So the relevant submatrix
B(s) = B(r|s) = 0, a contradiction.

Lemma 12. Suppose B = By - - - B,_1 where all subdiagonal entries «jj satisfy the condition (6). Then B
is almost totally nonsingular.

Proof. Consider the relevant submatrix B(5) = B(r —s +¢,...,r|t,t +1,...,s) for any r >s. Now
we show that if a5 # 0, then det B(;5) # 0.
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Partition the matrices

BV 0 o0
By = g‘) B(k) 0 , k=1...n—r+s—1

B(k) B(k) B(k)

whereallBg1 are(r—s+t—1) x(r—s+t—1), andallB(c) are(s—t+1) x (s—t+1).Since
B(r —s—+t|1,2,...,t — 1) = 0, using (17) we have

Ur—spi1 = 0= Bgl‘l*rJrS*H»U =0, B(n r+s— t+1)

31
Ursits = O:B(n r4s—t+2) =0 B(n r4+s—t+2) -0
Or—sitie 1—0:>B(n r4s—1) =0 B(n r4s—1) -0
Thus

* 0 0
(B1 -+ - Bn—r4s—t) Bn—r4s—t+1 " Bp—r4s-1) = {0 L 0
0 x =
wherel = B(l)- B(n rs=1)
that

isunitlower triangular.SetH = B, - - - By—1. Thenitis easy to show

Bus) =LH(r —s+t,...,r|t,...,s) = LU.

It follows by Lemma 11 that U = (u;j) is upper triangular because H has at most r — s nonzero
subdiagonals, where

uj=Hr—s+t+i—1/t+i—1)
= Qpittio1 0 Or—steti-1e4i-1, A=1,...,s —t+1).

Thus, if a;s # 0, then using (18) and (6) we have

Ur—s+tt F 0= A1t F 0,00 Ur—spi—1t F O,
Or—stit1t+1 F 0= U241 F 0o drsyre41 F 0,

as 0= 05415 F0,..., 0015 F 0,
which means that u; # Oforalli =1,...,s — t + 1. Hence, we obtain that if o;s # 0O, then
s—t+1
detB(y5) = detL - detU = H uj; # 0.
i=1
Thus, it follows by using (19) that

detBj #0andi>j= o # 0
= ors + 0 whenever i>r>s>j
= detB(5 # 0 whenever i>r>s>j

which means the lower triangular matrix B is almost totally nonsingular. []

Lemma 13. Let B € C™*" be a unit lower triangular matrix. If B is almost totally nonsingular, then B can
be factorized as B = By - - - B,_1 where all subdiagonal entries c;j satisfy (6).

Proof. To prove the result, we apply induction on the order n of B. The case n = 1, 2 is trivial. Now
assume that the result is true for all orders less that n. Set B = (b;;). Since B is almost totally nonsingu-

lar, we can assume that by; #0,...,bry #£0,and byy11 = --- = by = 0. Let oy = % 0 =

ﬁ. Soay #0,...,0r # 0.Thus it is not difficult to show that B can be factorized as
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B =Er(an) - Ex(a21) (1 B )

where B'is (n — 1) x (n — 1). Furthermore, the (n — 1) x (n — 1) unit lower triangular matrix B’ =
(bfjl)) satisfies the following statements:

e Since B is almost totally nonsingular, by considering that by; # 0, ..., b1 # 0, we obtain that
by =1,
b(l) . detB(2,3]1,2) . det B(32)

(1
= = 0,...,b"
21 by det Bz, + r—1,1

_ detB(r — 1,1|1,2) _ detB()
br_11 det Br—1,1)

£0.

Setj <i<r — 1.Thus the relevant submatrix Bzij) =B(@G—j+1,...,i]1,...,j),and

1
detB’(U)=b7detB(i—j+1,i—j+2,...,i+1|1,2,...,j+1)
i—j+1,1

det B(it1,+1)-
i—j+1,1

e Setj<iandi > r — 1.Since byy11 = - - - = by = 0, it is not difficult to show that the relevant
submatrix B/(ij) = B(i+1,j+1)-

Therefore, it follows that B’ is also almost totally nonsingular. Applying the inductive assumption to
B’, we have the factorization

B = Er(ar1) - - - Ex(a21) (1 BB )

n—1
where each (n — 1) x (n — 1) matrix B} is of the form (1) with all subdiagonal entries «j (2 <i,j <n)
satisfy (6). In particular, according to the argument above, we have
(€]
b.”
Qr) = 217)1] #0
r—=2,1

Notice that o1 # 0 and o3 = 0 for [ > r. Thus we easily conclude that the result is true by
using (15).

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let A € C™™" be nonsingular. First assume that A is almost totally nonsingular.
Theorem 9 implies that it can be factorized as A = BDC, where D is a nonsingular diagonal matrix, and
B(C)is a unit lower (upper) triangular and almost totally nonsingular matrix. Thus the result is true by
applying Lemma 13 to B and C”. Conversely, using Theorem 9 and Lemma 12 we have that A is almost
totally nonsingular. [
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