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1. Introduction

Denote by Ej(x) an elementary matrix obtained from In by changing the (j, j − 1)th entry to x.

Matrices of the form Ej(x) or ETj (x) are called elementary bidiagonal matrices. An n-by-n matrix A has

an elementary bidiagonal factorization if it can be factorized as

∗ Corresponding author.

E-mail addresses: rongh98@yahoo.cn (R. Huang), liujz@xtu.edu.cn (J. Liu).
1 The author was supported by the National Natural Science Foundation for Youths of China (Grant No. 11001233), the Spe-

cialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094301120002), China Postdoctoral

Science Foundation (Grant No. 20090451103) and the Research Fund of Education Bureau of Hunan Province (Grant No. 09C942).
2 The author was supported by NSFC (Grant No. 10971176) and the Natural Science Foundation of Hunan Province (Grant No.

10JJ2002).

0024-3795/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2010.09.033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82552303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/00243795
mailto:rongh98@yahoo.cn
mailto:liujz@xtu.edu.cn


R. Huang, J. Liu / Linear Algebra and its Applications 434 (2011) 730–740 731

A =
⎛⎝n−1∏

k=1

k+1∏
j=n

Ej(αjk)

⎞⎠D

⎛⎝ 1∏
k=n−1

n∏
j=k+1

ETj (βkj)

⎞⎠
where D is diagonal, and the parameters αjk and βkj are zero or nonzero. Throughout the paper, let us

denote the bidiagonal matrices

Bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

. . .
. . .

0 1

αn−i+1,1 1

. . .
. . .

αni 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

and

Ci =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

. . .
. . .

1 0

1 β1,n−i+1

. . .
. . .

1 βin

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

for i = 1, . . . , n − 1. Notice that Ej(x)Ei(y) = Ei(y)Ej(x) if |i − j| /= 1. Thus, the elementary bidiagonal

factorization above can be easily written as

A = B1 · · · Bn−1DCn−1 · · · C1, (3)

which is called the bidiagonal factorization of A. Most previous contributions in the literature have

been devoted to get a bidiagonal factorization of the form (3), see [3–7]. For example, it is well

known that the bidiagonal factorization always exists for a nonsingular totally nonnegative matrix

[3,6]. In view of applications, the bidiagonal factorization is very useful. Given this factorization, Koev

[9,10] presented new algorithms that compute the inverse, LDU decomposition, eigenvalues, and SVD

of totally nonnegative matrices to high relative accuracy, independent of the conventional condi-

tion number. The idea of using bidiagonal factorizations can also be applied to solve linear systems,

see [8].

Therefore, it is natural to consider necessary and sufficient conditions for a matrix to have a bidi-

agonal factorization of the form (3). Fiedler and Markham [1,2] first studied the interesting problem,

and provided the necessary and sufficient conditions for a matrix A to have a bidiagonal factorization

of the form (3) with all the parameters αij and βij nonzero. To present their main result, we next need

to list some notations. Let N = {1, . . . , n}, N1 ⊂ N and N2 ⊂ N. Denote by A(N1|N2) the submatrix of

Awith rows and columns indexed by N1 and N2, respectively. In the sequel, we only consider matrices

of order n on the complex field C.

Definition 1 [2]. Let A ∈ Cn×n. If all the submatrices

A(i − j + 1, . . . , i|1, 2, . . . , j) for any i � j

and

A(1, 2, . . . , i|j − i + 1, . . . , j) for any i � j

are nonsingular, then A is called totally nonsingular.
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The main result by Fiedler and Markham is the following theorem.

Theorem 2 [1,2]. Let A ∈ Cn×n be nonsingular. Then A is a totally nonsingular matrix if and only if it

admits a factorization of the form

A = B1 · · · Bn−1DCn−1 · · · C1
where D is a nonsingular diagonal matrix, all subdiagonal entries αij are nonzero, and all superdiagonal

entries βij are nonzero.

However, the condition that all the parameters αij and βij are nonzero can be weakened as shown

by the following example.

Example 1. Let

A =
⎛⎝1 1 0

2 1 0

0 3 1

⎞⎠ .

Then A can be factorized as

A = B1B2DC2C1

where D = diag(1,−1, 1), but the parameters

α31 = 0, α21 = 2, α32 = −3, β13 = 0, β12 = 1, β23 = 0.

Therefore, our aim of this paper is to provide necessary and sufficient conditions for a matrix to

have a bidiagonal factorization of the form (3) with some of the parameters of the bidiagonal factors

equal to zero. For our main result, we first introduce a new class of matrices as follows.

Given a matrix A ∈ Cn×n. Consider the (i, j)-place of A with i � j. Let t be the maximal integer,

1� t � j, such that A(i − j + t|1, 2, . . . , t − 1) is a zero or void matrix. Then

A(ij) = A(i − j + t, . . . , i|t, t + 1, . . . , j)

is called a relevant submatrix in the (i, j)-place by referring to [1]. Similarly, for the (i, j)-place with i � j,

let t be the maximal integer, 1� t � i, such that A(1, 2, . . . , t − 1|j − i + t) is a zero or void matrix.

Then

A(ij) = A(t, t + 1, . . . , i|j − i + t, . . . , j)

is called a relevant submatrix in the (i, j)-place. In general, we call all thesematrices relevant submatrices.

For example, let

A =
⎛⎜⎜⎝
∗ ∗ ∗ 0

∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞⎟⎟⎠
where ∗ means the corresponding entry is nonzero. Then the relevant submatrix in the (4, 3)-place is

A(43) = A(4|3), and the relevant submatrix in the (4, 4)-place is A(44) = A(3, 4|3, 4).

Definition 3. Let A ∈ Cn×n. If the relevant submatrices in all places of A satisfy that

det A(ij) /= 0 and i � j ⇒ det A(sr) /= 0, whenever i � s� r � j, (4)

and

det A(ij) /= 0 and i � j ⇒ det A(sr) /= 0, whenever j � r � s� i, (5)

then A is called almost totally nonsingular.
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Example 2. Let

A =
⎛⎜⎜⎝
1 1 0 0

2 3 3 0

3 8 17 4

0 0 2 7

⎞⎟⎟⎠ .

Thus, A(31) = (3) is nonsingular, and A(21), A(11), A(32), A(22) and A(33) are nonsingular; A(43) and A(44)

are nonsingular; A(12), A(23) and A(34) are nonsingular. Therefore, it is verified that A is almost totally

nonsingular.

Our main result is the following theorem.

Theorem 4. Let A ∈ Cn×n be nonsingular. Then A is almost totally nonsingular if and only if it admits a

factorization of the form

A = B1 · · · Bn−1DCn−1 · · · C1
where D is a nonsingular diagonal matrix, all subdiagonal entries αij (i > j) satisfy that

αij /= 0 ⇒ αsr /= 0, whenever i � s > r � j; (6)

and all superdiagonal entries βij (i < j) satisfy that

βij /= 0 ⇒ βsr /= 0, whenever j � r > s� i. (7)

The proof will be given in the final part.

Remark 1. Suppose that A = (aij) ∈ Cn×n is almost totally nonsingular. If A(n1) is nonsingular, i.e,

an1 /= 0, then we have by (4) that a11 /= 0, . . . , an−1,1 /= 0, and

A(ij) = A(i − j + 1, . . . , i|1, 2, . . . , j) is nonsingular for any i � j;
if A(1n) is nonsingular, i.e, a1n /= 0, then we have by (5) that a11 /= 0, . . . , a1,n−1 /= 0, and

A(ij) = A(1, 2, . . . , i|j − i + 1, . . . , j) is nonsingular for any i � j.

So A is totally nonsingular. Thus, it shows that the class of almost totally nonsingular matrices is a

proper extension of the class of totally nonsingular matrices. This also means that Theorem 4 is a

proper extension of Theorem 2 by Fiedler and Markham.

2. Almost totally nonsingular matrices

In this section, wewill provide some results on almost totally nonsingular matrices. Given amatrix

A = (aij) ∈ Cn×n with no zero row and no zero column. Denote

j0 = 1, for t = 1, 2, . . . :
it = max

{
i|ai,jt−1

/= 0
}

jt = min
{
j|ait+1,j /= 0

}
. (8)

Analogously, denote

ĩ0 = 1, for t = 1, 2, . . . :
j̃t = max

{
j|a

ĩt−1 ,j
/= 0

}
ĩt = min

{
i|a

i,̃jt+1
/= 0

}
. (9)

In the sequel, we write the index sets
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I = {i1, . . . , il}, J = {j1, . . . , jl−1}, Ĩ = {ĩ1, . . . , ĩr−1}, J̃ = {j̃1, . . . , j̃r} (10)

where il = n and j̃r = n. If it < it+1 for all t, then we say that the index set I is strictly increasing.

Definition 5. Given a matrix A = (aij) ∈ Cn×n with strictly increasing index sets I, J, Ĩ and J̃ by (10).

If aij = 0 for all ik < i � ik+1, 1� j < jk (k = 1, . . . , l − 1); and aij = 0 for all 1� i < ĩk , j̃k < j � j̃k+1

(k = 1, . . . , r − 1), then we say A has a (I, J; Ĩ, J̃) zero pattern.

Theorem 6. Suppose that a nonsingular matrix A ∈ Cn×n is almost totally nonsingular. Let the index sets
I, J, Ĩ and J̃ be obtained by (8) and (9), respectively. Then A has a (I, J; Ĩ, J̃) zero pattern, i.e., A is of the

following form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 · · · 0

∗ . . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ∗

0 · · · 0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where ∗ means the corresponding entry is nonzero.

Proof. Since A = (aij) is nonsingular, by using the procedures (8) and (9), it is true to assume that the

index sets I, J, Ĩ and J̃ are of the from (10). Furthermore, both the index sets I and J̃ are strictly increasing.

Now assume that ai′j /= 0 for some ik < i′ � ik+1 and 1� j < jk with i′ minimal (1� k � l). Obviously

i′ /= ik + 1; otherwise j � jk by (8), a contradiction. So ik < i′ − 1� ik+1, and thus

ai′−1,s = 0 for all 1� s < jk (12)

by theminimalityof i′.Nowletus chooseai′j′ /= 0with1� j′ < jkminimal.According to theminimality

of j′, we have A(i′|1, 2, . . . , j′ − 1) = 0. Thus it follows that the relevant submatrix

A(i′j′) = A(i′|j′)
isnonsingular. SinceA is almost totallynonsingular, it followsby (4) that the relevant submatrixA(i′−1,j′)
is nonsingular, which is impossible because A(i′−1,j′) = 0 by (12). Therefore, we get that aij = 0 for any

ik < i � ik+1 and1� j < jk (k = 1, . . . , l − 1). Applying the same argument toAT , wehave that aij = 0

for any 1� i < ĩk and j̃k < j � j̃k+1 (k = 1, . . . , r − 1).
Next we show that the index set J is strictly increasing. In fact, if we assume that there exists a k

such that jk−1 > jk (2� k � l), according to the conclusion above, then

aik,1 = 0, aik,2 = 0, . . . , aik,jk = 0, . . . , aik,jk−1−1 = 0.

So the relevant submatrix A(ik ,jk) = 0. However, since

A(ik+1,jk) = A(ik + 1|jk)
is nonsingular, A(ik ,jk) is nonsingular because A is almost totally nonsingular, a contradiction. So the

index set J is strictly increasing. Similarly, we have that the index set Ĩ is strictly increasing. Thus A has

a (I, J; Ĩ, J̃) zero pattern of the form (11). �

According to Theorem 6, we immediately have the following result.

Corollary 7. Suppose that a nonsingular matrix A ∈ Cn×n is almost totally nonsingular. If A(i|1,
. . . , j) = 0 for some i � j, then A(i, . . . , n|1, . . . , j) = 0; if A(1, . . . , i|j) = 0 for some i � j, then

A(1, . . . , i|j, . . . , n) = 0.
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Theorem 8. Suppose that a nonsingular matrix A ∈ Cn×n is almost totally nonsingular. Then A has a

factorization A = BDC, where D is a nonsingular diagonal matrix, B (C) is unit lower (upper) triangular.

Proof. SetNk = {1, 2, . . . , k} for k = 1, 2, . . . , n.We start the proof by proving thatA(Nk|Nk) is nonsin-
gular for all k. Now assume that A(Nt|Nt) is singular for some 1� t � nwith t minimal. Then we must

have that at1 = at2 = · · · = att = 0; otherwise it is easy to verify by (4) that the relevant submatrix

A(tt) is nonsingular because A is almost totally nonsingular. From that it follows that

• if A(tt) = A(Nt|Nt), then A(Nt|Nt) is nonsingular, a contradiction;

• if A(tt) = A(r, . . . , t|r, . . . , t) (r � t), then A(r|1, . . . , r − 1) = 0, and thus using Corollary 7 we

have

det A(Nt|Nt) = det A(Nr−1|Nr−1) · det A(r, . . . , t|r, . . . , t) /= 0

by considering that t is minimal, a contradiction.

So A(t|1, . . . , t) = 0. However, we have from Corollary 7 that A(t, . . . , n|1, . . . , t) = 0, which implies

that A is singular, a contradiction. Hence, we must have that A(Nk|Nk) is nonsingular for all k, and the

result follows. �

3. Bidiagonal factorizations

Theorem 9. Let A ∈ Cn×n be nonsingular. Then A is almost totally nonsingular if and only if it can be

factorized as A = BDC, where D is a nonsingular diagonal matrix, and B (C) is a unit lower (upper)
triangular and almost totally nonsingular matrix.

Proof. First assume that A is almost totally nonsingular. According to Theorem 8, it is sufficient to

show that both B and C are almost totally nonsingular. Now consider the relevant submatrix B(ij) =
B(i − j + t, . . . , i|t, t + 1, . . . , j) for any i � j. So B(i − j + t|1, 2, . . . , t − 1) = 0with tmaximal by the

definition. Since A = BDC, it is not difficult to show that

A(i − j + t|1, 2, . . . , t − 1) = 0 with t maximal;
otherwise if there exists t1 > t such that A(i − j + t1|1, 2, . . . , t1 − 1) = 0, then it is easy to show

that B(i − j + t1|1, 2, . . . , t1 − 1) = 0, a contradiction. Thus the relevant submatrix A(ij) = A(i − j +
t, . . . , i|t, t + 1, . . . , j), and

A(i − j + t|1, 2, . . . , t − 1) = 0 ⇒ A(i − j + t, . . . , n|1, 2, . . . , t − 1) = 0 (by Corollary 7)

⇒ B(i − j + t, . . . , n|1, 2, . . . , t − 1) = 0.

Hence, we have

A(ij) = B(ij)D(j)C(j) (13)

where D(j) = D(t, . . . , j|t, . . . , j) and C(j) = C(t, . . . , j|t, . . . , j). Therefore, since A is almost totally

nonsingular, it follows from (13) that

det B(ij) /= 0 and i � j ⇒ det A(ij) /= 0

⇒ det A(sr) /= 0 whenever i � s� r � j

⇒ det B(sr) /= 0 whenever i � s� r � j.

Thus the lower triangular matrix B is almost totally nonsingular. Similarly, we have that the upper

triangular matrix C is almost totally nonsingular.

Conversely, let us consider the relevant submatrix A(ij) = A(i − j + t, . . . , i|t, t + 1, . . . , j) for any
i � j. So A(i − j + t|1, 2, . . . , t − 1) = 0 with t maximal by the definition. Since A = BDC, it is not

difficult to show that



736 R. Huang, J. Liu / Linear Algebra and its Applications 434 (2011) 730–740

B(i − j + t|1, 2, . . . , t − 1) = 0 with t maximal;
otherwise if there exists t1 > t such that B(i − j + t1|1, 2, . . . , t1 − 1) = 0, then it is easy to show

that A(i − j + t1|1, 2, . . . , t1 − 1) = 0, a contradiction. Thus the relevant submatrix B(ij) = B(i − j +
t, . . . , i|t, t + 1, . . . , j), and B(i − j + t, . . . , n|1, 2, . . . , t − 1) = 0 by Corollary 7. Hence, we get

A(ij) = B(ij)D(j)C(j) (14)

where D(j) = D(t, . . . , j|t, . . . , j) and C(j) = C(t, . . . , j|t, . . . , j). Therefore, since B is almost totally

nonsingular, it follows from (14) that

det A(ij) /= 0 and i � j ⇒ det B(ij) /= 0

⇒ det B(sr) /= 0 whenever i � s� r � j

⇒ det A(sr) /= 0 whenever i � s� r � j.

Similarly, we have

det A(ij) /= 0 and i � j ⇒ det A(sr) /= 0 whenever j � r � s� i.

So A is almost totally nonsingular. �

Example 3. Let

A =
⎛⎜⎜⎝
1 −5 0 0

7 −33 4 0

0 −6 −8 3

0 −12 0 27

⎞⎟⎟⎠ .

Then A is almost totally nonsingular. It is easy to show that

A = LDU =
⎛⎜⎜⎝
1

7 1

0 −3 1

0 −6 6 1

⎞⎟⎟⎠
⎛⎜⎜⎝
1

2

4

9

⎞⎟⎟⎠
⎛⎜⎜⎝
1 −5 0 0

1 2 0

1 3
4
1

⎞⎟⎟⎠ ,

where L, D and U are almost totally nonsingular, respectively.

Lemma 10. Let B = B1B2 · · · Bn−1 = (bij) where all subdiagonal entries αij satisfy (6). If αrs = 0, then

bij = 0 for all i � r and j � s.

Proof. Toprove the result,we apply induction on the ordern ofB. The casen = 2 is trivial. Nowassume

that the result is true for all orders less than n. Observe that

Bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

. . .

1

αn−i+1,1 1

1

. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

. . .
. . .

0 1

0 1

αn−i+2,2 1

. . .
. . .

αni 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= En−i+1(αn−i+1,1)

(
1

B′
i

)
.

Hence, it is not difficult to show that
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B = En(αn1)

(
1

B′
1

)
En−1(αn−1,1)

(
1

B′
2

)
· · · E2(α21)

(
1

B′
n−1

)
= En(αn1) · · · E2(α21)

(
1

B′
1

)
· · ·

(
1

B′
n−1

)
= En(αn1) · · · E2(α21)

(
1

B′
1 · · · B′

n−1

)
. (15)

Set αrs = 0. Then αij = 0 for all i � r and j � s because of the condition (6). Thus, if s = 1, obviously

bi1 = 0 for all i � r by (15); if s > 1, then αi1 = 0 for all i � r, and thus by applying our inductive

assumption, we easily conclude that the result is true by (15). �

Lemma 11. Suppose H = Bn−k · · · Bn−1 = (hij) for any 1� k � n − 1. Then H is a lower banded matrix

with at most k nonzero subdiagonals, where hij = 0 for any i − j > k and hij = αj+1,j · · · αij for any

i − j = k.

Proof. To prove the result, we apply induction on k. The case k = 1 is trivial. Now assume that the

result is true for any r with r < k. Then it is easy to show that the result is true if we consider the form

H = Bn−k(Bn−(k−1) · · · Bn−1)

by using the inductive assumption. �

Next we point out some important facts that will be used. Suppose B = B1 · · · Bn−1 where all

subdiagonal entries αij satisfy the condition (6). Now consider the relevant submatrix B(rs) = B(r −
s + t, . . . , r|t, t + 1, . . . , s) for any r � s. Then

B(r − s + t|1, . . . , t − 1) = 0 with t maximal. (16)

Thus the following statements are true:

• Since B(r − s + t|1, . . . , t − 1) = 0, we must have

αr−s+t,1 = 0,αr−s+t,2 = 0, . . . ,αr−s+t,t−1 = 0. (17)

In fact, if we assume that αr−s+t,1 = · · · = αr−s+t,k−1 = 0 and αr−s+t,k /= 0 (k � t − 1), then
using Lemma 11 it is not difficult to show that

B(r − s + t|k) = (Bn−(r−s+t)+k · · · Bn−1)(r − s + t|k) = αk+1,k · · · αr−s+t,k /= 0

by considering (6), a contradiction.

• If αrs /= 0, then

αr−s+t,t /= 0,αr−s+t+1,t+1 /= 0, . . . ,αrs /= 0. (18)

In fact, if αr−s+i,i = 0 (t � i � s), by Lemma 10, then B(r − s + i, . . . , n|1, . . . , i) = 0. So B(r −
s + i + 1|1, . . . , i) = 0, which contradicts (16).

• It follows that

det B(rs) /= 0 ⇒ αrs /= 0; (19)

otherwise if αrs = 0, by Lemma 10, then B(r, . . . , n|1, . . . , s) = 0. So the relevant submatrix

B(rs) = B(r|s) = 0, a contradiction.

Lemma 12. Suppose B = B1 · · · Bn−1 where all subdiagonal entries αij satisfy the condition (6). Then B

is almost totally nonsingular.

Proof. Consider the relevant submatrix B(rs) = B(r − s + t, . . . , r|t, t + 1, . . . , s) for any r � s. Now

we show that if αrs /= 0, then det B(rs) /= 0.
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Partition the matrices

Bk =
⎛⎜⎜⎝B

(k)
11 0 0

B
(k)
21 B

(k)
22 0

B
(k)
31 B

(k)
32 B

(k)
33

⎞⎟⎟⎠ , k = 1, . . . , n − r + s − 1

where all B
(k)
11 are (r − s + t − 1) × (r − s + t − 1), and all B

(k)
22 are (s − t + 1) × (s − t + 1). Since

B(r − s + t|1, 2, . . . , t − 1) = 0, using (17) we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αr−s+t,1 = 0 ⇒ B

(n−r+s−t+1)
21 = 0, B

(n−r+s−t+1)
31 = 0

αr−s+t,2 = 0 ⇒ B
(n−r+s−t+2)
21 = 0, B

(n−r+s−t+2)
31 = 0

· · · · · · · · · · · · · · ·
αr−s+t,t−1 = 0 ⇒ B

(n−r+s−1)
21 = 0, B

(n−r+s−1)
31 = 0.

Thus

(B1 · · · Bn−r+s−t)(Bn−r+s−t+1 · · · Bn−r+s−1) =
⎛⎝∗ 0 0

0 L 0

0 ∗ ∗

⎞⎠
where L = B

(1)
22 · · · B(n−r+s−1)

22 is unit lower triangular. SetH = Bn−r+s · · · Bn−1. Then it is easy to show

that

B(rs) = LH(r − s + t, . . . , r|t, . . . , s) = LU.

It follows by Lemma 11 that U = (uij) is upper triangular because H has at most r − s nonzero

subdiagonals, where

uii = H(r − s + t + i − 1|t + i − 1)

= αt+i,t+i−1 · · · αr−s+t+i−1,t+i−1, (i = 1, . . . , s − t + 1).

Thus, if αrs /= 0, then using (18) and (6) we have⎧⎪⎪⎨⎪⎪⎩
αr−s+t,t /= 0 ⇒ αt+1,t /= 0, . . . ,αr−s+t−1,t /= 0,

αr−s+t+1,t+1 /= 0 ⇒ αt+2,t+1 /= 0, . . . ,αr−s+t,t+1 /= 0,

· · · · · · · · · · · ·
αrs /= 0 ⇒ αs+1,s /= 0, . . . ,αr−1,s /= 0,

which means that uii /= 0 for all i = 1, . . . , s − t + 1. Hence, we obtain that if αrs /= 0, then

det B(rs) = det L · det U =
s−t+1∏
i=1

uii /= 0.

Thus, it follows by using (19) that

det B(ij) /= 0 and i � j ⇒ αij /= 0

⇒ αrs /= 0 whenever i � r � s� j

⇒ det B(rs) /= 0 whenever i � r � s� j

which means the lower triangular matrix B is almost totally nonsingular. �

Lemma 13. Let B ∈ Cn×n be a unit lower triangular matrix. If B is almost totally nonsingular, then B can

be factorized as B = B1 · · · Bn−1 where all subdiagonal entries αij satisfy (6).

Proof. To prove the result, we apply induction on the order n of B. The case n = 1, 2 is trivial. Now

assume that the result is true for all orders less that n. Set B = (bij). Since B is almost totally nonsingu-

lar, we can assume that b11 /= 0, . . . , br1 /= 0, and br+1,1 = · · · = bn1 = 0. Let α21 = b21
b11

, . . . ,αr1 =
br1

br−1,1
. So α21 /= 0, . . . ,αr1 /= 0. Thus it is not difficult to show that B can be factorized as
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B = Er(αr1) · · · E2(α21)

(
1

B′
)

where B′ is (n − 1) × (n − 1). Furthermore, the (n − 1) × (n − 1) unit lower triangular matrix B′ =
(b

(1)
ij ) satisfies the following statements:

• Since B is almost totally nonsingular, by considering that b11 /= 0, . . . , br1 /= 0, we obtain that

b
(1)
11 = 1,

b
(1)
21 = det B(2, 3|1, 2)

b21
= det B(32)

det B(21)

/= 0, . . . , b
(1)
r−1,1

= det B(r − 1, r|1, 2)
br−1,1

= det B(r2)

det B(r−1,1)

/= 0.

Set j � i � r − 1. Thus the relevant submatrix B′
(ij) = B′(i − j + 1, . . . , i|1, . . . , j), and

det B′
(ij) =

1

bi−j+1,1

det B(i − j + 1, i − j + 2, . . . , i + 1|1, 2, . . . , j + 1)

= 1

bi−j+1,1

det B(i+1,j+1).

• Set j � i and i > r − 1. Since br+1,1 = · · · = bn1 = 0, it is not difficult to show that the relevant

submatrix B′
(ij) = B(i+1,j+1).

Therefore, it follows that B′ is also almost totally nonsingular. Applying the inductive assumption to

B′, we have the factorization

B = Er(αr1) · · · E2(α21)

(
1

B′
1 · · · B′

n−1

)
where each (n − 1) × (n − 1)matrix B′

i is of the form (1) with all subdiagonal entries αij (2� i, j � n)
satisfy (6). In particular, according to the argument above, we have

αr2 = b
(1)
r−1,1

b
(1)
r−2,1

/= 0.

Notice that αr1 /= 0 and αl1 = 0 for l > r. Thus we easily conclude that the result is true by

using (15). �

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let A ∈ Cn×n be nonsingular. First assume that A is almost totally nonsingular.

Theorem 9 implies that it can be factorized as A = BDC, where D is a nonsingular diagonal matrix, and

B (C) is a unit lower (upper) triangular and almost totally nonsingularmatrix. Thus the result is true by

applying Lemma 13 to B and CT . Conversely, using Theorem 9 and Lemma 12 we have that A is almost

totally nonsingular. �
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