Removable edges in a 5-connected graph and a construction method of 5-connected graphs☆

Liqiong Xuᵃ,ᵇ, Xiaofeng Guoᵃ,*

ᵃSchool of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China
ᵇSchool of Sciences, Jimei University, Xiamen 361021, China

Received 1 April 2004; received in revised form 17 March 2006; accepted 27 September 2006
Available online 22 April 2007

Abstract

An edge e of a k-connected graph G is said to be a removable edge if G \(\cong e \) is still k-connected. A k-connected graph G is said to be a quasi \((k + 1) \)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormald, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465–473; H. Jiang, J. Su, Minimum degree of minimally quasi \((k + 1) \)-connected graphs, J. Math. Study 35 (2002) 187–193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245–256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217–228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74–87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434–438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs \((k \geq 5) \) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to \(K_6 \). For a k-connected graph G such that end vertices of any edge of G have at most \(k - 3 \) common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from \(K_6 \) by a number of \(\theta^+ \)-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either \(K_{k+1} \) or the graph \(H_{k/2+1} \) obtained from \(K_{k+2} \) by removing \(k/2 + 1 \) disjoint edges, and, if k is odd, G is isomorphic to \(K_{k+1} \).

© 2007 Elsevier B.V. All rights reserved.

Keywords: Removable edge; Contractible edge; Quasi connectivity; \(\theta^+ \)-Operation

1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [4]. We consider only finite and simple graphs.

Connectivity of graphs is a fundamental topic in graph theory research. For properties and constructions of several classes of k-edge-connected graphs and k-connected graphs, many investigations have been made [9,14–17,19,20,24,25].

☆ The Project Supported by NSFC (No. 10331020), the 985 Invention Project on Information Technique of Xiamen University (2004–2007), and the Science Foundation of Jimei University (4411 c60652).
* Corresponding author.
E-mail address: xfguo@xmu.edu.cn (X. Guo).

0012-365X/S - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2006.09.047
A construction method for minimally \(k \)-edge-connected graphs was given by Habib [9]. A construction method for critically \(k \)-edge-connected graphs was given by Zhang et al. [32]. For \(k \)-connected graphs, Tutte [27,28] gave some construction methods for 2-connected graphs and 3-connected graphs, and Dirac [6] gave a construction method for minimally 2-connected graphs. In Ref. [31], Zhang and Guo investigated reducible chains of several classes of 2-connected graphs, and gave a construction method for minimally, critically, and critically and minimally 2-connected graphs. Mader, Maure, Slater, and Su [16,19,20,24] investigated properties of \(k \)-critical \(n \)-connected graphs and \(k \)-minimally \(n \)-edge-connected graphs. Contractible edges in \(k \)-connected graphs and properties of contractible-critical graphs are investigated by Egawa, Enomoto, Kawarabayashi, Ando, Su, and Yuan et al. [1,2,7,8,12,13,18,25,30].

For removable edges of \(k \)-connected graphs, Holton et al. [10] first defined removable edges in a 3-connected graph. Later, Yin [29] defined removable edges in a 4-connected graph. The concept of removable edges in a 3-connected graph and a 4-connected graph can be generalized to \(k \)-connected graphs.

Definition 1. Let \(G \) be a \(k \)-connected graph, and let \(e \) be an edge of \(G \). Let \(G \cup e \) denote the graph obtained from \(G \) by the following operation: (1) delete \(e \) from \(G \) to get \(G - e \); (2) for any end vertex of \(e \) with degree \(k - 1 \) in \(G - e \), say \(x \), delete \(x \) and then add edges between any pair of non-adjacent vertices in \(N_{G - e}(x) \). If \(G \cup e \) is \(k \)-connected, then \(e \) is said to be a removable edge of \(G \), otherwise \(e \) is said to be non-removable. The set of all non-removable edges of \(G \) and the set of all removable edges of \(G \) are denoted by \(E_N(G) \) and \(E_R(G) \), respectively.

Barnette and Grünbaum [3] proved that a 3-connected graph of order at least five has a removable edge. Based on the above graph operation and fact, a constructive characterization of minimally 3-connected graphs was given by Dawes [5], which differs from the characterization provided by Tutte [27]. The graph \(C_n^2 \), for an integer \(n \geq 4 \), is defined as follows. Let \(C_n = v_1v_2 \cdots v_nv_1 \) be an \(n \)-cycle. Then \(C_n^2 \) is obtained from \(C_n \) by adding edges \(uv \), satisfying that \(j \equiv i \pm 2 \mod n \), for each \(1 \leq i \leq n \).

In [29], Yin also proved that the graph without removable edge is either \(C_5^2 \) or \(C_6^2 \). Based on this result, he provided a constructive characterization of 4-connected graphs, which is simpler than Slater’s method [23].

On the other hand, Politof and Satyanarayana [21,22] introduced the concept of quasi-4-connected graphs and investigated their structure and properties. Jiang and Su [11] further investigated some properties of quasi \(k \)-connected graphs.

Let \(S \) be a vertex cut set of a graph \(G \) with \(|S| = k \) \((k \geq 2)\). \(S \) is said to be a nontrivial \(k \)-separator of \(G \), if the set of the components of \(G - S \) can be partitioned into two sets, each of which has to contain at least two vertices. A \(k \)-connected graph is quasi-(\(k + 1 \))-connected if it has no nontrivial \(k \)-separator. Clearly, every \(k \)-connected graph is quasi-\(k \)-connected. A quasi-\(k \)-connected graph \(G \) is minimally quasi-\(k \)-connected if \(G - uv \) is not quasi-\(k \)-connected for all \(uv \in E(G) \).

For the removable edges, non-removable edges, and quasi connectivity of a graph \(G \), the following results are given in [10,11,26,29].

Theorem 1 (Holton et al. [10]). Let \(G \) be a 3-connected graph of order at least six and \(e = xy \in E(G) \). Then \(e \) is non-removable if and only if there exists \(S \subseteq V(G) \) with \(|S| = 2 \) such that \(G - e - S \) has exactly two components \(A, B \) with \(|A| \geq 2 \) and \(|B| \geq 2 \), moreover \(x \in A, y \in B \).

Theorem 2 (Yin [29]). Let \(G \) be a 4-connected graph of order at least seven and \(e = xy \in E(G) \). Then \(e \) is non-removable if and only if there exists \(S \subseteq V(G) \) with \(|S| = 3 \) such that \(G - e - S \) has exactly two components \(A, B \) with \(|A| \geq 2 \) and \(|B| \geq 2 \), moreover \(x \in A, y \in B \).

Theorem 3 (Yin [29]). A 4-connected graph without removable edge is either \(C_5^2 \) or \(C_6^2 \).

Theorem 4 (Politof and Satyanarayana [22]). If \(G \) is minimally quasi 4-connected, then \(\delta(G) = 3 \).

Theorem 5 (Jiang and Su [11]). If \(G \) is minimally quasi 5-connected, then \(\delta(G) = 4 \).

Let \(G \) be a minimally quasi-(\(k + 1 \))-connected graph. Let \(xy \) be any edge in \(G \), let \(S \subseteq V(G) \) be a minimum vertex cut of \(G - xy \), and let \(A \) and \(B \) be two connected components of \(G - xy - S \). Then \(A \) and \(B \) are called \((xy, S)\)-fragments of \(G \).
A \((xy, S)\)-fragment of \(G\) is called a \((xy, S)\)-atom of \(G\) if \(A\) has the minimum cardinal number in all \((xy, S)\)-fragments of \(G\).

Theorem 6 (Jiang and Su [11]). Let \(G\) be a minimally quasi-\((k + 1)\)-connected graph with \(\delta(G) = k + 1\), and let \(A\) be a \((xy, S)\)-atom of \(G\). Then \(|A| = 2\). Let \(A = \{x, y\}\), then \(xy \in E(G)\), \(d_G(x) = d_G(y) = k + 1\), and \(|N_G(x) \cap N_G(y)| = k - 1\).

Theorem 7 (Jiang and Su [11]). Let \(G\) be a minimally quasi-\((k + 1)\)-connected graph with girth \(g(G) \geq 4\). Then \(\delta(G) = k\).

In fact, from Theorem 6, we have the following stronger conclusion.

Theorem 8. Let \(G\) be a minimally quasi-\((k + 1)\)-connected graph for which two end vertices of any edge of \(G\) have at most \(k - 2\) common adjacent vertices. Then \(\delta(G) = k\).

An \(s\)-hyperoctahedral graph \(H_s\), for an integer \(s \geq 2\), is the graph obtained from \(K_{2s}\) by removing \(s\) disjoint edges.

In this paper, we first investigate the relation between quasi connectivity and removable edge. Based on the relation, the existence of removable edge in \(k\)-connected graphs \((k \geq 3)\) is investigated. It is proved that a \(5\)-connected graph has no removable edge if and only if it is isomorphic to \(K_6\). For a \(k\)-connected graph \(G\) such that end vertices of any edge of \(G\) have at most \(k - 3\) common adjacent vertices, it is also proved that \(G\) has a removable edge. Consequently, a recursive construction method of \(5\)-connected graphs is established, that is, any \(5\)-connected graph can be obtained from \(K_6\) by a number of \(\theta^+\)-operations. We conjecture that, if \(k\) is even, a \(k\)-connected graph \(G\) without removable edge is isomorphic to either \(K_{k+1}\) or \(H_{k+1}\), and, if \(k\) is odd, \(G\) is isomorphic to \(K_{k+1}\). It is pointed out that the conclusion of Theorem 3 can be more easily proved by using the method in this paper.

2. Removable edges in a \(5\)-connected graph

For \(k\)-connected graphs \((k \geq 3)\), we have the following conclusion which is a generalization of Theorems 1 and 2.

Theorem 9. Let \(G\) be a \(k\)-connected graph of order at least \(k + 3\) \((k \geq 3)\), and \(e = xy \in E(G)\). Then \(e\) is non-removable if and only if there exists \(S \subseteq V(G)\) with \(|S| = k - 1\) such that \(G - e - S\) has exactly two components \(A, B\) with \(|A| \geq 2\) and \(|B| \geq 2\), moreover \(x \in A, y \in B\).

Proof. Suppose \(e = xy\) is non-removable, then \(G \ominus e\) is not \(k\)-connected. Since \(|G| \geq k + 3\), \(|G \ominus e| \geq k + 1\), there exists \(S \subseteq V(G \ominus e)\) with \(|S| = k - 1\) such that \((G \ominus e) - S\) is disconnected. Then \(G - e - S\) is disconnected. Since \(G\) is \(k\)-connected, \(G - e - S\) has exactly two components \(A, B\) with \(x \in A, y \in B\). Assume \(|A| = 1\). Then \(A = \{x\}\). \(d_{G-e}(x) = k - 1\). Hence \(x\) is deleted in \(G \ominus e\). This implies that \((G \ominus e) - S\) is connected, a contradiction. Thus we have \(|A| \geq 2\). Similarly, we have \(|B| \geq 2\).

Conversely, suppose there exists \(S \subseteq V(G)\) with \(|S| = k - 1\) such that \((G \ominus e) - S\) is connected, but \((G \ominus e) - S\) has exactly two components \(A, B\) with \(|A| \geq 2\) and \(|B| \geq 2\). Since \((V(G) = V(G \ominus xy) \cup \{x, y\}\), \(G \ominus e - S\) has two components \(A' \subseteq A\) and \(B' \subseteq B\) with \(A' \cup \{x\} = A\) and \(B' \cup \{y\} = B\). Since \(|A| \geq 2\) and \(|B| \geq 2\), then \(|A'| \geq 1\) and \(|B'| \geq 1\). Hence \(S\) is a \((k - 1)\)-separator of \(G \ominus e\), \(G \ominus e\) is \((k - 1)\)-connected, so \(e\) is non-removable.

Theorem 10. Let \(G\) be a \(k\)-connected graph of order at least \(k + 3\) \((k \geq 3)\), and \(e = xy \in E(G)\). Then \(e\) is non-removable if and only if \(G - e\) is not quasi-\(k\)-connected.

Proof. Suppose \(e\) is non-removable, by Theorem 9, there exists \(S \subseteq V(G - e)\) with \(|S| = k - 1\) such that \((G - e - S)\) has exactly two components \(A, B\) with \(|A| \geq 2\) and \(|B| \geq 2\). Hence \(S\) is a nontrivial \((k - 1)\)-separator of \(G - e\), \(G - e\) is not quasi-\(k\)-connected.

Suppose \(G - e\) is not quasi-\(k\)-connected, then there exists a nontrivial \((k - 1)\)-separator \(S\) of \(G - e\) such that the components of \(G - e - S\) can be partitioned into two sets, each of which has at least two vertices. Since \(G\) is \(k\)-connected, \(G - e - S\) has exactly two components. By Theorem 9, \(e\) is non-removable.
Theorem 11. Let G be a k-connected graph of order at least $k + 3$ ($k \geq 3$). Then G has no removable edge if and only if G is minimally quasi-k-connected.

Proof. Suppose G has no removable edge, then by Theorem 10, for any edge e of G, $G - e$ is not quasi-k-connected. On the other hand, since G is k-connected, G is quasi-k-connected, hence G is minimally quasi-k-connected.

Suppose that G is minimally quasi-k-connected, for any edge e of G, $G - e$ is not quasi-k-connected, by Theorem 10, e is non-removable, then G has no removable edge. □

Theorem 12. Let G be a 5-connected graph. Then G has no removable edge if and only if $G \cong K_6$.

Proof. Suppose G has no removable edge. If $|G| \geq 8$, G is minimally quasi 5-connected by Theorem 11. By Theorem 5, $\delta(G) = 4$. This contradicts that G is 5-connected. Hence $|G| \leq 7$.

If $|G| = 6$, it is only possible that $G \cong K_6$. K_6 has no removable edge obviously.

If $|G| = 7$, then the only possibility is that $G \cong K_7$ or G is obtained by removing s disjoint edges from K_7 ($s = 1, 2, 3$).

If $G = K_7$, obviously, G has removable edges, a contradiction.

If G is obtained by removing one edge or two disjoint edges from K_7, then there exists an edge of G whose end vertices have degree 6. Hence $G \oplus e = G - e$, and $\delta(G \oplus e) = 5$. Then $G \oplus e$ is 5-connected, e is a removable edge of G, a contradiction.

If G is obtained by removing three disjoint edges from K_7, it can be checked directly that an edge of G with an end vertex of degree 6 is a removable edge, again a contradiction. □

Since the minimum degree of a minimally quasi 4-connected graph is three, by a similar reasoning as in the proof of Theorem 12, the conclusion of Theorem 3 can be proved more easily.

Theorem 13. Let G be a k-connected graph ($k \geq 6$) such that end vertices of any edge of G have at most $k - 3$ common adjacent vertices. Then G has a removable edge.

Proof. Suppose that G has no removable edge.

If $|G| \geq k + 3$, it follows from Theorems 8 and 11 that $\delta(G) = k - 1$, contradicting that G is k-connected.

If $|G| = k + 1$, then $G \cong K_{k+1}$. Obviously end vertices of any edge of K_{k+1} have $k - 1$ common adjacent vertices, which contradicts the condition of the theorem.

If $|G| = k + 2$, then G can only be the graphs obtained from K_{k+2} by removing s disjoint edges ($s = 1, 2, \ldots, \lfloor k/2 + 1 \rfloor$). End vertices of any edge of G have at least $k - 2$ common adjacent vertices since they have k common adjacent vertices in supergraph K_{k+2} of G. This contradicts the condition of the theorem.

The proof is thus completed. □

From the proof of Theorem 13, it can be seen that, if the minimum degree of a minimally quasi-k-connected graph G is equal to $k - 1$, then the conclusion in the following conjecture would hold.

Conjecture 14. Let G be a k-connected ($k \geq 3$). G has no removable edge if and only if either $G \cong K_{k+1}$ for k being odd, or G is isomorphic to either K_{k+1} or $H_{k/2+1}$ for k being even.

3. A recursive construction method of 5-connected graphs

By the definition of a removable edge of k-connected graphs, we can define the following operations.

Definition 2. Let G be a k-connected graph, let e be a removable edge of G, and let $H = G \oplus e$. Then H is said to be obtained from G by a θ^+-operation, denoted by $H = \theta^+(G)$, and G is said to be obtained from H by a θ^--operation, denoted by $G = \theta^-(H)$. A θ^+-operation is said to be the inverse operation of θ^--operation, and vice versa.

Let G be a 5-connected graph, and let $e = xy$ be a removable edge of G. Let $E_x = \{x_i x_j | x_i, x_j \in N_{G-e}(x), x_i x_j \notin E(G)\}$, and let $E_y = \{y_i y_j | y_i, y_j \in N_{G-e}(y), y_i y_j \notin E(G)\}$.
A θ^--operation $H = \theta^-(G) = G \ominus e$ is one of the following three operations:

1. if $d_G(x) \geq 6$ and $d_G(y) \geq 6$, $H = G \ominus e = \theta^-(G) = G - e$;
2. if $d_G(x) = 5$ and $d_G(y) \geq 6$, $H = G \ominus e = \theta^-(G) = G - x + E_x$;
3. if $d_G(x) = d_G(y) = 5$, $H = G \ominus e = \theta^-(G) = G - x - y + E_x + E_y$.

In order to give an exact definition of a θ^+-operation, we need the following theorem.

For a k-connected graph G and a minimum vertex cut T of G, the vertex set of a connected component of $G - T$ is called a T-fragment of G. A subset S of $V(G)$ is called a fragment of G if there is a minimum vertex cut T of G such that S is a T-fragment. A fragment of G is called an end fragment of G if its any proper subset is not a fragment of G.

Theorem 15. Let H be a 5-connected graph, let $X = \{x_1, x_2, x_3, x_4\} \subset V(H)$ and $Y = \{y_1, y_2, y_3, y_4\} \subset V(H)$ such that $H[X] \cong K_4$ and $H[Y] \cong K_4$, and let $E_X \subseteq E(H[X])$ and $E_Y \subseteq E(H[Y])$. Then

(i) $G_X = (H - E_X) + x + \{xx_i|i = 1, 2, 3, 4\} + xy$ is 5-connected if and only if $\kappa(H - E_X) = \kappa(G_X - x) \geq 4$, where $x \notin V(H)$, $y \in V(H) \setminus X$;

(ii) $G_{XY} = (H - E_X - E_Y) + x + y + xy + \{xx_i|i = 1, 2, 3, 4\} + \{yy_i|i = 1, 2, 3, 4\}$ is 5-connected if and only if $|X \cap Y| \leq 3$, $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) \geq 3$, and, if $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) = 3$, any end fragment of $H - E_X - E_Y$ contains a vertex in X and a vertex in Y, where $x, y \notin V(H)$.

Proof. The necessity is obvious. We need only to prove the sufficiency.

(i) If $\kappa(H - E_X) = \kappa(G_X - x) \geq 5$, then G_X is 5-connected clearly. Now suppose $\kappa(H - E_X) = \kappa(G_X - x) = 4$. Let T be any minimum vertex cut of $H - X$. Since H is 5-connected, any fragment of $H - E_X$ contains a vertex in X, and so T will not be a vertex cut in G_X. Hence G_X is 5-connected.

(ii) If $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) \geq 4$, by a similar reasoning as in the proof of (i), G_{XY} is 5-connected.

Suppose $\kappa(H - E_X - E_Y) = \kappa(G_{XY} - x - y) = 3$. For any minimum vertex cut T of $H - E_X - E_Y$, since any end fragment of $H - E_X - E_Y$ contains both a vertex in X and a vertex in Y, any connected component of $H - E_X - E_Y - T$ contains both a vertex in X and a vertex in Y, and so any one of $T, T \cup \{x\}$, and $T \cup \{y\}$ will not be a vertex cut of G_{XY}. For a vertex cut S of $H - E_X - E_Y$ with $|S| = 4$, any connected component of $H - E_X - E_Y - S$ contains either a vertex in X or a vertex in Y, since H is 5-connected. Therefore, S is also not a vertex cut of G_{XY}. Now it follows that G_{XY} is 5-connected. □

Definition 3. Let H be a 5-connected graph, and let $X = \{x_1, x_2, x_3, x_4\} \subset V(H)$ and $Y = \{y_1, y_2, y_3, y_4\} \subset V(H)$ such that $H[X] \cong K_4$ and $H[Y] \cong K_4$. Let G be a 5-connected graph obtained from H by a θ^+-operation. Then the θ^+-operation is one of the following three operations:

1. $G = \theta^+(H) = H + xy$, where $x, y \in V(H)$, and $xy \notin E(H)$;
2. $G = \theta^+(H) = H - E_X + x + \{xx_i|i = 1, 2, 3, 4\} + xy$, where $x \notin V(H)$, $y \in V(H) \setminus X$, and $E_X \subseteq E(H[X])$ such that $\kappa(H - E_X) = \kappa(G - x) \geq 4$;
3. $G = \theta^+(H) = H - E_X - E_Y + x + y + xy + \{xx_i|i = 1, 2, 3, 4\} + \{yy_i|i = 1, 2, 3, 4\}$, where $x, y \notin V(H)$, $|X \cap Y| \leq 3$, and $E_X \subseteq E(H[X])$ and $E_Y \subseteq E(H[Y])$ such that $\kappa(H - E_X - E_Y) = \kappa(G - x - y) \geq 3$, and, if $\kappa(H - E_X - E_Y) = \kappa(G - x - y) = 3$, any end fragment of $H - E_X - E_Y$ contains both a vertex in X and a vertex in Y.

By Theorem 12, we can give a recursive construction method of 5-connected graphs.

Theorem 16. Let G be a 5-connected graph. Then (i) G can be transformed into K_6 by a number of θ^--operations; (ii) G can be obtained from K_6 by a number of θ^+-operations.

Proof. (i) Suppose G is 5-connected graph, and G is not isomorphic to K_6. Then, by Theorem 12, G has a removable edge, say e_1, and $G_1 = \theta^-(G) = G \ominus e_1$ is a 5-connected graph with less edges or less vertices than G. Repeating the above discussion, by the finiteness of G, we can obtain a series of 5-connected graphs G_1, G_2, \ldots, G_t so that $G_{i+1} = \theta^-(G_i)$, $i = 1, 2, \ldots, t - 1$, and $G_t \cong K_6$.

(ii) By the inverse operations of θ^--operations in (i), G can be obtained from K_6 by a number of θ^+-operations. □
Remark. We want to point out that the above recursive construction method of 5-connected graphs would be able to be generalized into \(k \)-connected graphs if Conjecture 14 could be proved.

References

[7] Y. Egawa, Contractible edges in \(n \)-connected graphs with minimum degree greater than or equal to \(\left\lceil \frac{5}{4} n \right\rceil \), Graphs Combin. 7 (1991) 15–21.