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The paper introduces a general class of Tate-like zeta functions and proves an 
analytic continuation and a general formula for the values of such zeta functions at 
negative integral arguments. In particular these zeta functions discussed include the 
Shintani zeta functions and the results generalize his formula for the value of such 
zeta functions at negative integral arguments. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, we develop the elements of a theorem of zeta functions of 
several complex variables. The zeta functions we consider are generalizations 
of the usual zeta functions of algebraic number theory. We are able to 
establish, under rather mild hypotheses, theorems concerning their analytic 
continuations, behavior at singular points and values at negative integral 
vectors. The one variable version of the methods we use was described 
briefly in [4]. By using the methods developed here, one can replace various 
classical arguments involving contour integration (especially loop integrals 
of Hankel type) with rather intrinsic arguments which generalize to several 
variables. Very roughly, our viewpoint is this: Instead of considering the zeta 
function directly, we consider it as a Mellin transform of a suitable function. 
We read off the properties of the zeta function from the properties of this 
function. In particular, we show that the values of our zeta functions at 
negative integral vectors may be calculated in terms of various derivatives of 
their inverse Mellin transforms. As a special case, we obtain a new proof of 
and a generalization of Shintani’s recent theorem [5] on the value of a 
generalized Hurwitz zeta function at negative integers. 
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Let us now describe the zeta functions considered. Let IR + denote the 
multiplicative group of positive real numbers, n a positive integer D a 
discrete subset of 

lR~=rn+x...xR+ (n copies). 

Denote a typical element of D by 

Let si, So,..., s, be complex variables and set s = (si,..., s,). Further, let 
Q: D -+ C be any complex valued function and C&s) a Dirichlet series of the 
form 

where we have employed the symbolic notation 

The organization of this paper is as follows: In Section 2, we introduce 
certain Mellin transforms in n complex variables. We study the analytic 
continuation of these Mellin transforms and their values at nonpositive 
integral vectors. Section 2 considers only Mellin transforms of Schwartz 
functions on a certain space G. Actually, the zeta functions which one meets 
in practice have Mellin transforms which are not Schwartz functions in that 
they possess singularities at the origin. In Section 3, we study such Mellin 
transforms by considering the space of Schwartz functions corresponding to 
a covering of the space G. In Section 4, we investigate the properties of 
&,Js). Section 5 is devoted to examples and Section 6 proves an integrality 
theorem which implies certain arithmetic information about the values of 
certain Mellin transforms at nonpositive integral arguments. In particular, we 
derive a formula for Shintani’s generalized Hurwitz zeta functions at -m 
(m E Z, m >, 0) which is somewhat more explicit than given by Shintani. 

2. MELLIN TRANSFORMS AND ANALYTIC CONTINUATIONS 

Let G=R:. Then G is a locally compact abelian group, whose Haar 
measure we normalize to be 

d+3$x . . . x$., 

n 
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where a’y, ,..., dy, denote Lebesgue measure on the real line. Let R+ = 
I?, U {0} = [0, co) and set 6= RI. 

Typically, let m denote a vector (m, ,..., m,) E Z” n G. Let g,,, denote the 
monomial differential operator 

acting on the algebra of complex-valued Cm functions on G. 
Associated to y = (y, ,..., y,) E G and s = (si ,..., s,) E C”, we define the 

quasi-character x,(y) = y’ via 

x,(y) = y’ = y;’ * - * yff. 

For a complex-valued function f on G, we define the Mellin transform 
CD(f s) via 

@pdfl s,=/ f(Y)Y’dXY, 
G 

for all values of s for which the integral converges. 
We will say that f is C”O on G provided that f is C” on G in the usual 

sense and that f is P-differentiable from the right at all points in c - G. 
Note that if f is C”O on c, then iSmf is also C” on G. Let Y(G) denote the 
Schwartz space of G. That is, a function8 G+ C belongs to Y(G) provided 
that f is C”O on G and that for any polynomial P on G and any m, the 
function Pamf is bounded on G. It is clear that Y(c) is a complex vector 
space and that 22,,, acts as an endomorphism of Y(G). Furthermore, it is 
clear that if f E Y(G), then 

is defined and represents an analytic function of si,..., s, provided that 
Re(s) = (Re(s,),..., Re(s,)) > 0, where the inequality is to be interpreted 
coordinate-wise. 

If f E S@(G), define pdf, s) via 

@dr; s) 
c4.L s) = T(s)’ T(s) = I+,) * * * I+,). 

It is clear from the above discussion that oV; s) is an analytic function of 
s, ,..., s, provided that Re(s) > 0. In most examples of interest, ou, s) will 
turn out to be a Dirichlet series in the n complex variables s, ,..., s,. 
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Therefore, it is significant to consider the problem of analytically continuing 
9(x s) and determining its values at vectors s = -m. It is convenient to note 
that if f(y) = e-YI-“‘-yn, then fe Y(c) a trivial computation shows that 
cp(f, s) = 1. 

THEOREM 2.1. LetfE.-V(G). 

(a) If Re(s) > 0, then 

fp(J s) = (- l)tr(m) p(G,f, s + m). (2.1) 

(b) rp(f, s) is an entire function of s = (s, ,..., s,). 

cc> df, -ml = (-lY’m’(~mf>(0), (2.2) 

wheretr(m)=m,+...+m,. 

Proof. (a) Apply repeated integration by parts to the definition of 
@(f, s) to obtain 

(-l)tr(m) @(GSmf, s + m) 

*(JS)=~~s~Sj(Sj+l)"a(Sj+mj-l) 

. @(gmf, s + ml (Re(s) > 0). 

Note that we can justify differentiation under the integral sign easily from 
the hypothesis f E 9’(G). Assertion (a) now follows directly from the 
definition of rp(f, s). 

(b) The right side of Eq. (2.1) is defined and analytic for Re(s) > -m. 
Therefore, cr(f, s) is defined and analytic for Re(s) > -m. Since m is 
arbitrary, assertion (b) follows. 

(c) We first prove that if f E Y(c) and f(0) = 0, then there are 
functions fi ,..., f, E Y(G) such that f(y) =Y,~,(Y) + a.- + Y&(Y). The 
proof is by induction on n. Let g(y) = f (y, ,..., y,_ I, 0). Then g E Y(i?? :- ‘) 
and g(0) = 0. We assume as induction hypothesis that there are functions 
g, ,..., g,- , E Y(iFi :- ‘) such that 

g=y,g, + *** +yn-lgn-l. 

For 1 <j < n - 1, let 

Then fj E Y(c). However, if 

NY) =f(y) -Y,f,(Y) - ..* -v,-d-l(Y), 
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then-h E Y(G) and h(y, ,..., y,-r, 0) = 0. Thus, there exists a C”O functionf, 
on G such that h(y) = y,&(y). S ince h E Y(G), we have f, E Y(G) and 

h(Y) =Y”f,(Y) =f(y) -YJl(Y) - *** --YeLL-l(Y)¶ 

and the desired decomposition off(y) has been determined. 
Let us now prove assertion (c). By the above argument, there exist 

functions f, ,...,f, E Y(G) such that 

f(~)=f(O)e-y’-“‘-Yn+~~f~(~) + -a- +AJ,(Y). 

Therefore, applying p(., s) to both sides of this equation gives 

cp(f, s) =f(O) qo(eey’-’ ’ * -Yn, s) + CP(Y JAY 5) + .-- + fdY,f,, s) 

=m + 4YJl9 s) + .‘. + O(Y,f,, Sk (2.3) 

Clearly, 

@(Y,f, s) = WA s 13***9 Si-17 Si + l9 si+ 17***9 s”) (1 <i<n), 

so that by the definition of 9, we have 

where e, is the unit vector 

ei = (0, 0 ,..., l,..., 0). 
T 
i 

Therefore, by (2.3) and (2.4), we have 

VU s) =fW t s,cp(f,, s t e,) + *a- t sn&fn, s t e,). 

Since all terms in the above sum are entire in s (by (b)), we may set s = 0 to 
obtain 

cocf, 0) =f@>* (2.5) 

To complete the proof of (c), merely replace s by -m in (2.1) and apply 
(2.5). 
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3. MELLIN TRANSFORMS OF FUNCTIONS 
WHICH ARE NOT REGULAR AT THE ORIGIN 

In the preceding section, our main result evaluates the Mellin transform 
cp(f, -m) of a Schwartz function f on G at a nonnegative, integral vector 
-m. In this section, we extend that result to include functions f with a 
singularity at the origin. The best known such function is simply f(y) = 
l/(e” - 1) (y E I?,), whose Mellin transform cp(f, s) is the Riemann zeta 
function 4’(s). In this example, the singularity off at the origin may be 
removed using a simple device. Namely, introduce g(y) = yf( y). Then g(y) 
belongs to P(i??+) and 

Thus, by Theorem 2.1, s&s + 1) is entire and its values at negative integers 
-m are given in terms of Bernoulli numbers as follows: 

-mC(l -m) =B,, Y where -= 
ey - 1 

? !.Lt”. 
k:o k! 

Note that at m = 0 we recover the residue of l(s) at s = 1 as B, = 1. In the 
present section, we shall generalize the above example. 

Let us begin by defining the class of functions f to which our theory 
applies. Let 

K = {y E GI tr(y) = 1). 

Then K is a compact, connected subset of G. Note that K is a fundamental 
domain for the action of coordinate-wise multiplication of IR + on 6; namely 
for t,, t, distinct nonnegative real numbers, we have 

t,Knt,K=0, 

and 

u tK = G. 
tcR+ 

Define G* E R:” via 

G*=R+xK, 

endowed with the product topology. Let x: G* -+ G be the natural covering 

n(t, k) = tk. 
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Then 7c is l-l on IR, X K. However, n-‘(O) = {0} X K. In other words, G* 
is a covering of c in which the origin is “blown up.” Any function f on G 
can be pulled back to a function f * on G* via 

$*(t, 4 =fW. 

Say that a function g on G* is C”O provided that it is C” in the usual sense 
on I?+ x K and that it is P-differentiable from the right on (0) x K. Let 
9’(G*) denote the space of Schwartz functions on G*. That is, Y(G*) 
consists of all complex-valued P functions g on G* such that any order 
derivative of g multiplied by any polynomial (in the natural coordinates on 
G*) is bounded. Roughly speaking, the requirement that f * belong to 
.Y(G*)_guarantees thatfis well behaved when restricted to lines through the 
origin. 

Note that 

fE:,i"(t+f*EsY(G*). 

However, observe that there exist functions f on G such that f * E Y(G*) 
but for whichfe Y’(G). For example, set 

h(Y,,Y,) = 
1 

(ewCvI + 2~~) - lNwWI + Y2) - 1) ’ 
(YITY2) E fz- {Oh 

f(Y, TYZ) =Yl Y*h(Y, ,Y*)* 

It is easy to see that f * E Y(G*) but nevertheless f 6C Y(G), due to the 
singularity off at the origin. 

Let r be a real number, f a complex-valued function on G-- {O}. We say 
that f is r-admissible provided that 

exists for all k E K and that the function UJ on G* defined by 

Urf (4 k) = UW) (t f 01, 

= ‘,‘y t’S(tk) (t = o>, + 

belongs to Y(G*). In what follows, we shall study the behavior of the 
Mellin transform (pu s) in a neighborhood of s = 0, where f is r-admissible 
for some t. As we shall see subsequently, the class of r-admissible functions 
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leads to many significant Mellin transforms including the generalized 
Hurwitz zeta function of Shintani. 

Let r now be a nonnegative integer and assume that f is an r-admissible 
function. Then U,f E Y(G*), so that for y E G - {0}, the following 
derivatives are defined: 

f,(Y) = l ___ (“)“+r 0wY)) / (v + I)! at 
(v = -I, -r + 1, -r + 2 )... ). 

t=o 

Moreover, f, is CY on G- (0) and is homogeneous of degree V. We shall 
call f, the vth homogeneous component ofJ: By applying Taylor’s theorem to 
UJ we derive that for N >, -I, 

f(tk)= i f,(k) t" + o(t”) 
v= -r 

(t + 0). 

The constant in the o-term is uniform in k since K is compact. An equivalent 
formulation to the above is 

f(y)= 5 f,(y)+o(W)") 
,'Z -r 

as y -+ 0 in G - {O}. We refer to the formal sum 

2 f”(Y) 
L’C -r 

as the (formal) Laurent expansion off about 0. 
Let d”k be the measure on K such that 

Concretely, if K is represented as the image of {(k, ,..., k,_ I) E I??:-’ ( 
k, + ... + k,-, < 1) via the map 

(U I,***, u,- 1 )k-+ (ul )...) q-1, 1 -u,- a*’ -Un-l), 

then 

d’k = du, --- du,-,/u,uz a.. u,,-~(I -u, - .a. -u,-~). 
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Let f be an r-admissible function on G- {0 } for some nonnegative integer 
r. Then in particular, UJ is a bounded function on G*; t’f(fk) is a bounded 
function on G - {O}. We may write the Mellin transform odf, s) off as 

d.L s) = &Jcf(YMY) dXY 

1 
=- 

I 1 T(s) R+ K 
f(tk)xJtk)d”k$. 

Thus, since K is compact, we see that rp(J s) is analytic for Re(s) > 0. If we 
examine the proof of Theorem 2.la, we see that it applies equally well in 
case f is only r-admissible. Namely if Re(s) > 0, we have 

pdf, s) = (-l)tr(m) q@& s + m) (3.1) 

for any m E Z”, m > 0. In what follows, we shall show that odf, s) is a 
meromorphic function of s. Therefore, by analytic continuation, (3.1) will 
hold for all values of s for which qdf, s) is holomorphic. 

If h is any P function on K, set 

A(h, s) = j$, h(k)x,(k) dxk. K 

We may now state the main result of this section. 

THEOREM 3.1. Let f be r-admissible on 6 - {0}, where r is a 
nonnegative integer. 

(a) qdr; s) is meromorphic in s. In fact, q(J; s) is holomorphic for 
tr(s) & {r, r - 1, r - 2 ,... }. Suppose that v E I-r, -r + 1, -r + 2 ,... }. Then 

AC.&“, s> 
p” ‘) - tr(s) + v 

is holomorphic in a neighborhood of the hyperplane tr(s) = -v and vanishes 
on the integral points of the hyperplane. 

(b) Let m E Z”, m > 0. Then 

bp(J 5) - (- ly@ 4%&m)9 s + 4 
tr(s + m) 

is holomorphic in some neighborhood of the point s = -m and it vanishes at 
s=-m. 
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(c) Let g = (/3,,...,/.$) E @“, tr(j?) = 1 and let s upproach -m in such 
a way that (s + m)/tr(s + m) approaches p. Then 

where ej is the jth unit vector. 

Remark. It is a consequence of the above theorem that for an 
r-admissible function f, the Mellin transform o(f, s) has singularities of the 
form 

at s = 0. Therefore, cpdf, s) has no single unambiguous value at s = 0. Rather, 
one must specify how s approaches 0 in order to evaluate 

The proof of Theorem 3.1 is most conveniently formulated using two 
lemmas. 

LEMMA 3.2. Let h be a C”O function on K. 

(a) A(h, s) is an entire function of s. 

(b) Zf mEE”, m>O, thend(h,-m)=O. 

(c) Let ej denote the jth unit vector. Then 

A(h, ej) = h(ej) (j = l,..., n). 

ProoJ (a) Assume first that Re(s,) > 0. Let 

c = {(u, )...) U,-I)ER”;‘Iul+...+u,_,~l}. 

For (u, ,..., u,- 1 ) E w:- ‘, define 

h,@, ,..., u,,-,)=h(u ,,..., Un-l,l-U,-...-U,_l)(l-UI-...-Un-I)S.-’ 

if (24, ,..., u,-,) E G 

=o if (24, ,..., u,-,) 6s c. 

Then h, is defined on R”;’ and 

4hv s) = dh,, (s1,..., s,-1)). 
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Note that h, is not in Y(R”;‘) since it is discontinuous on the boundary of 
C. However, Theorem 2.1 still applies. Indeed, h, has compact support and 
can be approximated by compactly supported C” functions on R:-’ which 
are identical to h, near the origin and hence are in .P(R:-I). Thus, o(h,, 
(3 , ,..., s,-J) is entire. 

The above argument applies if, instead of Re(s,) > 0, we take Re(sj) > 0 
for any j. Thus, A@, s) is holomorphic on {s E C” 1 Re(sJ > 0 for some j}. 
Note now that for any positive integer N and any u E K, 

h(u) = h(u)(u, + ‘.. + U”)N* 

Expanding (u, + .a e + u,,)~ by the multinomial theorem and applying some 
identities involving the r-function, we find that 

A@, 5) = (-l)NN! z. (;;l) .a+ (;y) A(h, s + v), (3.2) 

Tr(v) =N 

where the sum is over all v E Z”, v > 0 such that Tr(v) = V, + ... + u, = N. 
If N is sufXciently large, then for a given s E C”, we shall have 
Re(sj + vj) > 0 for all j. Thus, each term A@, s + v) of the above sum is 
holomorphic in a neighborhood of s and we conclude that A(h, s) is entire. 

(b) Take N > Tr(m) and apply (3.1), noting that, in each term of the 
sum some Vj > mj, SO that 

(c) Let h, be as in part (a) of the proof and set s, = 1. Then by 
Theorem 2. lc, we have 

A@, e,) = 4(h,, 0) = h,(O) = W,). 

Similarly, we show that 

A (h, ej) = h(ej). 

Suppose next that g is a function on G* and that g E Y(G*). Further, let 
s E C”, c E Cc. Define the transform 

vl(g9 ST 0) = l r(s) r(u) 
g(t, k)X,(k) t”dxk$. 

The properties of this transform are given in the following lemma. 
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LEMMA 3.3. Let g E Y(G*). 

(a) w(g, s, 0) is an entire function of s, 0. 

(b) I$mEk”, m>O, then v(g,-m,o)=Ojbrallo. 

(c) IfmE Z, m&O, then 

Moreover, we have 

y(g, s, -m)= (-1)“4gmt s>- 

where 

(d) Let m E 2, m 3 0, and define 

1 ~bn9s) 
P(s,a)=T(u)~(g,s,o)--;l;i- o+m I 

Then p(s, a) is entire in s and holomorphic in some neighborhood ofo = -m. 
Also, ~(0, a) = 0 for all o. 

ProoJr (a) Let h,(k) = I/T(o) J”? g(t, k) P-’ dt. By Theorem 2.1, h,(k) 
is entire in cr. Moreover, 

Therefore, by Lemma 3. la, w(g, s, [T) is entire in s. 

(b) By Theorem 3.lb, if m E Z”, m > 0, then 

v(g, -m, 6) =/i(h,, -m) = 0. 

(c) Since gE Y(G*), g is in the Schwartz space of R, when 
regarded as a function of t and Theorem 2.1 applies to h,; namely 
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Now set Q = -m, to obtain 

w(g, s, -m) = (-l)m w ((~)mw.o) 

(d) Note that 

= (-1)mA(gm9 s> (by (3.2)). 

I-(u) = 
T(a+m+ 1) 

a(u+l)... (u+m) 

(-1)m 1 
=-.SmfPl(aL 

m! 

where p,(u) is holomorphic near u = -m. Moreover, by parts (b) and (c), we 
have 

W(g, S, 0) = t-1)” A(gm9 S) +Pz(% u>(u + 4, 

where p2(s, a) is an entire function of s and u such that ~~(0, u) = 0 for all u. 
Clearly 

1 A(gm9s) 
p(s, 0) = WJ) V(& s9 0) -g- u + m 

= (-llrn 
t -&+/l*(u)) 

m! ((-l)md(gm9 s, +P*(h u)(u + m)) 

l A(gm7s) -- 

m! u+m 

= (-l)mP~(u)A(gm~ s, + F-1)” --pp2(s, 0) + (0 + 4 h(4 P2(s9 6 ml 

Since pr(u) is holomorphic in a neighborhood of u = -m, pz(s, a) is entire in 
s and u and A(g,, s) is entire in s, we see that p(s, a) is entire in s and 
holomorphic in a neighborhood of u = -m. Moreover, since A(g,, 0) = 0 
and ~~(0, u) = 0 for all u, we see that 

for all u. This completes the proof of (d). 

The following result gives the relationship between the W-transform and 
the Mellin transform. 
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LEMMA 3.4. Let f be an r-admissible function on c-- (0). Then for 
Re(s) > 0, we have 

df, s) = W(s) - r) w(U,S, s, tr(s) - r). (3.3) 

ProoJ: For Re(s) > 0, 

CPU s> = +q JGf(YMY) dXY 

= r(tr(s) - r) 
1 

J (J T(s) W(s) - r) K 
mf(tk) ttrcs) p, x*(k) dxk 
0 

1 
J ii 

cc 
= r(tr(s) - r) 

T(s)T@r(s) - r) K 0 

t’f(tk) ttr( S) -r f 
1 

x,(k) dxk 

= Z(tr(s) - r) 
1 

T(s) r(tr(s) - r) J G* 
U,f(t, k) t’r(s)-r x,(k) $ dxk 

= r(tr(s) - r) y@J,f, s, tr(s) - r). 

Proof of Theorem 3.1. (a) Since f is r-admissible, U,f E Y(G*), so 
that v(U,ft s, a) is an entire function of s and cr. Thus, by Lemma 3.4, q(f, s) 
is meromorphic for all s and is actually holomorphic provided that 
tr(s) - r @ { 0, -1, -2 ,... }. Moreover, we have 

rp(f, s) = r@(s) - r) w(UJ s, tr(s) - r). 

Therefore by setting u = tr(s) - r, g = U,f in Lemma 3.3d, we see that for 
m>O, mEZ, 

Nfnl~ s) 
‘CL ‘) - & tr(s) - r + m 

is holomorphic in a neighborhood of the hyperplane tr(s) = r - m. Again 
referring to Lemma 3.3d, we deduce that the above difference vanishes on the 
integral points of the hyperplane. 

(b) Let m E Z”, m 2 0. Then if v E {--r, -r + 1, -r + 2 ,... 1, 

WllBf )” = ~A.L+trhlJ (3.4) 

Furthermore, the fact that UJ E Y(G*) implies that 

U r+trc,,,,(%f) E WG*). 
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Thus, g,,,f is r + tr(m) admissible. Apply part (a) to the function S,,,J; and 
set v = 0, to derive that 

is holomorphic in a neighborhood of the hyperplane tr(s) = 0 and vanishes 
on the integral points of the hyperplane. Now from (3.1), we have 

9(f; s) = (-l)tr(m) 9(gmx s + m). 

Therefore, 

9df, s) _ (-qtr(m) “@y;y)+ m) 

is holomorphic in a neighborhood of the hyperplane k(s) = -m and vanishes 
there. 

(c) Assume that s tends to -m in such a way that 

stm 
tr(s + m) 

+ P* 

Then set 

s+m =i yjej, yj=tr~s~~j. 
tr(s t m) i=l 

Our assumption implies that yj + pj, where @j denotes the jth component of p 
with respect to the standard coordinate system in R”. By part (b), we have 

9(f, S) + (-l)tr(m) 5 PjACgmf,r(m)9 ej> 
j=l 

= (-lYm) 2 PPJkc,dej) 
j=t 

by Lemma 3.2~. This completes the proof of Theorem 3.1. 

COROLLARY 3.5. Let m E Z”, m > 0, a E C”, tr(a) # 0. Furthermore, let 
f be an r-admissible function on d for some nonnegative integers. Then the 
following limit exists 

vz 9V; -m + sa). 
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Moreover, the value of this limit equals 

(-lPm) i a 22 f ( ,(e ) 
tr(a) j=, j m trm j’ 

Remarks. (1) Our choice of K as { y E !?: ) tr(a) = 1 } is certainly not 
the only possible choice for a fundamental domain for the multiplicative 
action of IF?, on Rt. In effect, Shintani uses 

K= i, Kj, 
j=l 

where 

Kj= {ye R: Jyj= l,y,< 1, i= l,..., n). 

(2) To facilitate a direct comparison (in Section 6) of our formulation 
with Shintani’s result, we note that 

is the coefficient of 

in the Taylor expansion at the origin of 

t’f @Y 1 Ye*3 Qj- 13 tV Qj+ 1 Ye*3 &n)* 

(3) One advantage of the formulation of Theorem 3.1 is that it 
displays clearly certain linear and multilinear relations among the special 
values of o(f, s) for various functions f. For example, if f and g are both 
admissible, then so is fg. Moreover, the homogeneous pieces of fg are related 
to those off and g by 

(fg),=Cf,g,-.> (3.5) 

where the sum is clearly finite. 
On the other hand, we have by Leibniz’ rule, 

(3.6) 

where 
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Thus, by Theorem 3.lc, the special values of q$fg, s) depend bilinearly over 
Z on {gJH(e,)} and IgIg,(e One important example of this phenomenon 
occurs when f(y) = e-“‘Y, where x E I?. Then q$e- “’ Yg(y), s) depends on 
both s and x. But f, = (x . y)“/v! for u > 0. Thus the special values are 
polynomials in (x i,..., xn) with coefficients in the Z-module generated by 
{GSlf,(e,)}. The simplest case of this phenomenon occurs when one expresses 
the ordinary Bernoulli polynomials as polynomials whose coefficients are 
ordinary Bernoulli numbers. 

4. THE VALUES OF ZETA FUNCTIONS AT INTEGRAL ARGUMENTS 

In this section, we apply the theory of the Mellin transform qdf, s) to 
study the zeta function &,Js). Specifically, under very general hypotheses, 
we obtain an analytic continuation of c,,,(s) as a meromorphic function of 
several complex variables and we obtain a formula for its values at vectors 
-m,m>O,mEZ". 

Suppose that we are given a discrete subset D of W: and a function 
a: D -+ G such that the series 

converges absolutely and uniformly on compact subsets of the product of 
half planes Re(s) > a,. Then &,,,(s) is an analytic function of s for 
Re(s) > oo. 

Suppose that g E Y(G). Consider the function J G + C defined by 

f(Y) =f,,a,,(Y) = g a(T) mv). 

Since g is rapidly decreasing at co, the series converges absolutely and 
uniformly on compact subsets of G - {O}. In fact, f is Cm on G - {O}. Note, 
however, that f may not be C” at 0. For example, if D = { 1, 2, 3 ,... }, 
a(g) = 1 for all & g(y) = eTy (y E IT? +), then 

f(y)= f e-ly= I ry-y, 
I=1 

which is P on IR + , but is not differentiable at 0 E G. This example is fairly 
typical of what occurs in situations of interest. (It corresponds to the case of 
the Riemann zeta function.) Note that in this special case, yf(y) is differen- 
tiable at 0, so that f(y) is r-admissible for r = 1. This suggests that we 
impose the following restriction onf: 
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ASSUMPTION A,,,. The function defined by 

f(Y) = c a> dCY) (YE G- PI). 
&D 

is r-admissible for some nonnegative integer r. 

Assumption A,,, allows us to draw many conclusions about C,,,(s) using 
the Mellin transform results of the preceding section. Let us begin then by 
computing the Mellin transform @(f, s). Directly from the definitions, we 
derive that 

where the interchange of summation and integration is justified since g is 
rapidly decreasing at co. In the last formula, make the change of variable 

Y-‘r’Y, 

under which the measure dX y is invariant, to obtain 

@(f, S) = CD,,@) j  g(Y) ysdx y 
G 

= tD,ab> @P(& s, 

Therefore, we see that 

&,&) = s We(s) > ‘=o>. , (4.1) 

Since f is r-admissible and g E Y(G), Theorems 3.1 and 2.1, respectively, 
imply that CD,Js) is a meromorphic function of s and that the formula for 
(4.1) is valid at all s for which the functions r,,,(s), rpdf, s), and cp(g, s) are 
simultaneously holomorphic. Moreover, applying Theorem 3.1, we deduce 
the following result. 

PROPOSITION 4.1. Assume that A,,, holds. Then rD,Js) may be 
analytically continued to a meromorphic function of s whose only possible 
singularities are at those s for which either p(g, s) = 0 or tr(s) E {r, r - 1, 
r - 2 ,... }. Moreover, if m E Z “, m > 0, and zy q(g, -m) # 0, then 

&,(s) - (-1yQ -& @yy$+ m, 
7 
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is holomorphic in a neighborhood of the hyperplane tr(s) = -m and vanishes 
on this hyperplane. 

By applying Theorem 2.1~ and Theorem 3.lc, we now easily deduce 

THEOREM 4.2. Let a = (a,,..., a,,) E Cc”, tr(a) # 0, and let s approach 
-m in such a way that (s + m)/tr(s + m) approaches a. Furthermore, assume 
that A,,, holds and that (g, g(0)) # 0. Then 

The above formula assumes a particularly elegant shape in case g equals 
the function 

go(y) = e-YI-Yz-“‘-Y”, 

since in this case, &g, S) = 1. In this case, we derive 

THEOREM 4.3. Let a = ((x1,..., a,,) E C”, tr(a) # 0, and let s approach 
-m in such a way that (s t m)/tr(s t m) approaches a. Suppose that the 
function 

f(y) = & 43 emCeY 
E 

is r-admissible for some nonnegative integer r. Then 

COROLLARY 4.4. Let a = (a,,..., a,) E C”, tr(a) # 0. Suppose that the 
function 

f(y) = gD a(C) e+Y 

is r-admissible for some nonnegative integer r. Then 

Remark. In the formulas of Theorem 4.3 and Corollary 4.4, no depen- 
dence on r is explicitly stated. However, note that the definition of 

ftrcm,(Y) 

involves r. 
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5. SOME EXAMPLES 

In this section, we apply Corollary 4.4 to evaluate a number of zeta 
functions at -m, m > 0. 

EXAMPLE 5.1 (Riemann Zeta Function). Let it = 1, D = { 1, 2, 3 ,... }, 
a(r) = 1 for all <E D. Then &,,,(s) is just the Riemann zeta function c(s). In 
this case, 

f(Y) = 2 43 e-lY = A> I=1 

which we have seen is l-admissible. Therefore, for m = -LO, l,..., we have 

f,(Y)= l (m+ l)! & i 1 

m+1 
wvY)Lo 

B I?l+1 
=(m+ l)!ym' 

where B, denotes the nth Bernoulli number, defined as 

Therefore, by Corollary 4.4, we have 

U-4 = WY %JJl) 

a well-known result. 

EXAMPLE 5.2 (Dirichlet L-Functions). Let n and D be as in Example 1. 
Let x be a primitive Dirichlet character modulo the conductor y. Set 
a(r) =x(r) (c E D). Then 4&(s) = L(s, x), the Dirichlet L-series associated 
to x. The generalized Bernoulli numbers B,,, in the sense of Kubota and 
Leopoldt [2] are defined as 

Y-l 
f(y)= c f(u)&= 5 %y”. 

Cl=1 n=O n. 
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It is clear thatf(y) is l-admissible and that 

f,(Y) = (fyi;! Y” (m = -1, 0, l,... ), 

Therefore, Corollary 4.4 yields 

EXAMPLE 5.3 (Shintani’s Generalized Hurwitz Zeta Functions). Let 

be a matrix of positive real numbers for which r < n. Let x = 01, ,...,x,), 
where x1 is a complex number such that lxjl= 1. Let x = (xi,..., x,), xi > 0 
and let 

Define a zeta function of n complex variables s = (si ,..., s,) via 

where A * denotes the transpose of A. More explicitly, 

The special case of these zeta functions for which s, = s, = A.* = s, was 
studied by Shintani [S], who derived analytic continuations and the value at 
nonpositive integers m by using the method of Hankel’s contour integrals. 
We have adopted his notation to facilitate comparison. Using our results, we 
can extend his results to the several variable case. 

SetD={A*(z+x)IzEC+}.Forr=A*(z+x)ED,seta(r)=x’.Then 

f(y)= C 4t)e-z’Y 
CED 

= zz fe-A*(z+x)y (y E G- {O}). 
+ 
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Let L,(y) (1 <j < r) denote the linear form 

LjtY)= k *jk Yk. 
k=l 

Then a simple computation shows that 

(5.1) 

If we let Q(y) be defined as 

Q(Y)= n Lj(Y>, 
j=l 

and P(y) =f(y) Q(y), then we see that P(y) E Y’(G) and thus is 
O-admissible, whereas Q(y) is homogeneous of degree r and does not vanish 
on (? - {O) since all aij are positive. Therefore, by Proposition 4.1, f(y) is 
r-admissible and [(s, A, x, x) is a meromorphic function of s whose only 
possible singularities occur when tr(s) E {f, r - 1, r - 2,,..}. 

Define generalized Bernoulli numbers indexed by nonnegative integer 
vectors m by 

B,+,(A, 1 - X, x)“’ = (m, + 1) +** (m, + 1) g,J,(,,(ej) j= l,..., m, 

where f is defined by (6.1). The second remark at the end of Section 3 shows 
that if m = (m - I,..., m - 1) for some positive integer m, then this definition 
coincides with Shintani’s [5, Proposition 11. The peculiar factor of 
(m, + I) . . . (m, + 1) is due to the indexing shift caused by defining the 
ordinary Bernoulli numbers B, as coefficients of yk/k! in the Taylor series of 
y/(eY - 1) rather than in the Laurent series of I/@’ - 1). 

By Corollary 4.4, if a E C”, tr(a) # 0, then 

Fi Q--m + sa, A, x, x) 

= (-l)tr(m) 
tr(a) (m, + 1) a.* (m, + 1) i ajB,(A, 1 -x, x)“‘. 

j=l 

In particular, set s, = st = . . . = s, = s corresponding to a, = --- = a,, = 1 
and define 

Cc,@, A, x, x) = C((s, s,..., s>,A, x, xl. 
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Then C&(S) is holomorphic at s = -m and 

&,( 1 - m, A, x, x) = (-l)n(m-l) m-” 5 B,(A, 1 - x, ~)“‘/n, 
j=l 

where we have written B, for Bt,,,,...,,,. This is precisely the formula 
obtained by Shintani [5, Proposition I]. 

6. AN INTEGRALITY THEOREM 

Theorem 3.1~ is well suited to statements about integrality of special 
values of L-functions. In this section we apply it to a situation which 
contains Shintani’s generalized Hurwitz zeta function as a special case. 
Namely, we let A = (a,J (1 ,< i ,< r, 1 <j < n) be an r X n matrix of complex 
numbers. Define the associated linear forms 

Li =Li(Y) = i: Uijyij (1 <i<r). 
j=l 

Let g(u) be a function of r variables U, ,..., u, such that 

f(Y) = g(~l(YL L(Y)) 

is r-admissible for some nonnegative integer r. Suppose g has a Laurent 
expansion at the origin: 

0) = c c(rl)u9 
tr(l)>-q 

where q E Z’, q > 0, tr(q) = q. Then f is, in fact, q-admissible. Furthermore, 
the vth homogeneous piece off is given by 

In order to differentiate f, with respect to yi ,...,JJ,, we express a/$Yj in 
terms of the a/a&. Note that 

and thus, 

8-i a ayj-,=,atiaL, (j = l,..., n). 
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Let 5, K E Z”, p, )I E Z’, 5, K, p, ~20 and Tr(b)=Tr(K)=Tr@)= 
Tr(p) = b, where b is some fixed nonnegative integer. The notation x1, will 
refer to summation over all X E Z”, 3c > 0, Tr(1) = b. Similar summation 
conventions will be observed with respect to K, p, p Set 

D== (-$-)” . . . g-J”, E,= (LJ . . . ($y 

Define the a(A, K, p) via 

D, = c 4% K, P> E,. 
P 

It is clear that 

D,(y”) = K! if 5 = K, 

=o if If K, 

E&L”) = u! if p = p, 

=o if p f p. 

Set 

Then 

L’ = c B(4 P, A) Y’: 
A 

D,(L’) = D, (T &‘I, PV 5) Y ‘) 

= K! &f, R K) 

and 

D,(L”) = c a(4 K, P) E,,L” 
P 

Comparing the last two equations yields 
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To compute /3(A, u, K), we apply the multinomial theorem: 

1=1 
Tr(A) =Tr((r) 

where Cz denotes a sum over all integer matrices K with nonnegative entries 
such that the ith row K, and jth column satisfy, respectively, tr(K,) =pir 
tr(K’) = A,. Let us write symbolically 

K! = n k,! 
i,i 

A”=nu$. 
i,/ 

Then the definition of P(A, )L, A) implies that 

P(A,p,u)= c &AK. 
K>O * 

Thus, we have 

4% cc, v) = 

(6.1) 

VW 

Note that since K 2 0 and tr(K’) = K,, we see that K’! divides v,!. (The 
quotient is a multinomial coefficient.) Therefore we observe that 

Similarly, since tr(K,) =,u,, Eq. (6.1) implies that 

(6.3) 

(6.4) 

Let us now compute the derivatives of the homogeneous part f,(y): 
Clearly f,(y) = g,@,(y),..., L,(y)), so that for Y > -q, we have 
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Thus, 

%JAY) = c cq C a(A, m, p)E&5.:1 .I. L:r). 
tr(q) =v P>O 

1>-9 tr(p)=tr(m) 

Therefore, 

%&m,(Y) = c c,, c a(A, m, p)E (~5:’ a.* L”r) 
P r 

tr(q)=tr(m) I>0 
1>-q U(p) =tr(m) 

= c a(A,m, p)Lq-4 
tr(n)=tr(m) 

e-4 tr(p)=tr(m) 

where 

(;l=fi c:)* 
Therefore, for 1 <j < n, 

gm.&m)(ej) = C ‘q C p! i 
tr(q)=tr(m) P>O ( ) 

q>-4 u(p) = tr(m) 

x or(A, m, p) n CZ$-~~. 
i=l 

Thus, finally we conclude: 

THEOREM 6.1. Let all notations be as above and let a E C”, tr(a) # 0. 
Then 

q> -q.p>o 
tr(q)=tr(p)=tr(m) 

x a(A, m, p) fi a$-? 
i=l 

Theorem 6.1 is a source of integrality facts needed for, say, p-adic inter- 
polation. For clearly, 

is a homogeneous polynomial in the qj with coefficients in the module 
Zf.Cqltrq=trm* 
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Let us illustrate Theorem 6.1 in case of the zeta function 

1 
Qs, 4 x, 1) = ,z+ A *(z + x)l 3 

where 1 = (1, l,..., 1). In this case, we recall from Section 5 that 

where 

f(Y) =gtLltYLuY))~ 

U,(l -xi) 
gtu9 4 = g(u) = fi ;u( _ 1 

I=1 
= f B,(I -x)$ 

k=O 

where B,(x) is generalized Bernoulli polynomial defined as 

Bktx) = BkltXI) &$%) “’ Bk,(X,)- 

Therefore, 

Bq+ 10 -x> uq 
gtu)=,z, (q+ I)! * 

From Theorem 6.1 we now deduce 

COROLLARY 6.2. Let a E C”, tr(a) # 0. Then 

‘,; C(-m, +as, A, x, 1) 

= ‘,$“’ 5 aj c B,+,(l -xl 11 

j=l n.0 (q+l)! p! p ( ) 
n> -‘liJ>O 

U(q) = W(p) =tr(m) 

x a(A, m, p) h a;‘-? 
i=l 

In particular, for s, = s2 = -a- = s,, we have a more explicit version of 
Shintani’s Corollary to Proposition 1. 

COROLLARY 6.3. For m = 0, 1, 2 ,..., we have 

C,(-m,A,x, 1)=(--1)“” C n 1.P 
“;;ly,:‘p! ( “) 

P 
n>-l,P>O 

tr(q)=tr(p)=nm 

x a(A, m, p) n a$-pi 
i=l 

where m = (m, m ,..., m). 
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