
A Transformational Approach to Prove
Outermost Termination Automatically

Matthias Raffelsieper1

Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

Hans Zantema2

Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

Institute for Computing and Information Sciences, Radboud University
Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract

We present transformations from a generalized form of left-linear TRSs, called quasi left-linear TRSs, to
TRSs such that outermost termination of the original TRS can be concluded from termination of the trans-
formed TRS. In this way we can apply state-of-the-art termination tools for automatically proving outermost
termination of any given quasi left-linear TRS. Experiments show that this works well for non-trivial ex-
amples, some of which could not be automatically proven outermost terminating before. Therefore, our
approach substantially increases the class of systems that can be shown outermost terminating automati-
cally.

1 Introduction

A lot of work has been done on automatically proving termination and innermost
termination. However, also termination with respect to the outermost strategy
makes sense. For instance, this is the standard strategy in the functional program-
ming language Haskell [11], and it can be specified in CafeOBJ [4] and Maude [2].
We will focus on the most general variant of the outermost strategy: reducing a
redex is always allowed if it is not a proper subterm of another redex. Termination
with respect to this strategy we shortly call outermost termination. This is different
from the approaches for proving termination of Haskell presented in [7,16], which
feature proving termination for a specific set of terms (ground instantiations of a

1 Email: M.Raffelsieper@tue.nl
2 Email: H.Zantema@tue.nl

Electronic Notes in Theoretical Computer Science 237 (2009) 3–21

1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.03.032

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82552089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:M.Raffelsieper@tue.nl
mailto:H.Zantema@tue.nl
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

so-called start term), while we only do it for all terms. Another difference is that
the language Haskell does not allow overlapping rules, i.e., there is at most one rule
applicable for every term.

Let’s consider the following example. The infinite list 0 : 1 : 2 : 3 : · · · can be
generated by applying the non-terminating rule

from(x) → x : from(s(x))

to the start term from(0). If we want to check for overflow, e.g., numbers should
not be n or higher, we could add the rule

sn(x) : xs → overflow.

Now for sure the TRS remains non-terminating since it still contains the first non-
terminating rule. But we expect the combined system to be outermost terminating.
This is the kind of examples for which we want to prove outermost termination
automatically.

Until now Cariboo [9] was the only tool having facilities for proving outermost
termination. Its approach is a stand alone one, while our goal is to make use of
the huge effort of the last years to improve the power of termination tools. For
making use of the impressive power of termination tools, the natural approach is
to make a transformation from TRSs to TRSs such that the modified termination
property (in our case outermost termination) of the original TRS can be concluded
from termination of the transformed TRS. In the past, a similar approach was
successfully applied to context-sensitive termination [5] and liveness problems [8].

The Termination Problem DataBase (TPDB) [15] already contains 6 outermost
examples that really require a consideration of the outermost strategy. If no strat-
egy is regarded, then all of these examples are non-terminating. For these examples,
both Cariboo and our presented transformation together with a termination prover
for term rewrite systems without a strategy can prove outermost termination. As
will be shown later, using the presented transformation we can prove outermost
termination for systems where Cariboo fails to do so. Therefore, this approach
increases the number of term rewrite systems that can be shown outermost termi-
nating automatically. However, it is not the case that it supersedes Cariboo: There
are also examples where Cariboo succeeds while the transformed TRS cannot be
shown terminating by any of the termination provers that we tried.

The presented approach deals with ground outermost termination. We will
see that when fixing the signature there may be a difference between outermost
termination and ground outermost termination, but by adding fresh constants there
is no difference any more. Therefore it is not a restriction to focus on ground
outermost termination.

The crucial ingredient of our transformation is anti-matching: for L being the
left-hand sides of the given TRS, we need a set SL such that any term matches with
a term in SL if and only if it does not match with a term in L. It turns out that if
all terms in L are linear, then a finite set SL satisfying this requirement can easily

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–214

be constructed, while there are sets L containing non-linear terms such that every
set SL satisfying this property is infinite. That’s why we restrict to the class of
quasi left-linear TRSs, which are all TRSs where every left-hand side is an instance
of a linear left-hand side. Clearly, this class also includes all left-linear TRSs.

Based on this anti-matching we give a straightforward transformation T1 such
that every infinite outermost reduction with respect to any quasi left-linear TRS R

gives rise to an infinite T1(R)-reduction. We experimented with several variants of
the basic transformation and chose the most powerful one in our final definition of
the transformation.

Using anti-matching we present two other transformations T2 and T3, based on
irreducible contexts. Since these contexts can only capture the first level of nesting,
this approach is inherently incomplete. However, experiments show that for some
examples these transformations are successful, while the transformation T1 gives
rise to a problem that is too hard for existing termination tools.

This paper is structured as follows: After introducing the used notations in
Section 2, we present our basic transformation T1 and prove soundness in Section 3.
Thereafter, we present our alternative transformations T2 and T3 using contexts in
Section 4. In these two sections, we assume that we can construct a set of terms
that match those terms not being matched by a left-hand side. This problem of
anti-matching is treated in Section 5, which proves that our transformations can
be applied automatically for quasi left-linear TRSs. In Section 6 we give a short
description of our implementation of the transformations and present a number of
examples. We conclude in Section 7.

2 Preliminaries

This section shall briefly introduce the notations used in this paper. For an intro-
duction of term rewriting see for example [1,17].

We consider the set T (Σ,V) of all terms over a set V of variables and a finite,
non-empty set Σ of function symbols, called signature, where each f ∈ Σ is associated
with a natural number called its arity. If the arity of f ∈ Σ is n ∈ N, then we denote
this by arity(f) = n. Instead of T (Σ, ∅) we also write T (Σ), which we call the set
of ground terms. For a term t ∈ T (Σ,V) we write V(t) to denote the set of variables
occurring in t. For a non-variable term t = f(t1, . . . , tn) we say that f is the root
of t, denoted by root(t). A term t ∈ T (Σ,V) is called linear if every variable occurs
at most once in t; we write Tlin(Σ,V) for the set of all linear terms in T (Σ,V).

A position of a term t ∈ T (Σ,V) is a sequence of natural numbers, the set of all
positions of a term t is denoted Pos(t). The empty sequence is denoted as ε. Such
a position π ∈ Pos(t) identifies a subterm of t, which is written t|π. The term that
we get from replacing the subterm t|π by another term s ∈ T (Σ,V) is denoted t[s]π.

A substitution σ : V → T (Σ,V) is written as σ = {x1 := t1, . . . , xm := tm},
which denotes the mapping σ(xi) = ti and σ(x) = x for all x �= xi and 1 ≤ i ≤ m.
The set of all substitutions over Σ and V is denoted as SUB(Σ,V). The application
of a substitution σ ∈ SUB(Σ,V) to a term t ∈ T (Σ,V) is denoted tσ and replaces

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 5

all variables by their corresponding terms. Such a term tσ is called an instance
of t. Two terms s, t ∈ T (Σ,V) are said to unify, if a unifier σ ∈ SUB(Σ,V) exists
such that sσ = tσ. A term s ∈ T (Σ,V) is said to match a term t ∈ T (Σ,V), if a
substitution σ ∈ SUB(Σ,V) exists such that sσ = t.

A standard property relating linearity and unification is the following.

Lemma 2.1 Let t, u ∈ Tlin(Σ,V) be two linear terms with V(t) ∩ V(u) = ∅ that do
not unify. Then there is a position π ∈ Pos(t) ∩ Pos(u) such that t|π and u|π are
no variables and root(t|π) �= root(u|π).

Proof (Sketch). We refer to [17, Section 7.7], where the standard Martelli-
Montanari unification algorithm is given. For linear terms t, u ∈ Tlin(Σ,V) with
V(t) ∩ V(u) = ∅ we have as invariant of the algorithm that every variable occurs at
most once. Thus, the only way to get the result fail is by having two terms that
have different root symbols. �

A Term Rewrite System (TRS) is a set R ⊆ T (Σ,V) × T (Σ,V), where instead
of (�, r) ∈ R we write � → r ∈ R. 3 The set lhs(R) of left-hand sides of a TRS R

is defined as lhs(R) = {� | � → r ∈ R}. A TRS is called left-linear if � is linear
for all � ∈ lhs(R) and we call it quasi left-linear if every � ∈ lhs(R) is an instance
of a linear �′ ∈ lhs(R). A term s ∈ T (Σ,V) rewrites to a term t ∈ T (Σ,V) with
a rule � → r ∈ R at a position π ∈ Pos(s), denoted by s →�→r,π t, iff there exists
a substitution σ ∈ SUB(Σ,V) such that s|π = �σ and t = s[rσ]π. The term s|π is
called redex. Instead of s →�→r,π t we also write s →R,π t, s →R t, s →π t, or s → t

if the term rewrite system R and/or the position π are clear from the context. If
for a term s ∈ T (Σ,V) and a position π ∈ Pos(s) we have for all t ∈ T (Σ,V) that
s �→R,π t holds, then we also write s �→R,π or s �→π.

A term s ∈ T (Σ,V) outermost rewrites to a term t ∈ T (Σ,V) with a rule
� → r ∈ R at a position π ∈ Pos(s), denoted s

o−→�→r,π t, iff s →�→r,π t and for all
positions π′ ∈ Pos(s) with π = π′ π′′ for some π′′ ∈ N

∗ with π′′ �= ε we have that
s �→R,π′ .

A TRS R is called terminating (outermost terminating), iff there is no infinite
sequence t1, t2, t3, . . . ∈ T (Σ,V) of terms with ti →R ti+1 (ti

o−→R ti+1) for all i ∈ N.
A TRS R is called ground terminating (outermost ground terminating), iff there
is no infinite sequence t1, t2, t3 . . . ∈ T (Σ) of ground terms such that ti →R ti+1

(ti
o−→R ti+1) for all i ∈ N.
The following example shows that outermost termination for arbitrary terms

may differ from outermost ground termination.

Example 2.2 Consider the following term rewrite system R over the signature
Σ = {f, a, b}:

R =

⎧⎨
⎩

f(a, x) → a f(x, a) → f(x, b)
f(b, x) → a b → a
f(f(x, y), z) → a

3 Note that the standard restrictions � /∈ V and V(r) ⊆ V(�) are not essential for our results.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–216

For arbitrary terms we have the infinite outermost reduction

f(x, a) → f(x, b) → f(x, a) → · · ·

However, when instantiating x by any arbitrary ground term t ∈ T (Σ), then one
of the three rules on the left is applicable at the root position. Hence, the reduction
f(t, b) → f(t, a) is no longer an outermost reduction. In fact, the above term rewrite
system is outermost ground terminating, as we will show later.

However, this difference only occurs when fixing the signature. It is easy to see
that by replacing variables in any infinite outermost reduction by fresh constants,
the result is an infinite outermost ground reduction. For quasi left-linear TRSs
adding one fresh constant suffices. Hence, we may and shall restrict ourselves to
outermost ground termination.

Finally, we want to remark on the restrictions mentioned above in Footnote 3: If
we have a rule x → r ∈ R for some x ∈ V then clearly the TRS R is not outermost
terminating, since this rule can always be applied at the root position. However, the
second restriction, V(r) ⊆ V(�), does not directly lead to non-outermost termina-
tion, a counterexample is the outermost terminating TRS R = {a → f(x), f(x) → b}.

3 The first Transformation

The idea of the first transformation is to only allow a reduction when a certain
control symbol down marks the current redex. After having reduced a term, the
control symbol is replaced by another control symbol up that is moved outwards.
Only when the root of the term is encountered, then the control symbol is replaced
by the down symbol again. In order to find the next outermost redex, the symbol
down may only descend into subterms when no left-hand side is applicable to the
term. For this purpose, we need a set SL such that its elements match exactly
those terms that are not matched by a left-hand side. Such a set SL is called
anti-matching, which is defined below.

Definition 3.1 A set SL ⊆ T (Σ,V) is called anti-matching w.r.t. a set L ⊆
T (Σ,V), iff the following holds for all ground terms t ∈ T (Σ):

� ∃� ∈ L, τ ∈ SUB(Σ,V) : t = �τ ⇐⇒ ∃s ∈ SL, σ ∈ SUB(Σ,V) : t = sσ

Using such an anti-matching set, we can now formally define our transformation
that implements the idea outlined above.

Definition 3.2 Let R be a TRS over a signature Σ and let SL ⊆ T (Σ,V) be an
anti-matching set w.r.t. L = lhs(R).

Choose four fresh unary symbols top, up, down, block �∈ Σ, and let Σ� = {f � | f ∈
Σ, arity(f) > 0} be such that Σ ∩ Σ� = ∅. The TRS T1(R) over the signature
Σ ∪ Σ� ∪ {top, up, down, block} is defined to consist of the following rules:

• down(�) → up(r), for all rules � → r of R;

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 7

• top(up(x)) → top(down(x));
• down(f(t1, . . . , tn)) → f �(block(t1), . . . , down(ti), . . . , block(tn)), for all

f(t1, . . . , tn) ∈ SL and all i ∈ {1, . . . , n};
• f �(block(x1), . . . , up(xi), . . . , block(xn)) → up(f(x1, . . . , xn)), for all f ∈ Σ and all

i ∈ {1, . . . , n}, where arity(f) = n and x1, . . . , xn are distinct variables.

For an infinite TRS R, we clearly have that T1(R) is infinite, too. The TRS
T1(R) can also become infinite for a TRS R that is not quasi left-linear, since then
an anti-matching set SL might be infinite. This is demonstrated in Section 5. For
quasi left-linear TRSs however, we will prove the following theorem by giving a
possible construction of a finite anti-matching set SL.

Theorem 3.3 For a quasi left-linear TRS R, there exists a finite, computable, and
(up to variable renaming) unique set SL ⊆ Tlin(Σ,V) that is anti-matching w.r.t.
L = lhs(R).

The proof of this theorem is given in Section 5, which deals with the general
problem of anti-matching. However, soundness of the transformation does not de-
pend on the finiteness of SL.

In the transformation, we introduce the already mentioned symbols down and
up to control the position of the next redex. The symbol top is used to denote the
root position of the term, where the search of the next redex has to turn downwards
again. The purpose of the symbol block is to disallow evaluations where an up
symbol appears at the root position of a term without having applied a rule of the
form down(�) → up(r). Furthermore, we create a new marked symbol f � for every
function symbol f of the original rewrite system. This makes termination proofs
easier, since it can be distinguished whether a symbol is above or below one of the
control symbols.

An outermost rewrite step can be modelled by a sequence of steps in the trans-
formed system. This is shown in the following lemma.

Lemma 3.4 Let R be a TRS over a signature Σ, let u, v ∈ T (Σ).
If u

o−→R v, then down(u) →+
T1(R) up(v).

Proof. Let u, v ∈ T (Σ) be two ground terms, let u
o−→�→r,π v for some rule � → r ∈

R and some position π ∈ Pos(u). Induction is done over the length of π.
In case π = ε, we directly have the rule down(�) → up(r) ∈ T1(R), which shows

the desired property.
Otherwise, let π = i π′ for some π′ ∈ Pos(u|i) and let u = f(u1, . . . , un).

Hence, u �→ε and v = f(u1, . . . , ui−1, vi, ui+1, . . . , un) for some vi ∈ T (Σ). Since
u �→ε, we have u �= �′τ for all τ ∈ SUB(Σ,V) and all �′ ∈ lhs(R). Hence,
there is a term s ∈ SL in an anti-matching set SL w.r.t. L = lhs(R) and a
substitution σ ∈ SUB(Σ,V) such that sσ = u. Let s = f(s1, . . . , sn). Then
a rule down(f(s1, . . . , sn)) → f �(block(s1), . . . , down(si), . . . , block(sn)) ∈ T1(R)
exists that is applicable to the term down(u) and therefore gives the reduction
down(u) = down(f(u1, . . . , un)) → f �(block(u1), . . . , down(ui), . . . , block(un)). For

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–218

the subterm ui we have ui
o−→�→r,π′ vi. Here, the induction hypothesis is applica-

ble and yields a reduction down(ui) →+ up(vi). When applying this together with
the rule f �(block(x1), . . . , up(xi), . . . , block(xn)) → up(f(x1, . . . , xn)) ∈ T1(R) the
desired result can be shown:

down(u) = down(f(u1, . . . , un)) → f �(block(u1), . . . , down(ui), . . . , block(un))

→+ f �(block(u1), . . . , up(vi), . . . , block(un))

→ up(f(u1, . . . , ui−1, vi, ui+1, . . . , un)) = up(v)

�

Using the above lemma we can prove the main theorem which shows that the
presented transformation is sound, i.e., from the termination of the transformed
TRS the outermost ground termination of the original TRS can be concluded.

Theorem 3.5 Let R be a TRS over a signature Σ for which T1(R) is terminating.
Then R is outermost ground terminating.

Proof. Assume R is not outermost ground terminating. Then there is an infinite
outermost reduction t1

o−→R t2
o−→R . . . for some ground terms t1, t2, . . . ∈ T (Σ). For

each ti
o−→R ti+1 we have that down(ti) →+

T1(R) up(ti+1) by Lemma 3.4. Due to the
rule top(up(x)) → top(down(x)) we obtain an infinite reduction in the transformed
system T1(R),

top(down(t1)) →+
T1(R) top(up(t2)) →T1(R) top(down(t2)) →+

T1(R) . . . ,

contradicting termination of T1(R). �

Let us now remark on the situation when (arbitrary) outermost termination shall
be considered, not just outermost ground termination. For a quasi left-linear TRS
R over the signature Σ we create a new TRS R′ which has the same rules as R, but
now is defined to be over the signature Σ′ = Σ∪{c}, where c /∈ Σ is a fresh constant
(i.e., it has arity 0). Then an infinite reduction t1

o−→R t2
o−→R . . . for some terms

t1, t2, . . . ∈ T (Σ,V) implies that t1σ1
o−→R′ t2σ2

o−→R′ . . . is an infinite reduction of
ground terms tiσi ∈ T (Σ) for substitutions σi = {x := c | x ∈ V(ti)} for i ∈ N. This
holds, since no left-hand side of the rewrite system R′ matches a subterm of tiσi

which R does not match, because no left-hand side of R′ contains the constant c.
In the other direction, one can replace a symbol c in an infinite reduction w.r.t. R′

by a fresh variable, giving an infinite reduction w.r.t. R. Therefore, we have that
the term rewrite system R is outermost terminating, iff the term rewrite system
R′ is outermost ground terminating. Such a TRS R′ can then be handled by our
transformation to show outermost termination of R.

4 Other Transformations based on Contexts

There are examples for which the transformed TRS T1(R) cannot be proven ter-
minating automatically. However, for some of these examples the transformations

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 9

presented in the following are successful. These transformations do not use sym-
bols down and up to find the next redex, but only allow to rewrite a redex when a
so-called anti-matching context is found. This notion of anti-matching contexts is
given in the following definition.

Definition 4.1 For a set L of terms, a set CL ⊆ T (Σ,V {�}) is called a set of
anti-matching contexts w.r.t. L, iff

• � /∈ CL,
• � occurs exactly once in every term C ∈ CL, and
• If for some t ∈ T (Σ) we have t|π = �σ for some � ∈ L, some σ ∈ SUB(Σ,V),

and some π ∈ Pos(t), and t �= �′σ′ holds for all �′ ∈ L and all σ′ ∈ SUB(Σ,V),
then there is a C ∈ CL and a τ ∈ SUB(Σ,V {�}) such that t = Cτ and for
π′ ∈ Pos(C) with C|π′ = � we have that π = π′ π′′ for some π′′ ∈ N

∗.

Here, the third requirement is similar to the requirements for an anti-matching
set SL. Thus, we can define the set C ′

L = {s[�]i | s ∈ SL, 1 ≤ i ≤ arity(root(s))},
for which all of the above requirements are fulfilled, as can easily be checked. Using
such a set of contexts, we now define another transformation T2.

Definition 4.2 For a TRS R over a signature Σ let CL be a set of anti-matching
contexts w.r.t. L = lhs(R). We define a TRS T2(R) over the signature Σ {top}
that consists of the following rules:

• top(�) → top(r) for all � → r ∈ R, and
• C[�] → C[r] for all � → r ∈ R and all C ∈ CL.

It can easily be shown that T2 is a sound transformation, but we omit this for
space reasons. When using the set C ′

L, then the transformed TRS T2(R) of a TRS
R is finite if R is both finite and quasi left-linear. The first requirement is obviously
needed. The second requirement stems from the construction of C ′

L which relies on
the set SL. Here, we can observe from Theorem 3.3 that this set, and hence also
the construction, can only be guaranteed to be finite if R is quasi left-linear.

One might wonder why in the construction of the set C ′
L the “hole” � is always

introduced at the first argument level, and does not simply replace a variable of the
term. Why this latter idea is not sound is illustrated in the next example.

Example 4.3 We consider the below TRS R over the signature Σ = {f, b}:

R =
{

b → f(f(b)) f(f(f(x))) → b
f(b) → b

For L = lhs(R) we have that SL = {f(f(b))}, i.e., there are no variables in the
only term contained in SL. Thus, when choosing CL = ∅ then the only rules to be
considered are of the form top(�) → top(r). The TRS consisting of only these rules
can be shown terminating. However, there exists the following infinite outermost

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2110

ground reduction, which shows that this choice of CL is unsound:

f(f(b)) o−→R f(b) o−→R b
o−→R f(f(b)) o−→R . . .

It should be noted that CL = ∅ is not a set of anti-matching contexts w.r.t. L.
This holds because the term f(f(b)) is irreducible at root position but is reducible at
position π = 1. Hence, we have a violation of the third requirement of Definition 4.1.

The next example shows that the transformation T2 is incomplete, regardless of
the set CL of anti-matching contexts.

Example 4.4 Consider the following TRS R:

R =
{

f(h(x)) → f(i(x)) i(x) → h(x)
f(i(x)) → a

When this TRS is transformed using the transformation T2, then the context
f(�) must be considered, since for example the term f(f(h(x))) is not matched by
any left-hand side of R, but it is reducible at the position π = 1. Thus, we have the
rules f(f(h(x))) → f(f(i(x))) ∈ T2(R) and f(i(x)) → f(h(x)) ∈ T2(R). For these two
rules we get the following infinite reduction:

f(f(h(x))) → f(f(i(x))) → f(f(h(x))) → . . .

However, the TRS R is outermost ground terminating, as can be shown using
the transformation T1 of the previous section.

This example failed because we inserted the rule i(x) → h(x) into the context
f(�), but such a reduction will never take place due to the left-hand side f(i(x)).
An improvement of this transformation does not insert all rules into all contexts,
but only those where an outermost reduction could possibly take place. Such an
improvement is given in below, which again uses an anti-matching set SL.

Definition 4.5 Let R be a TRS over a signature Σ, let SL ⊆ T (Σ,V) be a set of
anti-matching terms w.r.t. L = lhs(R). We define a TRS T3(R) over the signature
Σ {top} which contains the following rules:

• top(�) → top(r) for all � → r ∈ R, and
• s[�]iμ → s[r]iμ for all s ∈ SL, all 1 ≤ i ≤ arity(root(s)), and all � → r ∈ R for

which s and � are variable disjoint and s|i unifies with � with the most general
unifier μ.

The above transformation T3 is still sound, i.e., from termination of a TRS T3(R)
one can conclude outermost ground termination of R, but we again have to omit
this proof for space reasons. Also for this transformation it can be observed that a
finite TRS T3(R) is only achieved if the TRS R is finite and quasi left-linear.

Next we want to compare the transformations T2 and T3. For this purpose, we
consider Example 4.4 again, which was the motivation for the transformation T3.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 11

Example 4.6 (Transformed TRS T3(R) for Example 4.4)
For this example we have that SL = {h(x), a, f(a), f(f(x))}.

T3(R) =

⎧⎪⎪⎨
⎪⎪⎩

top(f(h(x))) → top(f(i(x))) h(f(h(x))) → h(f(i(x)))
top(f(i(x))) → top(a) h(f(i(x))) → h(a)
top(i(x)) → top(h(x)) h(i(x)) → h(h(x))
f(f(h(x))) → f(f(i(x))) f(f(i(x))) → f(a)

As can be seen above, the rule f(i(x)) → f(h(x)) is not contained in the trans-
formed TRS T3(R), which was the cause of T2(R) being non-terminating in Exam-
ple 4.4. And indeed, the TRS T3(R) can be shown terminating automatically.

However, this improved transformation is still not complete, as demonstrated in
the following example.

Example 4.7

R =
{

from(x) → x : (nil : from(s(x))
s(x) : xs → nil

Outermost ground termination of this example can again be shown automati-
cally, using the transformation T1. However, we have that nil : xs ∈ SL. Thus,
we have the rule nil : from(x) → nil : (x : (nil : from(s(x)))) ∈ T3(R). For this rule
we can see that the underlined part of the right-hand side is again matched by the
left-hand side of that rule, leading to an infinite reduction.

5 Anti-matching

We consider a term rewrite system R and a set L matching all terms that can be
rewritten by R, for example L = lhs(R). For our transformations we have to find
an anti-matching set SL that matches the terms which cannot be rewritten by R.
Clearly, this is only depending on the left-hand sides of R. One can imagine that
there are several possible sets that satisfy this condition. Our goal is to select the
smallest such set and to be able to construct it finitely when this is possible.

In this section we consider the general problem of finding an anti-matching set.
Only at the end of this section we restrict ourselves to linear terms, for which it will
be shown that the minimal anti-matching set is finite and can be computed.

The problem of finding a set of terms that describe the complement of a set of
terms is similar to the problem considered by Lassez and Marriot [14], where an
explicit representation of a set is being searched that is described using counter ex-
amples. But their focus is on machine learning, therefore it is hard to directly apply
their results. We also want to mention the concept of anti-patterns as introduced
in [12]. This is more general since it allows to introduce negation of patterns at
any position in a term, while we are only interested in the negation of a complete
pattern. However, this work is not applicable here, since we want a representation
of a set that does not match a given term, while an anti-pattern matching problem
is to decide whether an anti-pattern matches a single ground term.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2112

The anti-matching problem is similar to the constrained substitutions used for
outermost narrowing in [9]. A constrained substitution is a substitution together
with disequations that constrain the outermost narrowing of subterms to those
where no redex exists at a prefix position. An anti-matching set can be seen as
explicit solution of such disequations. This is not required for the outermost nar-
rowing in [9], where the implicit formulation is sufficient but must be considered
throughout the proof.

Below, we first define a set S′
L of terms that satisfy the desired property. This set

is usually infinite and contains quite a number of redundant terms, i.e., terms that
are already matched by other terms contained in S′

L. Thus, we define another set
SL that consists only of the minimal elements of S′

L w.r.t. an order that expresses
whether one term matches the other.

Definition 5.1 Let L ⊆ T (Σ,V) be a set of terms. On terms we define the preorder
≤ by

t ≤ u ⇐⇒ ∃σ : tσ = u

which induces the definition of its strict part to be

t < u ⇐⇒ t ≤ u ∧ ¬(u ≤ t).

Now SL is defined to be the set of minimal elements of the set of terms that do not
unify with elements of L, i.e.,

S′
L = {t ∈ T (Σ,V) | � ∃� ∈ L, σ, τ ∈ SUB(Σ,V) : �σ = tτ}

SL = {t ∈ S′
L | � ∃u ∈ S′

L : u < t}

One might wonder why unification is considered, while term rewriting is con-
cerned with matching. This becomes clear when formulating what kind of terms
we are looking for: the set of terms that match those terms which are not matched
by left-hand sides. This means we have to consider two matchings at the same
time, when assuming that the set of variables are disjoint then this gives rise to a
unification problem.

As a next step we show that the set S′
L is closed under substitution. This is of

interest, since we want to consider the ground terms that are matched by a term
contained in S′

L. Thus, it should be the case that every instantiation of a term from
S′

L is also contained in S′
L, such that especially this holds for ground instances.

Lemma 5.2 {sσ ∈ T (Σ,V) | s ∈ S′
L, σ ∈ SUB(Σ,V)} = S′

L.

Proof. “⊇”: Holds trivially for σ = id.
“⊆”: Let s ∈ S′

L, σ ∈ SUB(Σ,V). Then sσ ∈ {sσ ∈ T (Σ,V) | s ∈ S′
L, σ ∈

SUB(Σ,V)}. We have that �σ′ �= sτ ′ for all � ∈ L and all substitutions σ′, τ ′ ∈
SUB(Σ,V). Therefore, especially �σ′ �= sστ ′ holds for all substitutions σ′, τ ′ ∈
SUB(Σ,V). Hence, sσ ∈ S′

L. �

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 13

The set SL is derived from the set S′
L by taking only the minimal elements of S′

L

w.r.t. the order >. These minimal elements exist since this order is well-founded,
as for example mentioned in [10, Proposition 3.2].

Lemma 5.3 [10] The relation > from Definition 5.1 is well-founded.

This lemma can be proved rather straightforwardly for linear terms by counting
the number of symbols. For non-linear terms, one must also consider variables being
matched by more than one variable.

When removing larger elements from a set w.r.t. ≤, then all terms that are
matched by removed terms are still being matched by some term in the set, as
shown next. This will be used to show that SL still matches the same terms as S′

L.

Lemma 5.4 {uσ | u ∈ U, σ ∈ SUB(Σ,V)} = {uσ | u ∈ U ∪U ′, σ ∈ SUB(Σ,V)} for
every U, U ′ ⊆ T (Σ,V) with U ′ = {u′ | ∃u ∈ U : u ≤ u′}.

Proof. “⊆”: trivial, since U ⊆ U ∪ U ′.
“⊇”: Let u′ ∈ U ∪U ′, let σ′ ∈ SUB(Σ,V). If u′ ∈ U , then the property trivially

holds. So let u′ ∈ U ′ \ U . Then a u ∈ U exists such that u ≤ u′, i.e., there is a
substitution τ ∈ SUB(Σ,V) such that u′ = uτ . Hence, u′σ′ = uτσ′ ∈ {uσ | u ∈
U, σ ∈ SUB(Σ,V)}. �

For the set S′
L it should be intuitively clear that all terms that are not matched

by a term contained in L are matched by a term in that set. Using the above lemma,
we can now show that this already holds for the set SL.

Lemma 5.5 {sσ ∈ T (Σ,V) | s ∈ SL, σ ∈ SUB(Σ,V)} = S′
L.

Proof. “⊆”: Since SL ⊆ S′
L, this holds due to Lemma 5.2.

“⊇”: Since > is well-founded due to Lemma 5.3, the existence of the minimal
elements in SL is guaranteed. Thus, Lemma 5.4 shows the desired property. �

This allows us to prove that the ground terms matched by SL are indeed those
terms that are not matched by the set L.

Lemma 5.6 T (Σ) \ {�σ ∈ T (Σ) | � ∈ L, σ ∈ SUB(Σ,V)} = {sσ ∈ T (Σ) | s ∈
SL, σ ∈ SUB(Σ,V)}.

Proof. This lemma is shown in two steps: First it is proven that {�σ ∈ T (Σ) | � ∈
L, σ ∈ SUB(Σ,V)} ∩ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} = ∅ (showing “⊇”), and
in the second step it is shown that T (Σ) = {�σ ∈ T (Σ) | � ∈ L, σ ∈ SUB(Σ,V)} ∪
{sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} (showing “⊆”).

For the first step, let t ∈ {�σ ∈ T (Σ) | � ∈ L, σ ∈ SUB(Σ,V)}∩{sσ ∈ T (Σ) | s ∈
SL, σ ∈ SUB(Σ,V)}. Thus, there exist � ∈ L and σ� ∈ SUB(Σ,V) such that t = �σ�

and there exist s ∈ SL ⊆ S′
L and σs ∈ SUB(Σ,V) such that t = sσs. Putting this

together gives �σ� = t = sσs, which is a contradiction to the definition of S′
L.

To show the second step, we observe that clearly {�σ ∈ T (Σ) | � ∈ L, σ ∈
SUB(Σ,V)} ∪ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} ⊆ T (Σ). So it remains to
be shown that {�σ ∈ T (Σ) | � ∈ L, σ ∈ SUB(Σ,V)} ∪ {sσ ∈ T (Σ) | s ∈ SL, σ ∈

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2114

SUB(Σ,V)} ⊇ T (Σ). For that purpose, let t ∈ T (Σ) be an arbitrary ground term.
In case there exist � ∈ L and σ� ∈ SUB(Σ,V) such that �σ� = t the property has
been shown. Otherwise, we may assume that for all � ∈ L and all substitutions
σ ∈ SUB(Σ,V) that satisfy �σ ∈ T (Σ) we have �σ �= t. Since t is a ground term,
V(t) = ∅ holds. This means that for any substitution τ ∈ SUB(Σ,V) we have
tτ = t. Furthermore, for every term t′ ∈ T (Σ,V) with V(t′) �= ∅ it holds that t �= t′

which allows to conclude that t �= �σ′ for all substitutions σ′ ∈ SUB(Σ,V) where
V(�σ′) �= ∅. Putting this together, we get that for all substitutions σ, τ ∈ SUB(Σ,V)
it holds that �σ �= t = tτ . From the definition of S′

L we get t ∈ S′
L, and hence

t ∈ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} by Lemma 5.5. �

In the following we restrict ourselves to sets L that only contain linear terms. It
should be observed that this also covers the case of a quasi left-linear TRS R: for
such a TRS we can define L to be the set of all linear left-hand sides of R and have
that L still matches the same terms as lhs(R), due to Lemma 5.4. We want to show
that for a linear set L the set SL is finite. For that purpose we need the depth of a
term, which is defined as follows.

Definition 5.7 The depth of a term t ∈ T (Σ,V) is defined as depth(t) = 0 if t ∈ V
and depth(f(t1, . . . , tn)) = 1 + max{depth(t1), . . . ,depth(tn)} for t = f(t1, . . . , tn).

The depth of a finite set T ⊆ T (Σ,V) is defined as the maximum over the depths
of the terms it contains, i.e., depth(T) = max{depth(t) | t ∈ T}.

Then, we have for example depth(f(x, y)) = 1, while depth(f(a, y)) = 2 for the
signature Σ = {f, a}. Using this notion of depth, we can now prove the following
lemma. It provides an upper bound on the depth of the terms contained in SL for
sets L containing only linear terms.

Lemma 5.8 For a set L ⊆ Tlin(Σ,V) of linear terms we have that depth(s) ≤
depth(L) for all s ∈ SL.

Proof. Assume, there exists a s ∈ SL ⊆ S′
L with depth(s) > depth(L). Thus, we

have that sσ �= �τ for all � ∈ L and all substitutions σ, τ ∈ SUB(Σ,V). W.l.o.g. we
may assume that V(s) and V(�) are disjoint for all � ∈ L. Lemma 2.1 shows that for
every � ∈ L a position π� ∈ Pos(�) ∩ Pos(s) exists such that root(�|π�

) �= root(s|π�
).

By definition of depth(L), we have |π�| < depth(L). Let truncL(s) ∈ T (Σ,V)
denote the term that is derived from s by replacing all subterms at positions of
length depth(L) by fresh variables. By construction, we have depth(truncL(s)) =
depth(L), truncL(s) < s, and root(s|π) = root(truncL(s)|π) for all π ∈ Pos(s) with
|π| < depth(L). Hence, root(truncL(s)|π�

) = root(s|π�
) �= root(�|π�

), i.e., for all
substitutions σ, τ ∈ SUB(Σ,V) we have truncL(s)σ �= �τ . Thus truncL(s) ∈ S′

L,
which contradicts the minimality of s. �

Furthermore, we only have to consider linear terms for the set SL, if we are only
interested in the matching of ground terms.

Lemma 5.9 For a set L ⊆ Tlin(Σ,V) of linear terms, we have for every t ∈ T (Σ)∩
S′

L that s ∈ SL ∩ Tlin(Σ,V) and σ ∈ SUB(Σ,V) exist with sσ = t.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 15

Proof. Let t ∈ T (Σ) ∩ S′
L. Then for all � ∈ L and all τ ∈ SUB(Σ,V) we have that

�τ �= t. Since T (Σ) ⊆ Tlin(Σ,V), we get from Lemma 2.1 that a π� ∈ Pos(�)∩Pos(t)
exists with root(t|π�

) �= root(�|π�
).

There exist s ∈ SL and σ ∈ SUB(Σ,V) with sσ = t, due to Lemma 5.5. In case
s ∈ Tlin(Σ,V) nothing has to be proven.

Otherwise, we start with the term lin(s) that is created from s by replacing every
occurrence of a variable by a fresh variable, thereby generating a linear term. Then
clearly, there is a substitution σ′ such that lin(s)σ′ = t. If there is an �′ ∈ L and a
substitution τ ∈ SUB(Σ,V) such that lin(s)τ = �′τ (where we assume lin(s) and �′

to be variable disjoint), then we replace in s the variable at a position πs ∈ Pos(s)
that is a prefix of π� by f(x1, . . . , xn), where f = root(t|πs), arity(f) = n, and
the xi are fresh variables. This variable must exist, otherwise �′ would match t.
This process is repeated until there are no more �′ that unify with the thereby
constructed term s′. By construction s′ is linear and does not unify with any term
from L. Furthermore, this term is minimal in S′

L w.r.t. >, therefore s′ ∈ SL, which
shows our claim. �

From the above lemmas, we can give the following construction of an anti-
matching set SL w.r.t. a set L of linear terms. Let d = depth(L) be the maximal
depth of terms occurring in L. Start by S′ being the finite set of all linear terms up
to renaming of variables of depth ≤ d. Next remove all terms from S′ that unify
with a term from L. Finally initialize SL to S′ and remove all non-minimal elements
t from SL, i.e., every term t for which a u ∈ S exists with u < t is removed from
SL. From Lemmas 5.8 and 5.9 we then know that all ground terms that are not
matched by L are matched by SL.

Using this construction and the above lemmas, we can now show Theorem 3.3.
It states that for a quasi left-linear TRS R a finite, computable, and unique anti-
matching set SL exists that matches exactly those terms that lhs(R) does not match.
Please note that we only have to consider a linear set L that matches all ground
terms matched by lhs(R), as we already observed above.

Proof of Theorem 3.3. Let L ⊆ Tlin(Σ,V) be the finite set of linear left-hand sides
of R. Then L matches all terms that can be rewritten by R due to Lemma 5.4. Let
SL ⊆ T (Σ,V) be defined as given in Definition 5.1. As we can see from Lemma 5.6,
we have that for all ground terms t ∈ T (Σ) it holds that t ∈ {sσ ∈ T (Σ) | s ∈ SL, σ ∈
SUB(Σ,V)} iff t /∈ {�σ ∈ T (Σ) | � ∈ L, σ ∈ SUB(Σ,V)}. From Lemma 5.8 we get
that SL is finite, since, up to variable renaming, only finitely many terms whose
depth is less than or equal to depth(L) exist for a finite signature Σ. Lemma 5.9
shows that SL = SL∩Tlin(Σ,V), and finally the sketched construction shows that the
set SL is computable and unique since the minimal elements w.r.t. > are unique.�

Finally, we want to further analyze the case of TRSs that are not quasi left-
linear. For this purpose, let L = {f(x, x)} be the left-hand sides of a TRS over the
signature Σ = {f, g}. Then for every n ∈ N we have f(x, gn(x)) ∈ S′

L. Furthermore,
there is no term s �= f(x, gn(x)) ∈ S′

L such that sσ = f(x, gn(x)), which shows that
SL is infinite. To show that this is not due to choosing the set SL, we prove the

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2116

proposition below, stating that SL is the smallest set that has the desired property.

Proposition 5.10 Let L ⊆ T (Σ,V). For every anti-matching set S ⊆ T (Σ,V)
w.r.t. L we have SL ⊆ S ⊆ S′

L, where we disregard variable renamings.

Proof. The inclusion S ⊆ S′
L can be seen directly from the definition of S′

L.
Assume, there is such a set S ⊆ T (Σ,V) with SL �⊆ S. Then, there is a term

s′ ∈ SL such that s′ /∈ S. Furthermore, it must be the case that {sσ | s ∈ S, σ ∈
SUB(Σ,V)} = {sσ | s ∈ SL, σ ∈ SUB(Σ,V)} = S′

L, i.e., there must be an s ∈ S

and a σ ∈ SUB(Σ,V) such that sσ = s′. This implies that s ≤ s′. In case we also
have s′ ≤ s, then s′ ∈ S, contradicting our assumption. But otherwise s < s′ holds,
which contradicts the minimality of s′. �

As a consequence of Proposition 5.10 and the previously observed fact that for
L = {f(x, x)} it holds that SL ⊇ {f(x, gn(x)) | n ∈ N}, we conclude that any set S

that matches those terms which are not matched by a term in L must be infinite,
since already SL ⊆ S is infinite.

6 Implementation and Experiments

We have implemented the transformations as described in the previous sections.
Even though the construction of the set SL of terms that match those terms not
matched by the set L of left-hand sides of the input term rewrite system can certainly
be improved, the complete transformation only takes a neglegible amount of time
for all of the following examples.

Our implementation allows for a number of different variants of the transforma-
tion T1 to be used. In Section 3 only one of these was presented, this proved to
be the most effective one in our experiments. In detail, one can choose whether or
not to add the blocking symbol when the symbol down descends into a term that
is not matched by a left-hand side of the original term rewrite system. Also, one
can choose whether the symbols upon descending should be rewritten to a marked
version of that symbol. As a last option, one can also use a modified version of the
rules for the up symbol, however this modification proved itself not to be effective.

The transformed system was then used as input for the termination provers
Jambox [3], TTT2 [13], and AProVE [6], which were the strongest tools of the
2007 termination competition in the TRS category [15]. The reason why we used
multiple tools was that the transformation turned out to produce rewrite systems
for which sometimes one tool succeeded in proving termination of the transformed
TRS, while at least one of the other tools was unable to do so.

Below we present some examples. First, we want to show that Example 2.2
really is outermost ground terminating, as claimed above. When this example is
transformed, the following TRS is created:

Example 6.1 (Transformation of Example 2.2)

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 17

T1(R) =

⎧⎪⎪⎨
⎪⎪⎩

top(up(x)) → top(down(x)) down(b) → up(a)
down(f(x, a)) → up(f(x, b)) down(f(a, x)) → up(a)
f�(block(x), up(y)) → up(f(x, y)) down(f(b, x)) → up(a)
f�(up(x), block(y)) → up(f(x, y)) down(f(f(x, y), z)) → up(a)

It can be observed that in the transformed TRS there are no rules that allow
the symbol down to descend into a term. This holds because we have SL = {a},
such that no rules are created for it. The transformed TRS can easily be shown
terminating within a short amount of time by all of the considered tools. For the
next example, this is not the case anymore.

Example 6.2

R2 =
{

a → f(a)
f(f(f(f(f(x))))) → b

Both AProVE and TTT2 can show termination of T1(R2), while Jambox fails
to do so. What is also interesting is that TTT2 uses RFC Match Bounds to show
this, while AProVE uses only Dependency Pairs and a large number of rewriting
steps, but is able to find this proof much faster than TTT2.

The next example proved to be rather difficult for all of the considered tools. It
is the example from the introduction for the case n = 1.

Example 6.3

R3 =
{

from(x) → x : from(s(x))
s(x) : xs → overflow

This example could only be proven outermost ground terminating using the tool
Jambox, both AProVE and TTT2 failed. However, the techniques used by Jambox
to prove termination, namely semantic labelling and polynomial orders, are also
implemented in both of the other tools. Hence, this clearly shows that proving
termination is also strongly dependent on heuristics and/or search encodings.

If we instantiate n with 2 or 3 in the example given in the introduction, then
none of the considered termination tools was able to prove termination of the re-
sulting TRS T1(R) in a reasonable amount of time. However, when using one of the
transformations presented in Section 4, then for both values of n the TRSs T2(R)
and T3(R) can be proven terminating using the tools Jambox and AProVE. Hence,
even though these transformations are incomplete, they can be used to show out-
ermost ground termination of examples where the transformation T1 does not lead
to a successful proof.

In the examples that we considered so far, we had that always the right-hand
side of the rule that caused the outermost ground termination was a ground term.
This is different in the next example.

Example 6.4

R4 =
{

f(f(g(x))) → x

g(b) → f(g(b))

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2118

This transformed TRS can be shown terminating by the tools TTT2 and Jam-
box, while AProVE fails.

In the example below, it is the case that the right-hand sides are not always
either growing or detecting a term that has grown too large.

Example 6.5

R5 =

⎧⎨
⎩

f(f(x, y), z) → c
f(x, f(y, z)) → f(f(x, y), z)
a → f(a, a)

The transformed TRS T1(R5) can be shown terminating by both AProVE and
Jambox, while for this example TTT2 fails to show termination. If the first rule
is changed to f(f(x, y), z) → f(c, x), then only AProVE can show the transformed
TRS to be terminating.

Next, we want to consider the 6 examples contained in the Termination Problem
DataBase (TPDB) [15] that require outermost termination analysis. All of these ex-
amples can be proven outermost ground terminating by the tool Cariboo [9], which
was mentioned in the introduction. Of these 6 examples, 5 are left-linear, therefore
they can be directly handled by our approach. For these, we can show outermost
ground termination using Jambox as termination prover. The last example shall be
considered in more detail below.

Example 6.6 (Outermost Example 6)

R6 =

⎧⎨
⎩

f(x, x) → f(i(x), g(g(x))) f(x, i(g(x))) → a
f(x, y) → x f(x, i(x)) → f(x, x)
g(x) → i(x)

As can be seen above, this example has non-linear left-hand sides for the function
symbol f. However, these left-hand sides are all instances of the left-hand side
f(x, y), which makes this TRS quasi left-linear. Hence, we only have to consider
the set L = {f(x, y), g(x)} of linear terms, from which we then compute SL to be
SL = {a, i(x)}. Using this set, our transformation yields a finite TRS T1(R6), whose
termination can be proven using any of the three considered tools.

Finally, we want to compare the strength of our approach against that of Cari-
boo. The following example is non-terminating for normal rewriting, since already
the rule h(x) → f(h(x)) allows an infinite reduction.

Example 6.7

R7 =
{

f(h(x)) → f(i(x)) h(x) → f(h(x))
f(i(x)) → x i(x) → h(x)

Cariboo is unable to prove outermost ground termination of the TRS R7, while
the transformed TRS T1(R7) can be proven terminating by all considered tools.
Also Example 6.4 and both variants of Example 6.5 cannot be proven outermost
ground terminating by Cariboo.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 19

There are also examples where Cariboo succeeds, whereas our transformation
fails. First of all, Cariboo can also handle examples that are not quasi left-linear,
while our transformation is not applicable in this case. But there are also quasi
left-linear examples where Cariboo can prove outermost ground termination, but
none of the considered tools can prove termination of the transformed TRS. Such
an example is given below.

Example 6.8

R8 =

⎧⎨
⎩

f(g(x), h(x)) → f(i(x), h(x)) f(x, j(y)) → a
f(i(x), h(x)) → a i(x) → g(x)
f(x, h(y)) → f(x, j(y)) j(x) → h(x)

This quasi left-linear example can be shown terminating by Cariboo, whereas
for all termination provers the transformed TRSs T1(R8) and T3(R8) are too hard,
while T2(R8) allows for an infinite reduction.

7 Conclusion

We have presented different transformations such that outermost ground termina-
tion of a TRS follows from termination of the transformed TRS. These transforma-
tions are sound for arbitrary term rewrite systems, but only for finite quasi left-linear
term rewrite systems the transformed term rewrite system is finite and can be con-
structed automatically. For this class of term rewrite systems we implemented the
transformations and we were able to prove ground outermost termination of several
non-trivial examples, including all 6 examples contained in the TPDB that require
an outermost strategy. When comparing the presented approach to the existing
one implemented in the tool Cariboo [9], then we have shown that our approach
can prove several term rewrite systems to be outermost ground terminating where
Cariboo fails. However, it should also be mentioned that for some examples Cariboo
succeeds but our transformation fails. Especially, Cariboo is not limited to quasi
left-linear TRSs, but also when considering only such TRSs there are examples with
this behavior. However, some of these quasi left-linear examples might, due to the
nature of our approach, be proven outermost ground terminating in the future us-
ing the presented transformation, when the underlying termination provers become
even more powerful.

As already presented in Section 4, the transformations based on contexts are
not complete, i.e., from the non-termination of the transformed TRS one can not
conclude that the original TRS contains an infinite outermost ground reduction.
However, recent work suggests that the transformation presented in Section 3 is
complete when restricting to TRSs R that satisfy the condition V(r) ⊆ V(�) for all
rules � → r ∈ R. Proving this remains a task for the future.

In the present TPDB, the set of TRSs requiring an outermost strategy, so being
non-terminating when disregarding the strategy, is quite limited: there are only
6. Therefore, more such examples should be added to the TPDB to allow for a

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–2120

better comparison of different approaches that try to prove outermost termination
automatically.

References

[1] Baader, F. and T. Nipkow, “Term Rewriting and All That,” Cambridge University Press, Cambridge,
UK, 1998.

[2] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and C. Talcott, The Maude
2.0 System, in: Proceedings of the 14th Conference on Rewriting Techniques and Applications, Lecture
Notes in Computer Science 2706 (2003), pp. 76–87.

[3] Endrullis, J., Jambox 2.0e, downloadable from http://joerg.endrullis.de.

[4] Futatsugi, K. and R. Diaconescu, editors, “CafeOBJ Report,” World Scientific Publishing Company,
1998.

[5] Giesl, J. and A. Middeldorp, Transformation Techniques for Context-Sensitive Rewrite Systems,
Journal of Functional Programming 14 (2004), pp. 379–427.

[6] Giesl, J., P. Schneider-Kamp and R. Thiemann, AProVE 1.2: Automatic Termination Proofs in the
Dependency Pair Framework, in: Proceedings of the 3rd International Joint Conference on Automatic
Reasoning, Lecture Notes in Computer Science 4130 (2006), pp. 281–286, downloadable from http:
//aprove.informatik.rwth-aachen.de.

[7] Giesl, J., S. Swiderski, P. Schneider-Kamp and R. Thiemann, Automated Termination Analysis for
Haskell: From Term Rewriting to Programming Languages, in: Proceedings of the 17th Conference on
Rewriting Techniques and Applications, Lecture Notes in Computer Science 4098, 2006, pp. 297–312.

[8] Giesl, J. and H. Zantema, Liveness in Rewriting, in: Proceedings of the 14th Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 2706 (2003), pp. 321–336.

[9] Gnaedig, I. and H. Kirchner, Termination of rewriting under strategies, ACM Transactions on
Computational Logic (2007), to appear, available at http://tocl.acm.org/accepted/315gnaedig.ps.

[10] Huet, G., Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, J.
ACM 27 (1980), pp. 797–821.

[11] Jones, S. P., editor, “Haskell 98 Language and Libraries: The Revised Report,” Cambridge University
Press, 2003, also available from http://www.haskell.org/definition.

[12] Kirchner, C., R. Kopetz and P.-E. Moreau, Anti-Pattern Matching, in: Proceedings of the 16th European
Symposium on Programming, Lecture Notes in Computer Science 4421 (2007), pp. 110–124.

[13] Korp, M., C. Sternagel, H. Zankl and A. Middeldorp, Tyrolean Termination Tool 2 (TTT2),
downloadable from http://colo6-c703.uibk.ac.at/ttt2.

[14] Lassez, J.-L. and K. Marriot, Explicit Representation of Terms Defined by Counter Examples, Journal
of Automated Reasoning 3 (1987), pp. 301–317.

[15] Marché, C. and H. Zantema, The Termination Competition, in: Proceedings of the 18th Conference on
Rewriting Techniques and Applications, Lecture Notes in Computer Science 4533 (2007), pp. 303–313,
see also http://www.lri.fr/~marche/termination-competition.

[16] Panitz, S. E. and M. Schmidt-Schauss, TEA: Automatically proving termination of programs in a non-
strict higher order functional language, in: Proceedings of the 4th International Symposium on Static
Analysis, Lecture Notes in Computer Science 1302, 1997, pp. 345–360.

[17] Terese, “Term Rewriting Systems,” Cambridge University Press, Cambridge, UK, 2003.

M. Raffelsieper, H. Zantema / Electronic Notes in Theoretical Computer Science 237 (2009) 3–21 21

http://joerg.endrullis.de
http://aprove.informatik.rwth-aachen.de
http://aprove.informatik.rwth-aachen.de
http://tocl.acm.org/accepted/315gnaedig.ps
http://www.haskell.org/definition
http://colo6-c703.uibk.ac.at/ttt2
http://www.lri.fr/~marche/termination-competition

	Introduction
	Preliminaries
	The first Transformation
	Other Transformations based on Contexts
	Anti-matching
	Implementation and Experiments
	Conclusion
	References

