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TAXONOGENOMICS: GENOME OF A NEW ORGANISM
Numidum massiliense gen. nov., sp. nov., a new member of the Bacillaceae
family isolated from the human gut
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Abstract
Numidum massiliense gen. nov., sp. nov., strain mt3T is the type strain of Numidum gen. nov., a new genus within the family Bacillaceae. This

strain was isolated from the faecal flora of a Tuareg boy from Algeria. We describe this Gram-positive facultative anaerobic rod and provide

its complete annotated genome sequence according to the taxonogenomics concept. Its genome is 3 755 739 bp long and contains 3453

protein-coding genes and 64 RNA genes, including eight rRNA genes.
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Introduction
Several microbial ecosystems are harboured by the human

body, among which is the human gut microbiota. This particular
ecosystem is so vast that its cell count (1014 cells) is evaluated

at ten times the number of human cells in the human body, and
its collective bacterial genome size is 150 times larger than the

human genome [1–4]. Over the years, with the evolution of
exploratory techniques of microbial ecosystems from culture

to metagenomics, the gut microbiota has been shown to be
involved in many conditions such as obesity, inflammatory

bowel disease and irritable bowel disease [1]. It has also been
shown to play key roles in digestion as well as metabolic and
immunologic functions [1–3]. A better knowledge of the gut

microbiota’s composition is thus required for an improved
understanding of its functions.
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In order to extend the gut microbiota repertoire and bypass

the noncultivable bacteria issue, the culturomics concept was
developed in order to cultivate as exhaustively as possible the

viable population of a bacterial ecosystem; it consists in the
multiplication of culture conditions, as well as varying of media,

temperature and atmosphere [5]. Using this technique, strain
mt3T was isolated and identified as a previously unknown
member of the Bacillaceae family. Currently there are 53 vali-

dated genera in the Bacillaceae family. This family was created by
Fisher in 1895 (http://www.bacterio.net/Bacillaceae.html). The

genus Bacillus was described as its type genus. The genera that
belong to this family are rod shaped, mostly aerobic and

facultative anaerobic bacteria. They are found in various eco-
systems like the human body, soil, water, air and other envi-

ronmental ecosystems [6].
Bacterial classification is currently based on a polyphasic

approach with phenotypic and genotypic characteristics such as

DNA-DNA hybridization, G+C content and 16S rRNA
sequence similarity [7–9]. Nevertheless, this classification sys-

tem has its limits, among which is the high cost of the DNA-
DNA hybridization technique and its low reproducibility

[7,10]. With the recent development of genome sequencing
technology [11], a new concept of bacterial description was

developed in our laboratory [12–16]. This taxonogenomics
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concept [17] combines a proteomic description with the

matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) profile [18] associated with a

phenotypic description and the sequencing, annotation and
comparison of the complete genome of the new bacterial

species [19].
We describe strain mt3T, a new genus Numidum massiliense

gen. nov., sp. nov. (= CSUR P1305 = DSM 29571), a new

member of the Bacillaceae family using the concept of
taxonogenomics.
Materials and Methods
Organism information
A stool sample was collected from a healthy Tuareg boy living
in Algeria. Verbal consent was obtained from the patient, and

the study was approved by the Institut Fédératif de Recherche
48, Faculty of Medicine, Marseille, France, under agreement 09-

022.

Strain identification by MALDI-TOF MS and 16S rRNA
sequencing
The sample was cultured using the 18 culture conditions of
culturomics [20]. The colonies were obtained by seeding on

solid medium, purified by subculture and identified using
MALDI-TOF MS [18,21]. Colonies were deposited in duplicate

on a MTP 96 MALDI-TOF MS target plate (Bruker Daltonics,
Leipzig, Germany), which was analysed with a Microflex spec-

trometer (Bruker). The 12 spectra obtained were matched
against the references of the 7567 bacteria contained in the

database by standard pattern matching (with default parameter
settings), with MALDI BioTyper database software 2.0
(Bruker). An identification score over 1.9 with a validated

species allows identification at the species level, and a score
under 1.7 does not enable any identification. When identifica-

tion by MALDI-TOF MS failed, the 16S rRNA was sequenced
[22]. Stackebrandt and Ebers [23] suggest similarity levels of

98.7% and 95% of the 16s rRNA sequence as a threshold to
define, respectively, a new species and a new genus without

performing DNA-DNA hybridization.

Growth conditions
In order to determine our strain’s ideal growth conditions,

different temperatures (25, 28, 37, 45 and 56°C) and atmo-
spheres (aerobic, microerophilic and anaerobic) were tested.

GENbag anaer and GENbag miroaer systems (bioMérieux,
Marcy l’Étoile, France) were used to respectively test anaerobic

and microaerophilic growth. Aerobic growth was achieved with
and without 5% CO2.
© 2016 The Authors. Published by Elsevier Ltd on behal
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Morphologic, biochemical and antibiotic susceptibility
testing
Gram staining, motility, catalase, oxidase and sporulation were

tested as previously described [20]. Biochemical description
was performed using API 20 NE, ZYM and 50CH (bioMérieux)

according to the manufacturer’s instructions. Cellular fatty acid
methyl ester (FAME) analysis was performed by gas chroma-
tography/mass spectrometry (GC/MS). Two samples were

prepared with approximately 70 mg of bacterial biomass per
tube collected from several culture plates. FAMEs were pre-

pared as previously described (http://www.midi-inc.com/pdf/
MIS_Technote_101.pdf). GC/MS analyses were carried out as

described before [24]. Briefly, fatty acid methyl esters were
separated using an Elite 5-MS column and monitored by mass

spectrometry (Clarus 500-SQ 8 S; Perkin Elmer, Courtaboeuf,
France). Spectral database search was performed using MS
Search 2.0 operated with the Standard Reference Database 1A

(NIST, Gaithersburg, MD, USA) and the FAMEs mass spectral
database (Wiley, Chichester, UK).

Antibiotic susceptibility testing was performed using the disk
diffusion method according to European Committee on Anti-

microbial Susceptibility Testing (EUCAST) 2015 recommenda-
tions (http://www.eucast.org/). To perform the negative staining

of strain mt3T, detection Formvar-coated grids were deposited
on a 40 μL bacterial suspension drop, then incubated at 37°C

for 30 minutes and on ammonium molybdate 1% for 10 sec-
onds. The dried grids on blotted paper were observed with a
Tecnai G20 transmission electron microscope (FEI Company,

Limeil-Brevannes, France).

Growth conditions and genomic DNA preparation
N. massiliense strain mt3T (= CSUR P1305 = DSM 29571) was
grown on 5% sheep’s blood–enriched Columbia agar (bio-

Mérieux) at 37°C in aerobic atmosphere. Bacteria grown on
three petri dishes were collected and resuspended in 4 × 100
μL of Tris-EDTA (TE) buffer. Then 200 μL of this suspension

was diluted in 1 mL TE buffer for lysis treatment that included a
30- minute incubation with 2.5 μg/μL lysozyme at 37°C, fol-

lowed by an overnight incubation with 20 μg/μL proteinase K at
37°C. Extracted DNA was then purified using three successive

phenol–chloroform extractions and ethanol precipitations
at −20°C overnight. After centrifugation, the DNA was resus-

pended in 160 μL TE buffer.

Genome sequencing and assembly
Genomic DNA of N. massiliense was sequenced on the MiSeq

Technology (Illumina, San Diego, CA, USA) with the mate pair
strategy. The gDNA was barcoded in order to be mixed with 11

other projects with the Nextera Mate Pair sample prep kit
(Illumina). gDNA was quantified by a Qubit assay with a high
f of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 12, 76–85
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TABLE 1. Classification and general features of Numidum

massiliense strain mt3T

Property Term

Current classification Domain: Bacteria
Phylum: Firmicutes
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Numidum
Species: Numidum massiliense
Type strain: mt3

Gram stain Positive
Cell shape Rod
Motility Nonmotile
Sporulation Sporulating
Temperature range Mesophilic
Optimum temperature 37°C
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sensitivity kit (Life Technologies, Carlsbad, CA, USA) to 66.2 ng/

μL. The mate pair library was prepared with 1 μg of genomic
DNA using the Nextera mate pair Illumina guide. The genomic

DNA sample was simultaneously fragmented and tagged with a
mate pair junction adapter. The pattern of the fragmentation was

validated on an Agilent 2100 BioAnalyzer (Agilent Technologies,
Santa Clara, CA, USA) with a DNA 7500 labchip. The DNA
fragments ranged in size from 1 to 11 kb, with an optimal size at

3.927 kb. No size selection, was performed and 505 ng of tag-
mented fragments were circularized. The circularized DNA was

mechanically sheared to small fragments with an optimal at
597 bp on a Covaris device S2 in microtubes (Covaris, Woburn,

MA, USA). The library profile was visualized on a High Sensitivity
Bioanalyzer LabChip (Agilent Technologies), and the final con-

centration library was measured at 59.2 nmol/L.
The libraries were normalized at 2 nM and pooled. After a

denaturation step and dilution at 15 pM, the pool of libraries

was loaded onto the reagent cartridge and then onto the in-
strument along with the flow cell. An automated cluster gen-

eration and sequencing run were performed in a single 39-hour
run in a 2 × 251 bp read length.

Genome annotation and comparison
Open reading frames (ORFs) were predicted using Prodigal
[25] with default parameters, but the predicted ORFs were

excluded if they were spanning a sequencing gap region (con-
tains N). The predicted bacterial protein sequences were

searched against the Clusters of Orthologous Groups (COGs)
using BLASTP (E value 1e-03, coverage 70%, identity percent

30%). If no hit was found, it searched against the NR database
using BLASTP with an E value of 1e-03 coverage 70% and

identity percent of 30%. If sequence lengths were smaller than
80 amino acids, we used an E value of 1e-05. The tRNAScanSE

tool [26] was used to find tRNA genes, whereas rRNAs were
found by using RNAmmer [27]. Lipoprotein signal peptides and
the number of transmembrane helices were predicted using

Phobius [28]. ORFans were identified if all the performed
BLASTP procedures did not give positive results (E value

smaller than 1e-03 for ORFs with sequence size upper than 80
aa or E value smaller than 1e-05 for ORFs with sequence length

smaller 80 aa). Such parameter thresholds have already been
used in previous works to define ORFans.

Genomes were automatically retrieved from the 16s RNA
tree using Xegen software (Phylopattern [29]). For each
selected genome, complete genome sequence, proteome and

ORFeome genome sequence were retrieved from the National
Center for Biotechnology Information FTP site. All proteomes

were analysed with proteinOrtho [30]. Then for each couple of
genomes, a similarity score was computed. This score is the

mean value of nucleotide similarity between all couples of
© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microb
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orthologues between the two genomes studied (AGIOS) [19].

An annotation of the entire proteome was performed to define
the distribution of functional classes of predicted genes ac-

cording to the clusters of orthologous groups of proteins (using
the same method as for the genome annotation). To evaluate

the genomic similarity among the compared strains, we deter-
mined two parameters: digital DNA-DNA hybridization
(dDDH), which exhibits a high correlation with DNA-DNA

hybridization (DDH) [31,32], and AGIOS [19], which was
designed to be independent from DDH.
Results
Strain identification and phylogenetic analyses
Strain mt3T (Table 1) was first isolated in April 2014 by a
preincubation of 21 days in brain–heart infusion supplemented

with 5% sheep’s blood and cultivated on 5% sheep’s blood–
enriched Colombia agar (bioMérieux) in an aerobic atmosphere

at 37°C.
No significant score was obtained for strain mt3T using

MALDI-TOF MS, thus suggesting that our isolate’s spectrum did
not match any spectra in our database. The nucleotide

sequence of the 16S r RNA of strain mt3T (GenBank accession
no. LK985385) showed a 90.5% similarity level with Bacillus
firmus, the phylogenetically closest species with a validly pub-

lished name (Fig. 1), therefore defining it as a new genus within
the Bacillaceae family named Numidum massiliense (= CSUR

P1305 = DSM29571). N. massiliense spectra (Fig. 2) were added
as reference spectra to our database. The reference spectrum

for N. massiliense was then compared to the spectra of phylo-
genetically close species, and the differences were exhibited in a

gel view (Fig. 3).

Phenotypic description
Growth was observed from 25 to 56°C on blood-enriched

Columbia agar (bioMérieux), with optimal growth being
iology and Infectious Diseases, NMNI, 12, 76–85
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FIG. 1. Phylogenetic tree highlighting position of Numidum massiliense gen. nov., sp. nov. strain mt3T (= CSUR P1305 = DSM 29571) relative to other

strains within family Bacillaceae. Scale bar represents 1% nucleotide sequence divergence.
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obtained aerobically at 37°C after 48 hours of incubation.
Weak cell growth was observed under microaerophilic and

anaerobic conditions. The cells were nonmotile and sporu-
lating. Cells were Gram-positive rods (Fig. 4) and formed

greyish colonies with a mean diameter of 10 mm on blood-
enriched Columbia agar. Under electron microscopy, the
FIG. 2. Reference mass spectrum from Numidum massiliense strain

mt3T. Spectra from 12 individual colonies were compared and refer-

ence spectrum was generated.

© 2016 The Authors. Published by Elsevier Ltd on behal
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bacteria had a mean diameter of 0.5 μm and length of 2.7 μm
(Fig. 5).

The major fatty acid by far is the branched 13-methyl-tet-
radecanoic acid (88%). Other fatty acids are described with low

abundances (below 6%). The majority of them were branched
fatty acids (Table 2).

Strain mt3T was positive for catalase and negative for oxi-

dase. Alkaline phosphatase, esterase (C4), esterase lipase (C8),
leucine arylamidase, trypsin, α-chymotrypsin, acid phosphatase,

β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase,
protease and N-acetyl-β-glucosaminidase activities were

exhibited. Nitrates were reduced into nitrites. D-Ribose, D-
xylose, D-mannose, D-galactose, D-fructose, D-glucose, D-

mannitol, N-acetylglucosamine, amygdalin, esculin ferric citrate,
D-maltose, D-lactose, D-trehalose and D-tagatose and adipic acid

were metabolized.
Cells were susceptible to doxycycline, ceftriaxone, genta-

micin 500 μg, ticarcillin/clavulanic acid, rifampicin, teicoplanin,

metronidazole and imipenem. Resistance was exhibited against
erythromycin, colistin/polymyxin B, ciprofloxacin, penicillin,

trimethoprim/sulfamethoxazole, nitrofurantoin and gentamicin
15 μg.

The biochemical and phenotypic features of strain mt3T

were compared to the corresponding features of other close

representatives of the Bacillaceae family (Table 3).
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FIG. 3. Gel view comparing Numidum massiliense strain mt3T (= CSUR P1305 = DSM 29571) to other species within Bacillaceae family. Gel view

displays raw spectra of loaded spectrum files arranged in pseudo-gel-like look. X-axis records m/z value. Left y-axis displays running spectrum number

originating from subsequent spectra loading. Peak intensity is expressed by greyscale scheme code. Colour bar and right y-axis indicate relation

between colour peak is displayed with and peak intensity in arbitrary units. Displayed species are indicated on left.
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Genome properties
The genome of N. massiliense strain mt3T is 3 757 266 bp long
with a 52.05% G+C content (Table 4, Fig. 6). Of the 3513

predicted genes, 3448 were protein-coding genes and 65 were
RNAs (three genes are 5S rRNA, four genes are 16S rRNA,
FIG. 4. Gram staining of Numidum massiliense strain mt3T.

FIG. 5. Transmission electron microscopy of Numidum massiliense

strain mt3T, using Morgani 268D (Philips, Amsterdam, The

Netherlands) at operating voltage of 60 kV. Scale bar represents 1 μm.

© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 12, 76–85
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TABLE 2. Cellular fatty acid composition (%)

Fatty acid IUPAC name Mean relative %a

15:0 iso 13-methyl-tetradecanoic acid 87.6 ± 1.6
15:0 anteiso 12-methyl-tetradecanoic acid 5.5 ± 0.4
17:0 iso 15-methyl-Hexadecanoic acid 3.0 ± 0.9
16:0 Hexadecanoic acid 0.9 ± 0.1
16:0 iso 14-methyl-Pentadecanoic acid 0.6 ± 0.1
18:1n9 9-Octadecenoic acid 0.6 ± 0.2
13:0 anteiso 10-methyl-Dodecanoic acid TR
5:0 iso 3-methyl-butanoic acid TR
17:0 anteiso 14-methyl-Hexadecanoic acid TR
18:0 Octadecanoic acid TR
18:2n6 9,12-Octadecadienoic acid TR
14:0 iso 12-methyl-Tridecanoic acid TR
14:0 Tetradecanoic acid TR

IUPAC, International Union of Pure and Applied Chemistry; TR, trace amounts
(<1%).
aMean peak area percentage ± standard deviation.

TABLE 4. Nucleotide content and gene count levels of

genome

Attribute

Genome (total)

Value % of totala

Size (bp) 3 757 266 100
G+C content (bp) 1 955 657 52.05
Coding region (bp) 3 1815 69 84.67
Total genes 3513 100
RNA genes 65 1.85
Protein-coding genes 3448 98.14
Genes with function prediction 2570 73.15
Genes assigned to COGs 2314 65.86
Genes with peptide signals 229 6.51
Genes with transmembrane helices 977 27.81

COGs, Clusters of Orthologous Groups database.
aTotal is based on either size of genome in base pairs or total number of protein-
coding genes in annotated genome.
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two genes are 23S rRNA and 56 genes are tRNA genes). A total

of 2570 genes (73.15%) were assigned as putative function (by
COGs or by NR blast). Four hundred twelve genes were

identified as ORFans (11.93%). The remaining 503 genes were
annotated as hypothetical proteins (14.57%). The National

Center for Biotechnology Information ID project is PRJEB8811,
and the genome is deposited under accession number
CTDZ01000000. The distribution of genes into COGs func-

tional categories is presented in Table 5.

Genome comparison
N. massiliense genomic characteristics were compared to other
close species (Table 6).
TABLE 3. Differential characteristics of Numidum massiliense strai

pantothenticus strain ATCC 14576, Virgibacillus dokdonensis DSM

polygoni strain NCIMB 14282T, Bacillus agaradhaerens strain DSM

barbaricus strain DSM 14730T and Virgibacillus koreensis strain JCM 1

Property
N.
massiliense

B.
mannanilyticus

V.
pantothenticus

V.
dokdonensis

Cell diameter (μm) 0.5–0.6 0.6–0.8 0.5–0.7 0.6–0.8
Oxygen requirement + + + −

Gram stain + +/− + +/−
Salt requirement − − + −

Motility − + + +
Endospore formation + + + +
Indole − − − −

Production of:
Alkaline phosphatase + NA NA −

Catalase + + + +
Oxidase − − NA +
Nitrate reductase + − +/− −

Urease − NA NA −

β-Galactosidase + NA NA −

N-acetyl-glucosamine + NA + −

Acid from:
L-Arabinose − − − −

Ribose + NA + +
Mannose + + + +
Mannitol + + − −

Sucrose − + +/− +
D-Glucose + + + +
D-Fructose + + + +
D-Maltose + + + +
D-Lactose + + +/− +
Habitat Human gut Industry Soil Seawater

+, positive result; −, negative result; w, weakly positive result; NA, data not available.

© 2016 The Authors. Published by Elsevier Ltd on behal
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The draft genome sequence of N. massiliense strain mt3T

(3.76 MB) is smaller than the draft genome sequences of Bacillus
vireti LMG 21834, Bacillus mannanilyticus JCM 10596, Paucisali-

bacillus globulus DSM 18846 and Bacillus subterraneus DSM
13966T (5.29, 4.53, 4.24 and 3.9 MB respectively) and larger

than those of Bacillus selenitireducens MLS10 and Laceyella sac-
chari 1-1 (3.59 and 3.32 MB respectively). The G+C content of

N. massiliense (52.05%) is larger than the G+C contents of
L. sacchari 1-1, B. selenitireducens MLS10, B. subterraneus DSM
13966T, B. vireti LMG 21834, B. mannanilyticus JCM 10596 and

P. globulus DSM 18846 (48.9, 48.7, 42.1, 39.7, 39.6 and 35.8%
respectively).
n mt3T, Bacillus mannanilyticus strain DSM 16130, Virgibacillus

16826, Ornithinibacillus contaminans DSM 22953, Bacillus

8721, Paucisalibacillus globulus strain LMG 23148T, Bacillus

2387T [33–41]

O.
contaminans

B.
polygoni

B.
agaradhaerens

P.
globulus

B.
barbaricus

V.
koreensis

0.8–1 0.4–0.5 0.5–0.6 0.5 0.5 0.5–0.7
+ + + + + −

+ + NA + + +
− + + − − +
− − NA − − +
+ + + + + +
NA − NA NA − −

NA NA NA NA NA NA
+ + − + + +
+ − NA − − +
NA + + − − −

NA NA − − − −

NA NA NA NA NA +
NA NA + + + +

NA NA + − − +
− − NA − + NA
− + + + + +
w + + + − +
NA + + + − NA
+ + + + + −

NA + + + + +
NA + + + + +
NA − NA + +/− NA
Blood Indigo balls Industry Soil Paint Salt

f of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 12, 76–85
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FIG. 6. Graphical circular map of chromosome. From outside to center: Genes on forward strain coloured by COGs categories (only gene assigned to

COGs), RNA genes (tRNAs green, rRNAs red), GC content and GC skew.

TABLE 5. Number of genes associated with 25 general COGs

functional categories

Code Value % of totala Description

J 150 4.35 Translation
A 0 0 RNA processing and modification
K 247 7.16 Transcription
L 169 4.90 Replication, recombination and repair
B 1 0.03 Chromatin structure and dynamics
D 30 0.87 Cell cycle control, mitosis and meiosis
Y 0 0 Nuclear structure
V 85 2.47 Defense mechanisms
T 123 3.57 Signal transduction mechanisms
M 143 4.15 Cell wall/membrane biogenesis
N 8 0.23 Cell motility
Z 0 0 Cytoskeleton
W 0 0 Extracellular structures
U 34 0.99 Intracellular trafficking and secretion
O 93 2.70 Posttranslational modification, protein

turnover, chaperones
C 156 4.52 Energy production and conversion
G 234 6.79 Carbohydrate transport and metabolism
E 278 8.06 Amino acid transport and metabolism
F 63 1.83 Nucleotide transport and metabolism
H 95 2.76 Coenzyme transport and metabolism
I 117 3.39 Lipid transport and metabolism
P 163 4.73 Inorganic ion transport and metabolism
Q 75 2.18 Secondary metabolites biosynthesis,

transport and catabolism
R 370 10.73 General function prediction only
S 269 4.80 Function unknown
— 2903 84.19 Not in COGs

COGs, Clusters of Orthologous Groups database.
aTotal is based on total number of protein-coding genes in annotated genome.
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The gene content of N. massiliense (3513) is smaller than the
gene contents of B. vireti LMG 21834, B. mannanilyticus JCM

10596, P. globulus DSM 18846 and B. subterraneus DSM 13966T

(5050, 4369, 4127 and 3772 respectively) but larger than those

of B. selenitireducens MLS10 and L. sacchari 1-1 (3368 and 3256
respectively).
TABLE 6. Genome comparison of closely related species to

Numidum massiliense strain mt3T

Organism INSDC Size (Mb) G+C (%)
Total
genes

Numidum massiliense
strain mt3T

CTDZ00000000.1 3.76 52.05 3513

Bacillus vireti
strain LMG 21834

ALAN00000000.1 5.29 39.7 5050

Bacillus mannanilyticus
JCM 10596

BAMO00000000.1 4.53 39.6 4369

Paucisalibacillus globulus
DSM 18846

AXVK00000000.1 4.24 35.8 4127

Bacillus subterraneus
DSM 13966T

JXIQ00000000.1 3.9 42.1 3772

Bacillus selenitireducens
strain MLS10

CP001791.1 3.59 48.7 3368

Laceyella sacchari
strain 1-1

ASZU00000000.1 3.32 48.9 3256

INSDC, International Nucleotide Sequence Database Collaboration.

iology and Infectious Diseases, NMNI, 12, 76–85
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proteins.

TABLE 7. Numbers of orthologous protein shared between genomes (upper right)a

Numidum
massiliense

Bacillus
mannanilyticus

Bacillus
selenitireducens

Bacillus
subterraneus

Bacillus
vireti

Laceyella
sacchari

Paucisalibacillus
globulus

N. massiliense 3453 1162 1028 1191 1294 1121 456
B. mannanilyticus 53.11 3710 1194 1369 1471 1174 511
B. selenitireducens 55.11 54.58 3212 1301 1318 972 461
B. subterraneus 54.81 56.4 58.15 3648 1632 1141 558
B. vireti 54.39 56.91 57.56 66.1 4963 1244 656
L. sacchari 57.96 54.52 55.66 55.94 55.59 3152 412
P. globulus 52.26 55.47 54.19 58.18 58.89 52.72 4000

aAverage percentage similarity of nucleotides corresponding to orthologous protein shared between genomes (lower left) and numbers of proteins per genome (bold).
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However, the distribution of genes into COGs categories
was similar in all compared genomes except for those corre-

sponding to the cytoskeleton category, which were only pre-
sent in B. vireti, B. selenitireducens and B. mannanilyticus (Fig. 7).

N. massiliense strain mt3T shared 1162, 1028, 1191, 1294, 1121
and 456 orthologous genes with B. mannanilyticus, B.
TABLE 8. Pairwise comparison of Bacillus niameyensis with eight ot

identities/HSP length)a

Numidum
massiliense

Bacillus
mannanilyticus

Bacillus
selenitireducens

Bacillus
subterrane

N. massiliense 100% ± 00 2.52% ± 0.13 2.53% ± 0.15 2.52% ± 0.
B. mannanilyticus 100% ± 00 2.53% ± 0.10 2.52% ± 0.
B. selenitireducens 100% ± 00 2.53% ± 0.
B. subterraneus 100% ± 00
B. vireti
L. sacchari
P. globulus
C. minutissimum

DDH, DNA-DNA hybridization; GGDC, Genome-to-Genome Distance Calculator; HSP, hi
aConfidence intervals indicate inherent uncertainty in estimating DDH values from intergenom
limited in size). These results are in accordance with 16S rRNA (Fig. 1) and phylogenomic a

© 2016 The Authors. Published by Elsevier Ltd on behal
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selenitireducens, B. subterraneus, B. vireti, L. sacchari 1-1 and
P. globulus respectively (Table 7). Among species with standing

in nomenclature, AGIOS values ranged from 52.26% between
N. massiliense and P. globulus to 66.1% between B. vireti and

B. subterraneus. When N. massiliense was compared to the other
species, AGIOS values ranged from 52.26% with P. globulus to
her species using GGDC, formula 2 (DDH estimates based on

us
Bacillus
vireti

Laceyella
sacchari

Paucisalibacillus
globulus

Corynebacterium
minutissimum

14 2.52% ± 0.13 2.52% ± 0.13 2.52% ± 0.16 2.52% ± 0.21
18 2.52% ± 0.13 2.52% ± 0.12 2.52% ± 0.19 2.52% ± 0.20
13 2.52% ± 0.12 2.53% ± 0.16 2.52% ± 0.11 2.52% ± 0.21

2.55% ± 0.23 2.52% ± 0.18 2.52% ± 0.21 2.52% ± 0.21
100% ± 00 2.52% ± 0.17 2.52% ± 0.23 2.52% ± 0.20

100% ± 00 2.52% ± 0.06 2.52% ± 0.21
100% ± 00 2.52% ± 00

100% ± 00

gh-scoring segment pairs.
ic distances based on models derived from empirical test data sets (which are always
nalyses as well as GGDC results.
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57.96% with L. sacchari. To evaluate the genomic similarity

among the compared strains, dDDH was also determined
(Table 8).
Conclusion
On the basis of phenotypic, phylogenetic and genomic analyses,
we formally propose the creation of Numidum massiliense which

contains the type strain mt3T. This bacterial strain has been
isolated from the faecal flora of a Tuareg boy living in Algeria.

Description of Numidum gen. nov.
Numidum (nu.mi’dum, from Numidum, which relates to a
nomad people from Africa), is a Gram-positive, sporulating,

facultative anaerobic bacilli. Optimal growth in aerobic condi-
tion at 37°C. Catalase positive and oxidase negative. Nitrates

were reduced into nitrites. It is urease negative. The type strain
is Numidum massiliense strain mt3T.

Description of Numidum massiliense strain mt3T gen.
nov., sp. nov.
Numidum massiliense (mas.il’ien’se. L. gen. masc., massiliense, of

Massilia, the Latin name of Marseille, where strain mt3T was
isolated) cells have a mean diameter of 0.5 μm. Colonies are

greyish and 10 mm in diameter on 5% sheep’s blood–enriched
Columbia agar (bioMérieux). Positive reactions are observed

for alkaline phosphatase, esterase (C4), esterase lipase (C8),
leucine arylamidase, trypsin, α-chymotrypsin, acid phosphatase,
β-galactosidase, β-glucuronidase, α-glucosidase and N-acetyl-

β-glucosaminidase. D-Ribose, D-xylose, D-mannose, D-galactose,
D-fructose, D-glucose, D-mannitol, N-acetylglucosamin, amyg-

dalin, esculin ferric citrate, D-maltose, D-lactose, D-trehalose
and D-tagatose and adipic acid were metabolized.

Cells were susceptible to doxycycline, ceftriaxone, genta-
micin 500 μg, ticarcillin/clavulanic acid, rifampicin, teicoplanin,

metronidazole and imipenem.
The G+C content of the genome is 52.05%. The 16S rRNA

gene sequence and whole-genome shotgun sequence of
N. massiliense strain mt3T are deposited in GenBank under
accession numbers LK985385 and CTDZ01000000, respec-

tively. The type strain mt3T (= CSUR P1305 = DSM 29571) was
isolated from the stool of a Tuareg boy living in Algeria.
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