Canonical form of m-by-2-by-2 matrices over a field of characteristic other than two

Genrich Belitskii ${ }^{\text {a, }}{ }^{1}$, Maxim Bershadsky ${ }^{\text {b }}$, Vladimir V. Sergeichuk ${ }^{\text {c,* }}$
${ }^{a}$ Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
${ }^{\mathrm{b}}$ Sapir Academic College P.b., Hof Ashkelon, 79165, Israel
${ }^{\text {c }}$ National Academy of Sciences, Institute of Mathematics, Tereshchenkivska St. 3, Kiev, Ukraine
Received 29 June 2005; accepted 19 January 2006
Available online 9 March 2006
Submitted by E. Tyrtyshnikov

Abstract

We give a canonical form of $m \times 2 \times 2$ matrices for equivalence over any field of characteristic not two. © 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A21; 15A69
Keywords: Multidimensional matrices; Tensors; Classification

We give a canonical form of $m \times 2 \times 2$ matrices over any field \mathbb{F} of characteristic other than two. Unlike the case $\mathbb{F}=\mathbb{C}$, one of our canonical $2 \times 2 \times 2$ matrices depends on some parameter that is determined up to multiplication by any $z^{2}, 0 \neq z \in \mathbb{F}$. Complex $2 \times 2 \times 2$ matrices up to equivalence were classified by Schwartz [8] and Duschek [2]. Canonical forms of complex and real $2 \times 2 \times 2$ matrices for equivalence were given by Oldenburger [5-7]; see also [9, Section IV, Theorem 1.1]. Recently Ehrenborg [3] constructed a canonical form of complex $2 \times 2 \times 2$ matrices for equivalence basing on a collection of covariants that separates the canonical matrices.

By an $m \times n \times q$ spatial matrix over a field \mathbb{F} we mean an array

$$
\begin{equation*}
\mathscr{A}=\left[a_{i j k}\right]_{i=1}^{m}{ }_{j=1}^{n} q=1, \quad a_{i j k} \in \mathbb{F} ; \tag{1}
\end{equation*}
$$

[^0]it is convenient to represent it by the list of its horizontal slices
$$
\mathscr{A}=\left\|A_{1}|\cdots| A_{q}\right\|, \quad A_{1}:=\left[a_{i j 1}\right]_{i j}, \ldots, A_{q}:=\left[a_{i j q}\right]_{i j} .
$$

Two $m \times n \times q$ spatial matrices $\mathscr{A}=\left[a_{i j k}\right]$ and $\mathscr{B}=\left[b_{i j k}\right]$ are said to be equivalent if there exist non-singular

$$
\begin{equation*}
S=\left[s_{i i^{\prime}}\right] \in \mathbb{F}^{m \times m}, \quad R=\left[r_{j j^{\prime}}\right] \in \mathbb{F}^{n \times n}, \quad T=\left[t_{k k^{\prime}}\right] \in \mathbb{F}^{q \times q} \tag{2}
\end{equation*}
$$

such that

$$
b_{i^{\prime} j^{\prime} k^{\prime}}=\sum_{i j k} a_{i j k} r_{i i^{\prime}} s_{j j^{\prime}} t_{k k^{\prime}}
$$

(\mathscr{A} and \mathscr{B} give the same trilinear form $f: \mathbb{F}^{m} \times \mathbb{F}^{n} \times \mathbb{F}^{q} \rightarrow \mathbb{F}$ relative to different bases). We can transfer \mathscr{A} to \mathscr{B} as follows: first we produce the simultaneous equivalence transformations with the horizontal slices of \mathscr{A} :

$$
\begin{equation*}
\mathscr{C}=\left\|C_{1}|\cdots| C_{q}\right\|:=\left\|R^{\mathrm{T}} A_{1} S|\cdots| R^{\mathrm{T}} A_{q} S\right\|, \tag{3}
\end{equation*}
$$

then we produce the non-singular linear operation on the list of horizontal slices of the obtained spatial matrix \mathscr{C} :

$$
\begin{equation*}
\left\|B_{1}|\cdots| B_{q}\right\|=\left\|C_{1} t_{11}+\cdots+C_{q} t_{q 1}|\cdots| C_{1} t_{1 q}+\cdots+C_{q} t_{q q}\right\|, \tag{4}
\end{equation*}
$$

where S, R, and T are the matrices (2). The last transformation can be realized by a sequence of elementary operations on the list of horizontal slices of \mathscr{C} (interchange any two slides, multiply one slice by a non-zero scalar, and add a scalar multiple of one slice to another one; see [4, Chapter VI, Section 5]).

Let \mathscr{A} be the spatial matrix (1), and let

$$
A_{k}:=\left[a_{i j k}\right]_{i j}, \quad \widetilde{A}_{j}:=\left[a_{i j k}\right]_{i k}, \quad \widetilde{\widetilde{\mathrm{~A}}}_{i}:=\left[a_{i j k}\right]_{j k} .
$$

We say that \mathscr{A} is regular if each of the sets of matrices

$$
\begin{equation*}
\mathscr{S}=\left\{A_{1}, \ldots, A_{q}\right\}, \quad \widetilde{\mathscr{S}}=\left\{\tilde{A}_{1}, \ldots, \widetilde{A}_{n}\right\}, \quad \widetilde{\widetilde{S}}=\left\{\widetilde{\widetilde{\mathrm{A}}}_{1}, \ldots, \widetilde{\mathrm{~A}}_{m}\right\} \tag{5}
\end{equation*}
$$

is linearly independent.
Let \mathscr{A} be non-regular, and let q^{\prime}, n^{\prime}, and m^{\prime} be the ranks of the sets (5). Let us make the first q^{\prime} matrices in \mathscr{S} linearly independent and the others zero by elementary operations. Then reduce the "new" $\widetilde{\mathscr{S}}$ and $\widetilde{\widetilde{\mathscr{S}}}$ in the same way. We obtain a spatial matrix $\mathscr{B}=\left[b_{i j k}\right]$, whose $m^{\prime} \times n^{\prime} \times q^{\prime}$ submatrix

$$
\mathscr{B}^{\prime}=\left[b_{i j k}\right]_{i=1}^{m^{\prime}} n_{j=1}^{n^{\prime}} q_{k=1}^{q^{\prime}}
$$

is regular and whose entries outside of \mathscr{B}^{\prime} are zero; the submatrix \mathscr{B}^{\prime} is called a regular part of \mathscr{A}. Two spatial matrices of the same size are equivalent if and only if their regular parts are equivalent [1, Lemma 4.7]. Hence, it suffices to give a canonical form of a regular spatial matrix.

Theorem 1. Over a field \mathbb{F} of characteristic other than two, each regular $m \times n \times q$ spatial matrix \mathscr{A} with $n \leqslant 2$ and $q \leqslant 2$ is equivalent to exactly one of the following spatial matrices:

$$
\begin{align*}
& \|1\| \tag{6}\\
& (1 \times 1 \times 1), \tag{7}\\
& \left\|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\| \quad(2 \times 2 \times 1), \tag{8}\\
& \| \begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \|(2 \times 1 \times 2),
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{ll|ll}
\| 1 & 0 & 0 & 1 \|
\end{array}(1 \times 2 \times 2), \tag{9}\\
& \left\|\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \quad(3 \times 2 \times 2), \tag{10}\\
& \left\|\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \quad(3 \times 2 \times 2), \tag{11}\\
& \left\|\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \quad(4 \times 2 \times 2), \tag{12}\\
& \mathscr{K}(\tilde{a}):=\left\|\begin{array}{ll|ll}
1 & 0 & 0 & a \\
0 & 1 & 1 & 0
\end{array}\right\| \quad\left(a=0 \text { or } \tilde{a} \in \mathbb{F}^{*} / \mathbb{F}^{* 2}, 2 \times 2 \times 2\right), \tag{13}
\end{align*}
$$

where $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$ is the multiplicative group of $\mathbb{F}, \mathbb{F}^{*} / \mathbb{F}^{* 2}$ is its factor group by $\mathbb{F}^{* 2}:=\left\{z^{2} \mid 0 \neq\right.$ $z \in \mathbb{F}\}$, and a is any fixed element of the coset \tilde{a}; changing to another $a \in \tilde{a}$ gives an equivalent spatial matrix $\mathscr{K}(\tilde{a})$.

Proof. Let \mathscr{A} be a regular $m \times n \times q$ spatial matrix with $n \leqslant 2$ and $q \leqslant 2$.
Step 1. First we prove that \mathscr{A} is equivalent to at least one of the spatial matrices (6)-(13).
Let \mathscr{A} be $m \times n \times 1$. Since $\mathscr{A}=\|A\|$ is regular, it can be reduced by transformations (3) to (6) or (7).

Let \mathscr{A} be $1 \times 2 \times 2$. We reduce $\mathscr{A}=\|A \mid B\|$ to the form $\| 10 \left\lvert\, \begin{array}{ll}b_{1} & b_{2} \| \text { by transformations }\end{array}\right.$ (3). Since \mathscr{A} is regular, $b_{2} \neq 0$; we make $b_{2}=1$ multiplying the second columns of A and B by b_{2}^{-1}. Then we make $b_{1}=0$ by adding a multiple of b_{2} and obtain (9). Similarly, if \mathscr{A} is $2 \times 1 \times 2$, then it reduces to (8).

It remains to consider \mathscr{A} of size $m \times 2 \times 2$ with $m \geqslant 2$. Since $\mathscr{A}=\|A \mid B\|$ is regular, $A \neq 0$, $B \neq 0$, and the rows of the $m \times 4$ matrix $\left[\begin{array}{ll}A & B\end{array}\right]$ are linearly independent; that is, $\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=$ $m \leqslant 4$. Interchanging A and B if necessary, we make

$$
\begin{equation*}
\operatorname{rank} A \geqslant \operatorname{rank} B \tag{14}
\end{equation*}
$$

If $m=4$, then $\left[\begin{array}{cc}A & B\end{array}\right]$ is a non-singular 4×4 matrix; we reduce $\mathscr{A}=\|A \mid B\|$ by elementary row-operations to the form (12).

If $m=\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=3$, then $\operatorname{rank} A=2$ by (14); we reduce consecutively $\mathscr{A}=\|A \mid B\|$ by transformations (3) as follows:

$$
\mathscr{A} \rightarrow\left\|\begin{array}{|cc|cc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & *
\end{array}\right\| \rightarrow\left\|\begin{array}{cc|cc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & 0 & 1
\end{array}\right\| \rightarrow\left\|\begin{array}{cc|cc}
1 & 0 & b_{11} & b_{12} \\
0 & 1 & b_{21} & b_{22} \\
0 & 0 & 0 & 1
\end{array}\right\| .
$$

Replacing B by $B-b_{11} A$, we make $b_{11}=0$, then make zero the $(1,2)$ and $(2,2)$ entries of B by adding the third row. So \mathscr{A} is equivalent to (10) or (11).

Let $m=\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=2$. If A is singular, then by (14) $\operatorname{rank} A=\operatorname{rank} B=1$ and we reduce \mathscr{A} by transformations (3) and (4):

$$
\left\|\begin{array}{cc|cc}
1 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right\| \rightarrow\left\|\begin{array}{cc|cc}
1 & 0 & 0 & b_{12} \\
0 & 0 & b_{21} & b_{22}
\end{array}\right\| .
$$

Since \mathscr{A} is regular, both $\left(b_{21}, b_{22}\right)$ and $\left(b_{12}, b_{22}\right)$ are non-zero. Because rank $B=1, b_{21}=0$ or $b_{12}=0$. We replace A by the non-singular $A+B$.

So we can suppose that A is non-singular and reduce \mathscr{A} to the form

$$
\left\|\begin{array}{ll|ll}
1 & 0 & b_{11} & b_{12} \\
0 & 1 & b_{21} & b_{22}
\end{array}\right\|
$$

Since \mathscr{A} is regular, $B \neq 0$. Preserving $A=I_{2}$, we reduce B by similarity transformations as follows. If $b_{21}=0$, then we make $b_{21} \neq 0$ using

$$
\left[\begin{array}{cc}
1 & 0 \\
-\varepsilon & 1
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\varepsilon & 1
\end{array}\right], \quad \varepsilon=1 \quad \text { or } \quad \varepsilon=-1
$$

Multiplying the first row of B by b_{21} and its first column by b_{21}^{-1}, we obtain $b_{21}=1$. Replacing B by $B-\alpha A=B-\alpha I_{2}$ with $\alpha:=\left(b_{11}+b_{22}\right) / 2$, we make $b_{11}=-b_{22}$. Finally, we reduce B to the form

$$
\left[\begin{array}{cc}
1 & -b_{11} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
1 & -b_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & b_{11} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & * \\
1 & 0
\end{array}\right]
$$

and obtain (13).
Step 2. Now we prove that \mathscr{A} is equivalent to exactly one of the spatial matrices (6)-(13). Let two distinct spatial matrices of the form (6)-(12) be equivalent. Then they have the same size, and so they are (10) and (11), or $\left\|I_{2} \mid B(a)\right\|$ and $\left\|I_{2} \mid B(b)\right\|$. If $\|A \mid B\|$ is (11), then $\operatorname{rank}(\alpha A+\beta B) \neq 1$ for all $\alpha, \beta \in \mathbb{F}$, hence (10) is not equivalent to (11).

Let

$$
\left\|I_{2} \mid B(a)\right\|:=\left\|\begin{array}{ll|ll}
1 & 0 & 0 & a \\
0 & 1 & 1 & 0
\end{array}\right\|, \quad 0 \neq a \in \mathbb{F}
$$

be equivalent to $\left\|I_{2} \mid B(b)\right\|$. By (3) and (4), there is a non-singular matrix

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

such that the matrices I_{2} and $B(b)$ are simultaneously equivalent to

$$
\alpha I_{2}+\beta B(a) \quad \text { and } \quad \gamma I_{2}+\delta B(a)
$$

which are simultaneously equivalent to

$$
I_{2} \quad \text { and } \quad\left(\alpha I_{2}+\beta B(a)\right)^{-1}\left(\gamma I_{2}+\delta B(a)\right) .
$$

Then the last matrix is similar to $B(b)$. Hence, the matrices

$$
\left[\begin{array}{cc}
\alpha & -\beta a \\
-\beta & \alpha
\end{array}\right]\left[\begin{array}{cc}
\gamma & \delta a \\
\delta & \gamma
\end{array}\right]=\left[\begin{array}{cc}
\alpha \gamma-\beta \delta a & (\alpha \delta-\beta \gamma) a \\
\alpha \delta-\beta \gamma & \alpha \gamma-\beta \delta a
\end{array}\right], \quad\left(\alpha^{2}-\beta^{2} a\right)\left[\begin{array}{cc}
0 & b \\
1 & 0
\end{array}\right]
$$

are similar. Equating their traces and determinants, we obtain

$$
\alpha \gamma-\beta \delta a=0, \quad(\alpha \gamma-\beta \delta a)^{2}-(\alpha \delta-\beta \gamma)^{2} a=\left(\alpha^{2}-\beta^{2} a\right)^{2}(-b)
$$

Therefore, $a=b z^{2}$, where $z=\left(\alpha^{2}-\beta^{2} a\right) /(\alpha \delta-\beta \gamma)$.
Conversely, if $a=b z^{2}$ and $0 \neq z \in \mathbb{F}$, then $\left\|I_{2} \mid B(b)\right\|$ is equivalent to $\left\|I_{2} \mid z B(b)\right\|$, which is equivalent to $\left\|I_{2} \mid B(a)\right\|$ since

$$
\left[\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & b z \\
z & 0
\end{array}\right]\left[\begin{array}{cc}
z^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & b z^{2} \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & a \\
1 & 0
\end{array}\right]
$$

References

[1] G.R. Belitskii, V.V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl. 361 (2003) 203-222.
[2] A. Duschek, Eine abbildung der binarën trilinearform, Jahresber. Deutsch. Math. Verein. 32 (1923) 234-239.
[3] R. Ehrenborg, Canonical forms of two by two by two matrices, J. Algebra 213 (1999) 195-244.
[4] S. Mac Lane, G. Birkhoff, Algebra, AMS Chelsea Publishing, 1999.
[5] R. Oldenburger, On canonical binary trilinear forms, Bull. Amer. Math. Soc. 38 (1932) 385-387.
[6] R. Oldenburger, On arithmetic invariants of binary cubic and binary trilinear forms, Bull. Amer. Math. Soc. 42 (1936) 871-873.
[7] R. Oldenburger, Real canonical binary trilinear forms, Amer. J. Math. 59 (1937) 427-435.
[8] E. Schwartz, Ueber binäre trilineare formen, Math. Z. 12 (1922) 18-35.
[9] N.P. Sokolov, Spatial matrices and their applications, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960 (in Russian).

[^0]: * Corresponding author. The research was done while this author was visiting the Ben-Gurion University of the Negev.

 E-mail addresses: genrich@cs.bgu.ac.il (G. Belitskii), maximb@mail.sapir.ac.il (M. Bershadsky), sergeich@ imath.kiev.ua (V.V. Sergeichuk).
 ${ }^{1}$ Partially supported by Israel, Science Foundation, Grant 186/01.

