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Abstract

We give a canonical form of m×2×2 matrices for equivalence over any field of characteristic not two.
© 2006 Elsevier Inc. All rights reserved.
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We give a canonical form of m × 2 × 2 matrices over any field F of characteristic other than
two. Unlike the case F = C, one of our canonical 2 × 2 × 2 matrices depends on some parameter
that is determined up to multiplication by any z2, 0 /= z ∈ F. Complex 2 × 2 × 2 matrices up to
equivalence were classified by Schwartz [8] and Duschek [2]. Canonical forms of complex and
real 2 × 2 × 2 matrices for equivalence were given by Oldenburger [5–7]; see also [9, Section
IV, Theorem 1.1]. Recently Ehrenborg [3] constructed a canonical form of complex 2 × 2 × 2
matrices for equivalence basing on a collection of covariants that separates the canonical matrices.

By an m × n × q spatial matrix over a field F we mean an array

A = [aijk]mi=1
n
j=1

q

k=1, aijk ∈ F; (1)
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it is convenient to represent it by the list of its horizontal slices

A = ||A1| · · · |Aq ||, A1 := [aij1]ij , . . . , Aq := [aijq ]ij .
Two m × n × q spatial matrices A = [aijk] and B = [bijk] are said to be equivalent if there exist
non-singular

S = [sii′ ] ∈ Fm×m, R = [rjj ′ ] ∈ Fn×n, T = [tkk′ ] ∈ Fq×q (2)

such that

bi′j ′k′ =
∑
ijk

aijkrii′sjj ′ tkk′

(A and B give the same trilinear form f : Fm × Fn × Fq → F relative to different bases). We
can transfer A to B as follows: first we produce the simultaneous equivalence transformations
with the horizontal slices of A:

C = ||C1| · · · |Cq || := ||RTA1S| · · · |RTAqS||, (3)

then we produce the non-singular linear operation on the list of horizontal slices of the obtained
spatial matrix C:

||B1| · · · |Bq || = ||C1t11 + · · · + Cqtq1| · · · |C1t1q + · · · + Cqtqq ||, (4)

where S, R, and T are the matrices (2). The last transformation can be realized by a sequence of
elementary operations on the list of horizontal slices of C (interchange any two slides, multiply
one slice by a non-zero scalar, and add a scalar multiple of one slice to another one; see [4, Chapter
VI, Section 5]).

Let A be the spatial matrix (1), and let

Ak := [aijk]ij , Ãj := [aijk]ik, ˜̃Ai := [aijk]jk.

We say that A is regular if each of the sets of matrices

S = {A1, . . . , Aq}, S̃ = {Ã1, . . . , Ãn}, ˜̃S = {˜̃A1, . . . ,
˜̃Am} (5)

is linearly independent.
Let A be non-regular, and let q ′, n′, and m′ be the ranks of the sets (5). Let us make the first

q ′ matrices in S linearly independent and the others zero by elementary operations. Then reduce

the “new” S̃ and ˜̃S in the same way. We obtain a spatial matrix B = [bijk], whose m′ × n′ × q ′
submatrix

B′ = [bijk]m′
i=1

n′
j=1

q ′
k=1

is regular and whose entries outside of B′ are zero; the submatrix B′ is called a regular part of A.
Two spatial matrices of the same size are equivalent if and only if their regular parts are equivalent
[1, Lemma 4.7]. Hence, it suffices to give a canonical form of a regular spatial matrix.

Theorem 1. Over a field F of characteristic other than two, each regular m × n × q spatial
matrix A with n � 2 and q � 2 is equivalent to exactly one of the following spatial matrices:∥∥1

∥∥ (1 × 1 × 1), (6)∥∥∥∥1 0
0 1

∥∥∥∥ (2 × 2 × 1), (7)∥∥∥∥1 0
0 1

∥∥∥∥ (2 × 1 × 2), (8)
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∥∥1 0 0 1
∥∥ (1 × 2 × 2), (9)∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 0 1

∥∥∥∥∥∥ (3 × 2 × 2), (10)

∥∥∥∥∥∥
1 0 0 0
0 1 1 0
0 0 0 1

∥∥∥∥∥∥ (3 × 2 × 2), (11)

∥∥∥∥∥∥∥∥
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥ (4 × 2 × 2), (12)

K(ã) :=
∥∥∥∥1 0 0 a

0 1 1 0

∥∥∥∥ (a = 0 or ã ∈ F∗/F∗2, 2 × 2 × 2), (13)

where F∗ = F \ {0} is the multiplicative group of F, F∗/F∗2 is its factor group by F∗2 := {z2 | 0 /=
z ∈ F}, and a is any fixed element of the coset ã; changing to another a ∈ ã gives an equivalent
spatial matrix K(ã).

Proof. Let A be a regular m × n × q spatial matrix with n � 2 and q � 2.
Step 1. First we prove that A is equivalent to at least one of the spatial matrices (6)–(13).
Let A be m × n × 1. Since A = ‖A‖ is regular, it can be reduced by transformations (3) to

(6) or (7).
Let A be 1 × 2 × 2. We reduce A = ‖A B‖ to the form ‖1 0 b1 b2‖ by transformations

(3). Since A is regular, b2 /= 0; we make b2 = 1 multiplying the second columns of A and B by
b−1

2 . Then we make b1 = 0 by adding a multiple of b2 and obtain (9). Similarly, if A is 2 × 1 × 2,
then it reduces to (8).

It remains to consider A of size m × 2 × 2 with m � 2. Since A = ‖A B‖ is regular, A /= 0,
B /= 0, and the rows of the m × 4 matrix [A B] are linearly independent; that is, rank [A B] =
m � 4. Interchanging A and B if necessary, we make

rank A � rank B. (14)

If m = 4, then [A B] is a non-singular 4 × 4 matrix; we reduce A = ‖A B‖ by elementary
row-operations to the form (12).

If m = rank [A B] = 3, then rank A = 2 by (14); we reduce consecutively A = ‖A B‖ by
transformations (3) as follows:

A →
∥∥∥∥∥∥
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗

∥∥∥∥∥∥ →
∥∥∥∥∥∥
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 1

∥∥∥∥∥∥ →
∥∥∥∥∥∥

1 0 b11 b12
0 1 b21 b22
0 0 0 1

∥∥∥∥∥∥ .

Replacing B by B − b11A, we make b11 = 0, then make zero the (1, 2) and (2, 2) entries of B

by adding the third row. So A is equivalent to (10) or (11).
Let m = rank [A B] = 2. If A is singular, then by (14) rank A = rank B = 1 and we reduce

A by transformations (3) and (4):∥∥∥∥1 0 ∗ ∗
0 0 ∗ ∗

∥∥∥∥ →
∥∥∥∥1 0 0 b12

0 0 b21 b22

∥∥∥∥ .
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Since A is regular, both (b21, b22) and (b12, b22) are non-zero. Because rank B = 1, b21 = 0 or
b12 = 0. We replace A by the non-singular A + B.

So we can suppose that A is non-singular and reduce A to the form∥∥∥∥1 0 b11 b12
0 1 b21 b22

∥∥∥∥ .

Since A is regular, B /= 0. Preserving A = I2, we reduce B by similarity transformations as
follows. If b21 = 0, then we make b21 /= 0 using[

1 0
−ε 1

] [
b11 b12
b21 b22

] [
1 0
ε 1

]
, ε = 1 or ε = −1.

Multiplying the first row of B by b21 and its first column by b−1
21 , we obtain b21 = 1. Replacing

B by B − αA = B − αI2 with α := (b11 + b22)/2, we make b11 = −b22. Finally, we reduce B

to the form[
1 −b11
0 1

] [
b11 b12
1 −b11

] [
1 b11
0 1

]
=

[
0 ∗
1 0

]
and obtain (13).

Step 2. Now we prove thatA is equivalent to exactly one of the spatial matrices (6)–(13). Let two
distinct spatial matrices of the form (6)–(12) be equivalent. Then they have the same size, and so
they are (10) and (11), or ‖I2 B(a)‖ and ‖I2 B(b)‖. If ‖A B‖ is (11), then rank (αA + βB) /= 1
for all α, β ∈ F, hence (10) is not equivalent to (11).

Let

‖I2 B(a)‖ :=
∥∥∥∥1 0 0 a

0 1 1 0

∥∥∥∥ , 0 /= a ∈ F,

be equivalent to ‖I2 B(b)‖. By (3) and (4), there is a non-singular matrix[
α β

γ δ

]
such that the matrices I2 and B(b) are simultaneously equivalent to

αI2 + βB(a) and γ I2 + δB(a),

which are simultaneously equivalent to

I2 and (αI2 + βB(a))−1(γ I2 + δB(a)).

Then the last matrix is similar to B(b). Hence, the matrices[
α −βa

−β α

] [
γ δa

δ γ

]
=

[
αγ − βδa (αδ − βγ )a

αδ − βγ αγ − βδa

]
, (α2 − β2a)

[
0 b

1 0

]
are similar. Equating their traces and determinants, we obtain

αγ − βδa = 0, (αγ − βδa)2 − (αδ − βγ )2a = (α2 − β2a)2(−b).

Therefore, a = bz2, where z = (α2 − β2a)/(αδ − βγ ).
Conversely, if a = bz2 and 0 /= z ∈ F, then ‖I2 B(b)‖ is equivalent to ‖I2 zB(b)‖, which is

equivalent to ‖I2 B(a)‖ since[
z 0
0 1

] [
0 bz

z 0

] [
z−1 0
0 1

]
=

[
0 bz2

1 0

]
=

[
0 a

1 0

]
. �
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