[Topology and its Applications 159 \(2012\) 1–6](http://dx.doi.org/10.1016/j.topol.2011.07.004)

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

Fixed point property on symmetric products

Galo Higuera, Alejandro Illanes [∗]

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, 04510, D.F., Mexico

article info abstract

Article history: Received 27 June 2011 Accepted 5 July 2011

MSC: primary 54B20, 54H25 secondary 54F15

Keywords: Continuum Cook continuum Fixed point property Hyperspace Symmetric product

1. Introduction

A *continuum* is a compact connected metric space with more than one point. Given a continuum *X*, consider the following hyperspaces of *X*:

 $2^X = \{A \subset X: A \text{ is nonempty and closed}\},\$

 $C(X) = \left\{ A \in 2^X : A \text{ is connected} \right\}, \text{ and for each } n \geq 1,$

 $F_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}.$

All these hyperspaces are considered with the Hausdorff metric *H*.

A continuum *X* is said to have the *fixed point property* (f.p.p.) provided that for each continuous map $f: X \to X$, there exists a point $p \in X$ such that $f(p) = p$.

A discussion on which is known about the f.p.p. of hyperspaces can be found in [8, Chapter VI] and [10, Chapter VII]. We only mention here some facts.

In 1952, B. Knaster posed the following question (see [3, Problem 186]): If *X* is a continuum with the f.p.p., then does $C(X)$ have the f.p.p.? A fundamental example on the theory of the f.p.p. is the cone over the continuum D_0 (cone (D_0)) which is the union of a circle and a spiral surrounding it. R.J. Knill (see [9]) showed that this cone does not have the f.p.p., in [14] J.T. Rogers, Jr. showed that cone (D_0) and $C(D_0)$ are homeomorphic, thus $C(D_0)$ does not have the f.p.p. Hence D_0 was the first example for which the hyperspace of subcontinua does not have the f.p.p. In [12] S.B. Nadler, Jr. and J.T. Rogers, Jr. answered Knaster's question by showing that $C(D_1)$ (D_1 is the union of D_0 and the disk bounded by its circle) does not have the f.p.p.

For a metric continuum *X*, let $F_n(X) = \{A \subset X: A \text{ is nonempty and has at most } n \text{ points}\}.$ In this paper we show a continuum *X* such that $F_2(X)$ has the fixed point property while *X* does not have it.

© 2011 Elsevier B.V. All rights reserved.

^{*} Corresponding author. *E-mail addresses:* galoolag@gmail.com (G. Higuera), illanes@matem.unam.mx (A. Illanes).

^{0166-8641/\$ –} see front matter © 2011 Elsevier B.V. All rights reserved. [doi:10.1016/j.topol.2011.07.004](http://dx.doi.org/10.1016/j.topol.2011.07.004)

Answering an old question by J.T. Rogers, Jr., the second named author has recently shown (see [6]) that, if T_0 is the union of a simple triod and a ray surrounding it, then $C(T_0)$ does not have the f.p.p. The main difference between D_1 and *T*⁰ is that *T*⁰ is tree-like and one-dimensional continuum (with the f.p.p.). Recently, the continuum *T*⁰ has played another important role in the f.p.p. theory on continua. Answering an old question on this topic, the second named author has shown in [5] that cone (T_0) does not have the f.p.p.

The spaces of the form $F_n(X)$ are called *symmetric products*. They were introduced by K. Borsuk and S. Ulam in [1], where they asked if every symmetric product of a continuum with the f.p.p. must have the f.p.p. J. Oledzki (see [13]) constructed a 2-dimensional continuum to answer this question in the negative.

There are only a few results about the f.p.p. on symmetric products. Recently (see [7]), it has been shown that, if *X* is a chainable continuum then $F_3(X)$ has the f.p.p.

In [11, 8.16, p. 120], S.B. Nadler, Jr. wrote:

8.16. Is there a continuum *X* such that $F_n(X)$ has the fixed point property for some $n > 1$ and, yet, $F_m(X)$ does not have the fixed point property for some *m*?

Comments. We require *n >* 1 in view of Oledzki's example [13] (see comments to Question 8.14). We allow *m < n* in the question *...* ."

In this paper we answer Nadler's question by showing a continuum *X* such that $F_2(X)$ has the f.p.p. while *X* (and then $F_1(X)$ does not have the f.p.p.

Some other related questions on this topic can be found in [11] and [4].

2. The example

A continuum *X* is *indecomposable* provided that *X* cannot be expressed as the union of two of its proper subcontinua. A Cook continuum is an indecomposable continuum *X* with the property that if C is a subcontinuum of *X* and $f: C \to X$ is a continuous map, then f is constant or $f(p) = p$ for every $p \in C$. The existence of Cook continua was showed by H. Cook in [2, Theorems 8 and 9].

Example. There exists a continuum *X* such that $F_2(X)$ has the fixed point property while *X* does not have it.

In order to construct *X*, take a Cook continuum *C*. Fix two points $a \neq b$ in *C*. Let $Z = C \times \{0, 1\}$. In *Z* identify the point $(a, 0)$ to the point $(b, 1)$ and the point $(a, 1)$ to the point $(b, 0)$. Consider $\{0, 1\}$ with the discrete topology and the sum module 2, which is denoted by \oplus . Then, we are identifying each point of the form (a, i) to the point $(b, i \oplus 1)$. The resulting space is denoted by *X*. Let $\pi : Z \to X$ be the identification map. Since $X = \pi (C \times \{0\}) \cup \pi (C \times \{1\})$, $\pi (C \times \{0\})$ and $\pi(C \times \{1\})$ are connected and $\pi((a, 0)) = \pi((b, 1)) \in \pi(C \times \{0\}) \cap \pi(C \times \{1\})$, we have that X is connected. Hence X is a continuum. To simplify the notation, for each point $(z, i) \in Z$, we denote $\pi((z, i))$ by $[z, i]$. Let $P = \{[a, 0], [b, 0]\}$. Note that $P = \{[a, 1], [b, 1]\} = \{[a, 0], [a, 1]\} = \{[b, 0], [b, 1]\}$. Let d be a metric for X. Given a point $[z, i] \in X$, a subset A of X. and a positive number ε , let $B(\varepsilon, [z, i])$ be the ε -neighborhood in X, around [z, i] and let $N(\varepsilon, A) = \{q \in X: \text{ there exists }$ $a \in A$ such that $d(q, a) < \varepsilon$ }. Given subsets A and B of X, let $\langle A, B \rangle_2 = \{ E \in F_2(X): E \subset A \cup B, E \cap A \neq \emptyset \}$ and $E \cap B \neq \emptyset$ }.

Claim 1. *X does not have the fixed point property.*

Proof. Let $f_0: X \to X$ be defined by $f_0([z, i]) = [z, i \oplus 1]$. Given $i \in \{1, 2\}$, since $f_0([a, i]) = [a, i \oplus 1] = [b, i \oplus 2] =$ $f_0([b, i \oplus 1])$, we have that $f_0([a, i]) = f_0([b, i \oplus 1])$. Thus f_0 is well defined and continuous. Suppose that there exists $[z, i] \in X$ such that $f_0([z, i]) = [z, i]$. Then $[z, i \oplus 1] = [z, i]$. This implies that $z = a$ and $z = b$, a contradiction. We have shown that f_0 does not have fixed points. Therefore, *X* does not have the fixed point property. \Box

Claim 2. Let K be a subcontinuum of C and let $g: K \to X$ be a continuous function. Then g is constant or there exists $i \in \{0, 1\}$ such *that* $g(u) = [u, i]$ *for every* $u \in K$.

Proof. We can assume that *K* is nondegenerate. If $g(K) \subset P$, since *P* is finite and *K* is connected we have that $g(K)$ is a one-point set. Hence g is constant. Suppose then that there exists a point $p \in K$ such that $g(p) \notin P$. Let $g(p) = [z, i]$. Since $[z, i] \notin \pi(C \times \{i \oplus 1\})$, there exists $\varepsilon > 0$ such that $B(\varepsilon, [z, i]) \cap \pi(C \times \{i \oplus 1\}) = \emptyset$. By [8, Theorem 14.6], there exists a continuous function $\alpha:[0,1]\to C(K)$ such that $\alpha(0) = \{p\}$, $\alpha(1) = K$ and, if $s < t$, then $\alpha(s) \subsetneq \alpha(t)$. Let $G : C(K) \to C(X)$ be the induced function of *g*. That is, $G(A) = g(A)$ (the image of *A* under *g*). Since α and *G* are uniformly continuous, there exists $\delta > 0$ such that, if $|s-t| < \delta$, then $H(G(\alpha(t)), G(\alpha(s))) < \varepsilon$. Let $m \ge 1$ be such that $\frac{1}{m} < \delta$. Then $H(G(\alpha(\frac{1}{m})), \{[z, i]\}) =$ $H(G(\alpha(\frac{1}{m})), G(\alpha(0))) < \varepsilon$. Thus $G(\alpha(\frac{1}{m})) \subset B(\varepsilon, [z, i]) \subset \pi(C \times \{i\})$. Hence $g|_{\alpha(\frac{1}{m})} : \alpha(\frac{1}{m}) \to \pi(C \times \{i\})$. Since $\pi(C \times \{i\})$ is homeomorphic to the Cook continuum *C* and $\alpha(\frac{1}{m})$ is a subcontinuum of *C*, we have that either $g|_{\alpha(\frac{1}{m})}$ is constant or $g(q) = [q, i]$ for every $q \in \alpha(\frac{1}{m})$. We analyze both cases.

Case 1. $g|_{\alpha(\frac{1}{m})}$ is constant.

Since $p \in \alpha(\frac{1}{m})$, $g(\alpha(\frac{1}{m})) = \{g(p)\}\$. In this case, we are going to show, by induction, that for each $k \in \{1, ..., m\}$, $g|_{\alpha(\frac{k}{m})}$ is constant. By hypothesis, this holds for $k = 1$. Now, suppose that $g|_{\alpha(\frac{k}{m})}$ $H(G(\alpha(\frac{k+1}{m})), G(\alpha(\frac{k}{m}))) < \varepsilon$ and $G(\alpha(\frac{k}{m})) = \{g(p)\}\)$, we have that $g(\alpha(\frac{k+1}{m})) \subset B(\varepsilon, g(p)) \subset \pi(C \times \{i\})$. Since $\pi(C \times \{i\})$ is homeomorphic to C and $\alpha(\frac{k+1}{m})$ is a subcontinuum of C, we have either $g|_{\alpha(\frac{k+1}{m})}$ is constant or $g(q)=[q,i]$ for every $q \in \alpha(\frac{k+1}{m})$. If we take $q \in \alpha(\frac{1}{m}) \setminus \{p\}$, we have $g(q) = g(p)$, thus $g(q) \neq [q, i]$ or $g(p) \neq [p, i]$. Hence, $g|_{\alpha(\frac{k+1}{m})}$ is constant. This completes the induction. In particular, for $k = m$, we obtain $g|K = g$ is constant. This ends the analysis of this case.

Case 2. $g(q) = [q, i]$ for every $q \in \alpha(\frac{1}{m})$.

Let $J = \{t \in [0, 1]: g(q) = [q, i] \text{ for every } q \in \alpha(t)\}$ and let $t_0 = \sup J$. Note that $\frac{1}{m} \in J$, so $J \neq \emptyset$ and $\frac{1}{m} \leq t_0$. We show that $t_0 \in J$. Let $\{t_k\}_{k=1}^{\infty}$ be a sequence in J such that $\lim t_k = t_0$. Then $\lim \alpha(t_k) = \alpha(t_0)$. Given $q \in \alpha(t_0)$ there exists a sequence $\{q_k\}_{k=1}^{\infty}$ in K such that $q_k \in \alpha(t_k)$, for every $k \ge 1$ and $\lim q_k = q$. Then $g(q_k) = [q_k, i]$ for every $k \ge 1$. Thus $g(q) = \lim g(q_k) =$ $\lim_{(q_k, i] = [q, i]}$. Hence $t_0 \in J$. In particular, $g(q) \in \pi(C \times \{i\})$ for every $q \in \alpha(t_0)$. Therefore, $g(\alpha(t_0)) \subset \pi(C \times \{i\})$.

Next, we show that $t_0 = 1$. Suppose, to the contrary, that $t_0 < 1$. Let $\lambda > 0$ be such that $B(2\lambda, [a, i]) \cap B(2\lambda, [b, i]) = \emptyset$. Let $U = B(\lambda, [a, i]) \cup B(\lambda, [b, i]) \cup \pi(C \times \{i\})$. Note that U is open in X. Define $\beta : cl_X(U) \to \pi(C \times \{i\})$ by

$$
\beta([q, j]) = \begin{cases} [q, j], & \text{if } [q, j] \in \pi(C \times \{i\}), \\ [a, i], & \text{if } [q, j] \in \text{cl}_X(B(\lambda, [a, i])) \cap \pi(C \times \{i \oplus 1\}), \\ [b, i], & \text{if } [q, j] \in \text{cl}_X(B(\lambda, [b, i])) \cap \pi(C \times \{i \oplus 1\}). \end{cases}
$$

Note that β is well defined and continuous. Since $t_0 < 1$, $g(\alpha(t_0)) \subset \pi(C \times \{i\}) \subset U$ and U is open, there exists $s > t_0$ such that $g(\alpha(s)) \subset U$. If $a \notin \alpha(t_0)$, we can take s with the additional property that $a \notin \alpha(s)$. If $b \notin \alpha(t_0)$, we also ask that $b \notin \alpha(s)$. Thus, if $a \in \alpha(s)$, then $a \in \alpha(t_0)$ and $g(a) = [a, i]$. Also, if $b \in \alpha(s)$, then $b \in \alpha(t_0)$ and $g(b) = [b, i]$.

Since $g(s)$ is a subcontinuum of $K \subset C$, $\pi(C \times \{i\})$ is homeomorphic to C and $(\beta \circ g)|_{\alpha(s)} : \alpha(s) \to \pi(C \times \{i\})$ is continuous, we have that either $(\beta \circ g)|_{\alpha(s)}$ is constant or $(\beta \circ g)|_{\alpha(s)}(q) = [q, i]$ for every $q \in \alpha(s)$. Note that, for every $q \in \alpha(\frac{1}{m})$, $g(q) = [q, i]$, so $\beta(g(q)) = [q, i]$. Thus $\alpha(\frac{1}{m})$ is a nondegenerate subcontinuum of $\alpha(s)$ such that $(\beta \circ g)|_{\alpha(\frac{1}{m})}$ is not constant. Hence $(\beta \circ g)|_{\alpha(s)}$ is not constant. Thus $(\beta \circ g)|_{\alpha(s)}(q) = [q, i]$ for every $q \in \alpha(s)$. That is, $\beta(g(q)) = [q, i]$ for every $q \in \alpha(s)$.

Since $t_0 = \sup f$ and $t_0 < s$, there exists $q \in \alpha(s)$ such that $g(q) \neq [q, i]$. If $g(q) \in \pi(C \times \{i\})$, then $[q, i] = \beta(g(q))$ $g(q)$, a contradiction. Hence $g(q) \notin \pi(C \times \{i\})$. Suppose, by example, that $g(q) \in cl_X(B(\lambda, [a, i])) \setminus \pi(C \times \{i\})$. Then $[q, i] =$ $\beta(g(q)) = [a, i]$. This implies that $q = a$ and $g(a) \neq [a, i]$. Thus $a \in \alpha(s)$ and, by the choice of s, we conclude that $a \in \alpha(t_0)$ and $g(a) = [a, i]$, a contradiction. This completes the proof that $t_0 = 1$.

Hence $g(q) = [q, i]$ for every $q \in \alpha(1) = K$. This ends the analysis for this case. \Box

We want to show that $F_2(X)$ has the fixed point property. Take then a continuous function $f: F_2(X) \to F_2(X)$. Given $p \in C$, let $\pm p = \{[p, 0], [p, 1]\}$. Given $Y \subset X$, let $\pm Y = \bigcup \{\pm p: \pm p \cap Y \neq \emptyset\}$.

Claim 3. Let $A = \{ [x, i], [y, j] \} \in F_2(X)$ be such that $\pm y \cap f(A) = \emptyset$ and $f(A) \notin F_1(X)$. Then $f|_{\langle \{ [x, i] \}, \pi(C \times \{ j \}) \rangle_2}$ is constant.

Proof. Let $f(A) = \{w_1, w_2\}$. Let $\varepsilon > 0$ be such that $B(\varepsilon, w_1) \cap B(\varepsilon, w_2) = \emptyset$. Let $\delta > 0$ be such that if $B, D \in F_2(X)$ and $H(B, D) < \delta$, then $H(f(B), f(D)) < \varepsilon$. By [8, Theorem 14.6] there exists a continuous function $\alpha : [0, 1] \to C(X)$ such that $\alpha(0) = \{ [y, j] \}, \alpha(1) = \pi(C \times \{j\})$ and $s < t$ implies that $\alpha(s) \subsetneq \alpha(t)$. Let $\lambda > 0$ be such that, if $|s - t| < \lambda$, then $H(\alpha(s), \alpha(t)) < \delta$. Let $m \ge 1$ be such that $\frac{1}{m} < \lambda$. For each $k \in \{0, 1, ..., m\}$, let $\mathcal{E}_k = \langle \{[x, i]\}, \alpha(\frac{k}{m})\rangle_2$.

We are going to show, inductively, that $f|_{\mathcal{E}_k}$ is constant. For $k = 0$, note that $\mathcal{E}_0 = \langle \{[x, i]\}, \alpha(0) \rangle_2 = \langle \{[x, i]\}, \{[y, j]\} \rangle_2 =$ *{A}* is a one point set, so $f|_{\mathcal{E}_0}$ is constant. Suppose now that $k \in \{0, 1, ..., m-1\}$ and $f|_{\mathcal{E}_k}$ is constant. Since $A \in \mathcal{E}_0 \subset \mathcal{E}_k$, we have $f(D) = f(A)$ for every $D \in \mathcal{E}_k$. Given $B \in \mathcal{E}_{k+1}$, B is of the form $B = \{[x, i], [u, j]\}$, where $[u, j] \in \alpha(\frac{k+1}{m})$. Since $H(\alpha(\frac{k+1}{m}), \alpha(\frac{k}{m})) < \delta$, there exists $[w, j] \in \alpha(\frac{k}{m})$ such that $d([w, j], [u, j]) < \delta$. Thus $H(\{[x, i], [u, j]\}, \{[x, i], [w, j]\}) < \delta$. Hence $H(f(\mathcal{B}), f(\{[x, i], [w, j]\})) < \varepsilon$. Since $\{[x, i], [w, j]\} \in \mathcal{E}_k$, we have $f(\{[x, i], [w, j]\}) = f(A) = \{w_1, w_2\}$. Thus $H(f(B), \{w_1, w_2\}) < \varepsilon$. Hence $f(B)$ has exactly one element in each one of the sets $B(\varepsilon, w_1)$ and $B(\varepsilon, w_2)$.

Given $s \in \{1, 2\}$, it is easy to show that the function $g_s : \mathcal{E}_{k+1} \to B(\varepsilon, w_s)$ given by: $g_s(B)$ is the only point in $f(B) \cap B(\varepsilon, w_s)$, is continuous. Define $h_s : \alpha(\frac{k+1}{m}) \to B(\varepsilon, w_s) \subset X$ by $h_s([v, j]) = g_s([\{x, i\}, [v, j])$. Clearly, h_s is continuous. Since π (*C* × {*j*}) is homeomorphic to *C*, $\alpha(\frac{k+1}{m})$ is homeomorphic to a subcontinuum of *C*, so we can apply Claim 2 and obtain that either h_s is constant or there exists $j_s \in \{0, 1\}$ such that $h_s([v, j]) = [v, j_s]$ for every $[v, j] \in$ $\alpha(\frac{k+1}{m})$. Since $[y, j] \in \alpha(0) \subset \alpha(\frac{k+1}{m})$, $\{h_1([y, j]), h_2([y, j])\} = \{g_1(\{[x, i], [y, j]\}), g_2(\{[x, i], [y, j]\})\} = f(\{[x, i], [y, j]\}) =$ $\{w_1, w_2\}$ and $\{w_1, w_2\} \cap \{[y, 0], [y, 1]\} = \emptyset$, we have $h_s([y, j])$ is not of the form $[y, j_s]$, for each $s \in \{0, 1\}$. Hence h_1

and h_2 are constants. Thus, for every $[v, j] \in \alpha(\frac{k+1}{m})$, since $\{w_1, w_2\} = \{h_1([y, j]), h_2([y, j])\} = \{h_1([v, j]), h_2([v, j])\} =$ $\{g_1(\{[x, i], [v, j]\}), g_2(\{[x, i], [v, j]\})\} = f(\{[x, i], [v, j]\}),$ we have $f|_{\mathcal{E}_{k+1}}$ is constant. This ends the induction. In particular, $f|_{\mathcal{E}_m} = f|_{\langle \{[x,i]\}, \pi(C \times \{j\}) \rangle_2}$ is constant. This completes the proof of Claim 3. \Box

Claim 4. If there exists $A \in F_2(X)$ such that $(\pm A \cup P) \cap f(A) = \emptyset$ and $f(A) \notin F_1(X)$, then f has a fixed point.

Proof. Let $A = \{[x, i], [y, j]\}$ and $f(A) = \{[u, k], [v, l]\}$. Since $\pm y \subset \pm A$ and $\pm A \cap f(A) = \emptyset$, we have $\pm y \cap f(A) = \emptyset$. Then, we can apply Claim 3 and obtain that $f|_{\langle \{[x,i]\}, \pi(C\times\{j\})\rangle_2}$ is constant. In particular, $f(A) = f(\{[x,i],[a,j]\}) = f(\{[x,i],[b,j\oplus 1]\})$. Let $A_1 = \{(x, i], [b, j \oplus 1]\}\$. Since $\pm b = P$ and $f(A_1) = f(A)$ does not intersect P, we can apply Claim 3 to A_1 and obtain that $f|_{\langle \{[x,i]\},\pi(C\times\{j\oplus 1\})\rangle_2}$ is constant. Since $\langle \{[x,i]\},\pi(C\times\{j\})\rangle_2\cup \langle \{[x,i]\},\pi(C\times\{j\oplus 1\})\rangle_2=\langle \{[x,i]\},X\rangle_2$, we have $f|_{\langle \{[x,i]\},X\rangle_2}$ is constant. In particular, $f({[x,i],[u,k])}) = f(A)$.

Let $A_2 = \{[x, i], [u, k]\}\$. Then $f(A_2) = f(A)$. Since $\pm x \subset \pm A$, we have $\pm x \cap f(A_2) = \emptyset$. Thus, applying Claim 3, we obtain that $f|_{\langle \{[u,k]\}, \pi(C \times \{i\}) \rangle_2}$ is constant. In particular, $f(A_2) = f(\{[u,k],[a,i]\}) = f(\{[u,k],[b,i \oplus 1]\})$. Let $A_3 =$ $\{[u,k],[b,i\oplus 1]\}\$. Since $\pm b = P$ and $f(A_3) = f(A_2) = f(A)$ does not intersect P, we can apply Claim 3 to A_3 and obtain that $f|_{\langle \{[u,k]\}, \pi(C \times \{i \oplus 1)\rangle_2\}}$ is constant. Hence $f|_{\langle \{[u,k]\}, X\rangle_2}$ is constant. In particular, $f(\{[u,k],[v,l]\}) = f(A_2) = f(A) =$ $\{[u, k], [v, l]\}$. We have found a fixed point for f . \Box

Claim 5. Let $A = \{[x, 0], [y, 1]\} \in F_2(X)$ be such that $\pm A \cap f(A) = \emptyset$ and $f(A) \notin F_1(X)$. Then f has a fixed point.

Proof. If $P \cap f(A) = \emptyset$, by Claim 4 *f* has a fixed point and we have finished. Suppose then, by example, that $f(A)$ has the form $f(A) = \{[a, 0], [z, 1]\}\$. Since $\pm A \cap f(A) = \emptyset$, we have $\pm y \cap f(A) = \emptyset$. By Claim 3, $f|_{\langle \{[x, 0]\}, \pi(C \times \{1\}) \rangle_2}$ is constant. In particular, $f({x, 0}, [z, 1]) = f({x, 0}, [y, 1]) = f(A)$. Let $A_1 = {(x, 0}, [z, 1])$. Since $\pm x \cap f(A_1) = \pm x \cap f(A) = \emptyset$, we can apply Claim 3 to A_1 and conclude that $f|_{\langle \{[z,1]\}, \pi(C \times \{0\}) \rangle_2}$ is constant. In particular, $f(\{[z,1],[a,0]\}) = f(\{[z,1],[x,0]\}) =$ $f(A_1) = f(A) = \{[a, 0], [z, 1]\}$. Thus, we have found a fixed point for f . \Box

In Claims 4 and 5, we have shown some particular conditions under which *f* has a fixed point. From now on, we suppose that *f* does not have fixed points and we are going to obtain a contradiction. Given $p \in C$, recall that $\pm p = \{[p, 0], [p, 1]\}$. Note that $\pm(\pm p) = \pm p$. By Claim 5, since f does not have fixed points, we have $\pm p \cap f(\pm p) \neq \emptyset$ or $f(\pm p) \in F_1(X)$ for every $p \in C$. So, we can define the function $g: C \rightarrow F_1(X)$ by

$$
g(p) = \begin{cases} f(\pm p), & \text{if } f(\pm p) \in F_1(X), \\ f(\pm p) \setminus (\pm p), & \text{if } f(\pm p) \notin F_1(X). \end{cases}
$$

Claim 6. *The function g is continuous.*

Proof. Note that the function φ : $C \to F_2(X)$ given by $\varphi(p) = f(\pm p)$ is continuous. So the set $D = \{p \in C : \varphi(p) \in F_1(X)\}$ is closed in *C*. In order to see that *g* is continuous, take a sequence $\{p_k\}_{k=1}^\infty$ in *C* such that $\lim p_k = p \in C$. Consider two cases.

Case 1. $f(\pm p) \notin F_1(X)$.

Since $\pm p \cap f(\pm p) \neq \emptyset$, we may assume that $[p,0] \in f(\pm p)$. Since $f(\pm p) \neq \pm p$, we have $[p,1] \notin f(\pm p)$. Then $g(p) =$ $f(\pm p)\setminus\{[p,0]\}$. Since D is closed and $p\notin D$, we may assume that $p_k\notin D$ and $[p_k,1]\notin f(\pm p_k)$ for all $k\geqslant 1$. Thus $[p_k,0]\in D$ $f(\pm p_k)$ for every $k\geqslant 1$. Given $k\geqslant 1$, we have $g(p_k)=f(\pm p_k)\backslash\{[p_k,0]\}.$ Since $f(\pm p)$ has two different points: $[p,0]$ and the unique point $w \in g(p)$ and $\lim f(\pm p_k) = f(\pm p)$, we have that, for each $k \ge 1$, we can write $f(\pm p_k) = \{w_k, v_k\}$, where $\lim w_k = w$ and $\lim v_k = [p, 0]$. Since $\lim [p_k, 0] = [p, 0]$, we have $v_k = [p_k, 0]$ for almost all *k*. Then, for almost all *k*, ${w_k} = g(p_k)$. Hence $\lim g(p_k) = g(p)$.

Case 2. $f(\pm p) \in F_1(X)$.

Since, for every $k \ge 1$, $g(p_k) \subset f(\pm p_k)$ and $\lim f(\pm p_k) = f(\pm p)$, we have $\lim g(p_k) = f(\pm p) = g(p)$. \Box

We have seen that *g* is a continuous function. Since $F_1(X)$ is naturally homeomorphic to *X*, we can apply Claim 2 and obtain that g is constant or there exists $i \in \{0, 1\}$ such that $g(p) = \{[p, i]\}$ for every $p \in C$. Note that $f(\pm a) = f(\pm b)$ implies that $g(a) = g(b)$, so g is not one-to-one and then g is constant. Let $[z_0, i_0] \in X$ be such that $\text{Im } g = \{[z_0, i_0]\}$. By the definition of g , $[z_0, i_0] \in f(\pm p)$ for every $p \in C$. Thus we can define a function $h: C \to F_1(X)$ in the following way:

$$
h(p) = \begin{cases} \{[z_0, i_0]\}, & \text{if } f(\pm p) = \{[z_0, i_0]\}, \\ f(\pm p) \setminus \{[z_0, i_0]\}, & \text{if } f(\pm p) \neq \{[z_0, i_0]\}. \end{cases}
$$

Claim 7. *The function h is continuous.*

Proof. In order to see that *h* is continuous, take a sequence $\{p_k\}_{k=1}^\infty$ in *C* such that $\lim p_k = p \in C$. Consider two cases.

Case 1. $f(\pm p) \neq \{[z_0, i_0]\}.$

Let $w \in X$ be such that $f(\pm p) = \{w, [z_0, i_0]\}$. Then $h(p) = \{w\}$. Since $\lim_{x \to i_0} f(\pm p_k) = f(\pm p)$, we have that there exists a sequence $\{w_k\}_{k=1}^{\infty}$ in *X* such that, for every $k \ge 1$, $w_k \in f(\pm p_k)$ and $\lim w_k = w$. Since $w \ne [z_0, i_0]$, we may assume that $w_k \neq [z_0, i_0]$ for every $k \geq 1$. Thus, for each $k \geq 1$, $f(\pm p_k) = \{w_k, [z_0, i_0]\}$ and $h(p_k) = w_k$. Therefore, $\lim h(p_k) = h(p)$.

Case 2. $f(\pm p) = \{[z_0, i_0]\}.$

Since, for every $k \ge 1$, $h(p_k) \subset f(\pm p_k)$ and $\lim f(\pm p_k) = f(\pm p) \in F_1(X)$, we have $\lim h(p_k) = f(\pm p) = h(p)$. \Box

Claim 8. $f(\pm p) = \{[z_0, i_0]\}$, for every $p \in C$.

Proof. We have seen that *h* is a continuous function. Since $F_1(X)$ is naturally homeomorphic to *X*, we can apply Claim 2 and conclude that either h is constant or there exists $i \in \{0, 1\}$ such that $h(p) = \{[p, i]\}$ for every $p \in C$. Note that $f(\pm a) =$ $f(\pm b)$ implies that $h(a) = h(b)$, so h is not one-to-one and then h is not constant. Suppose that $\text{Im } h = \{ \{ [w_0, j_0] \} \}$. If $[w_0, i_0] \neq [z_0, i_0]$, then $f(\pm p) = \{ [w_0, i_0], [z_0, i_0] \}$ for every $p \in C$. Given $p \in C$, $f(\pm p) \notin F_1(X)$. Since we are assuming that *f* does not have fixed points, by Claim 5, $\pm p \cap f(\pm p) \neq \emptyset$. Thus $\pm p \cap \{[w_0, j_0], [z_0, i_0]\}\neq \emptyset$. But if we take a point $p_0 \in C \setminus \{w_0, z_0, a, b\}$, we have $[p_0, 0], [p_0, 1] \notin \{[w_0, j_0], [z_0, i_0]\}$, a contradiction. This shows that $[w_0, j_0] = [z_0, i_0]$. Hence $\text{Im } h = \{ \{ [z_0, i_0] \} \}$. Thus, for each $p \in C$, $h(p)$ cannot have elements in $f(\pm p) \setminus \{ [z_0, i_0] \}$. Therefore, $f(\pm p) = \{ [z_0, i_0] \}$. \Box

Claim 9. Let K be a composant of C such that K does not contain the points z_0 , a and b. Let $p \in K$. Then $f({p, i_0}, [z_0, i_0])$ = $\{[z_0, i_0]\}.$

Proof. By Claim 8 we know that $f(\pm p) = \{[z_0, i_0]\}$. By [8, Theorem 14.6] there exists a continuous function $\alpha : [0, 1] \rightarrow$ $C(X)$ such that $\alpha(0) = \{ [p, i_0 \oplus 1] \}, \alpha(1) = \pi(C \times \{i_0 \oplus 1\})$ and if $s < t$, then $\alpha(s) \subseteq \alpha(t)$. Let $I = \{ t \in [0, 1]: f(\{ [p, i_0], w \}) =$ $\{[z_0, i_0]\}$ for every $w \in \alpha(t)$. Since the unique element in $\alpha(0)$ is $[p, i_0 \oplus 1]$ and $f(\{[p, i_0], [p, i_0 \oplus 1]\}) = f(\pm p) = \{[z_0, i_0]\}$. we have $0 \in J$. Thus it makes sense to define $t_0 = \sup J$. It is easy to check that $t_0 \in J$.

We want to prove that $t_0 = 1$. Suppose to the contrary that $t_0 < 1$. Then $\alpha(t_0)$ is a proper subcontinuum of $\pi(C \times \{i_0 \oplus 1\})$ and this space is homeomorphic to *C*, therefore it is indecomposable and π (*K* × {*i*₀ ⊕ 1}) is one of its composants. Thus $\alpha(t_0) \subset \pi(K \times \{i_0 \oplus 1\})$. Since [a, i₀ \oplus 1], [b, i₀ \oplus 1], [z₀, i₀ \oplus 1] do not belong to $\pi(K \times \{i_0 \oplus 1\})$, we have [z₀, i₀] \notin $\pi(K \times \{i_0 \oplus 1\})$. Hence $[z_0, i_0]$, $[z_0, i_0 \oplus 1] \notin \alpha(t_0)$ and $\{[z_0, i_0], [z_0, i_0 \oplus 1]\} \cap \alpha(t_0) = \emptyset$. This implies that $[z_0, i_0] \notin \pm \alpha(t_0)$. Thus there exists $\varepsilon > 0$ such that $N(\varepsilon, \{[z_0, i_0]\}) \cap N(\varepsilon, \pm \alpha(t_0)) = \emptyset$. Let $\delta > 0$ be such that $\delta < \varepsilon$ and if $A, B \in F_2(X)$ and $H(A, B) < \delta$, then $H(f(A), f(B)) < \varepsilon$. We can also ask that δ has the property that if w, w₀ \in X and $d(w, w_0) < \delta$, then *H*($\pm w$, $\pm w_0$) < *ε*. Let $\lambda > 0$ be such that, if $|t - s| < \lambda$, then $H(\alpha(s), \alpha(t)) < \delta$.

Choose $t_1 > t_0$ such that $t_1 < t_0 + \lambda$ and $t_1 < 1$. We are going to obtain a contradiction by showing that $t_1 \in J$. Take $w \in \alpha(t_1)$. Since $|t_1 - t_0| < \lambda$, there exists $w_0 \in \alpha(t_0)$ such that $d(w, w_0) < \delta$. Thus $H(\pm w, \pm w_0) < \varepsilon$ and $H(f({p,i_0}], w)$, $f({p,i_0}], w_0)$ $) < \varepsilon$. Since $w_0 \in \alpha(t_0)$, we have $\pm w_0 \subset \pm \alpha(t_0)$ and $f({p,i_0}], w_0) = [{z_0,i_0]}$. Hence $\pm w \subset N(\varepsilon, \pm \alpha(t_0))$ and $f(\{[p, i_0], w\}) \subset B(\varepsilon, [z_0, i_0])$. Thus $\pm w \cap N(\varepsilon, \{[z_0, i_0]\}) = \emptyset$. We have shown that $\pm w \cap$ $f(\{[p, i_0], w\}) = \emptyset$. Since $[p, i_0 \oplus 1] \in \alpha(0) \subset \alpha(t_0)$, $\pm[p, i_0 \oplus 1] \subset \pm \alpha(t_0)$, then $\pm[p, i_0 \oplus 1] \cap N(\varepsilon, \{[z_0, i_0]\}) = \emptyset$ and $\pm[p, i_0 \oplus 1] \cap f(\{[p, i_0], w\}) = \emptyset$. Let $A = \{[p, i_0], w\}$. We have seen that $\pm A \cap f(A) = \emptyset$. Since $w \in \alpha(t_1) \subset \pi(C \times \{i_0 \oplus 1\})$ and $[p, i_0] \in \pi(C \times \{i_0\})$, we can apply Claim 5 and conclude that $f(A) \in F_1(X)$ (remember that we are assuming that f does not have fixed points).

We have proven that, for each $w \in \alpha(t_1)$, $f({f_n, i_0], w}) \in F_1(X)$. If we define $\psi(w) = f({f_n, i_0], w})$ we have a continuous function $ψ$: $α(t_1) → F_1(X)$. Since $α(t_1)$ is a subcontinuum of $π(C × {i_0 ⊕ 1})$, this continuum is homeomorphic to *C* and $F_1(X)$ is naturally homeomorphic to *X*, we can apply Claim 2 and obtain that either ψ is constant or there exists $j \in \{0, 1\}$ such that, for every $w = [u, i_0 \oplus 1] \in \alpha(t_1)$, $f(\{[p, i_0], w\}) = \{[u, j]\}$. In the second case, since $[p, i_0 \oplus 1] \in \alpha(t_1)$, we have $f([p, i_0], [p, i_0 \oplus 1]]) = ([p, j])$. But, by Claim 8, $f([p, i_0], [p, i_0 \oplus 1]]) = [[z_0, i_0]]$. Thus $[p, j] = [z_0, i_0]$. This implies that $p \in \{a, b, z_0\}$. This is a contradiction since $p \in K$. We have shown that ψ is constant. Since $[p, i_0 \oplus 1] \in \alpha(t_1)$, we have $f({[p, i_0], w}) = [{z_0, i_0]},$ for every $w \in \alpha(t_1)$. Hence $t_1 \in J$, a contradiction. This completes the proof that $t_0 = 1$.

We have proven that $f({[p, i_0], w}) = {[z_0, i_0]}$ for every $w \in \pi(C \times {i_0 \oplus 1})$.

In the case that $z_0 = a$, we have $[z_0, i_0] = [b, i_0 \oplus 1] \in \pi(C \times \{i_0 \oplus 1\})$, so $f(\{[p, i_0], [z_0, i_0]\}) = \{[z_0, i_0]\}$ and we finish. The case $z_0 = b$ is similar. Therefore, we may assume that $z_0 \notin \{a, b\}$. In particular, $[z_0, i_0] \notin P$.

By [8, Theorem 14.6], there exists a continuous function β : [0, 1] \rightarrow C(X) such that $\beta(0) = \{[a, i_0]\}, \beta(1) = \pi(C \times \{i_0\})$ and that satisfies that, if $s < t$, then $\beta(s) \subsetneq \beta(t)$. Let $L = \{t \in [0, 1]: f(\{[p, i_0], w\}) = \{[z_0, i_0]\}\$ for every $w \in \beta(t)$. Since $[a, i_0] = [b, i_0 \oplus 1] \in \pi(C \times \{i_0 \oplus 1\}),$ by what we have shown, $f(\{[p, i_0], [a, i_0]\}) = \{[z_0, i_0]\},$ so $0 \in L$. Then it has sense to define $s_0 = \sup L$. It is easy to check that $s_0 \in L$.

If $[z_0, i_0] \in \beta(s_0)$, then $f(\{[p, i_0], [z_0, i_0]\}) = \{[z_0, i_0]\}$ and we finish. Suppose then that $[z_0, i_0] \notin \beta(s_0)$. This implies that $s₀ < 1$. We are going to obtain a similar contradiction as that we obtained when we supposed that $t₀ < 1$.

If $[z_0, i_0 \oplus 1] \in \beta(s_0) \subset \pi(C \times \{i_0\})$, then $z_0 \in \{a, b\}$, which is absurd. Hence $\pm z_0 = \{[z_0, i_0], [z_0, i_0 \oplus 1]\}$ does not intersect $\beta(s_0)$. This implies that $[z_0, i_0] \notin \pm \beta(s_0)$. Then, there exists $\varepsilon > 0$ such that $N(\varepsilon, \{[z_0, i_0]\}) \cap N(\varepsilon, (\pm \beta(s_0)) \cup P) = \emptyset$. Since $p \notin \{z_0, a, b\}$, we have $\{[p, i_0], [p, i_0 \oplus 1]\} \cap \{[z_0, i_0], [z_0, i_0 \oplus 1]\} = \emptyset$, so we can also ask that $N(\varepsilon, \pm p) \cap N(\varepsilon, \pm z_0) = \emptyset$. Let $\delta > 0$ be such that $\delta < \varepsilon$ and satisfies that, if $A, B \in F_2(X)$ and $H(A, B) < \delta$, then $H(f(A), f(B)) < \varepsilon$. We also ask that δ has the property that, if $w, w_0 \in X$ and $d(w, w_0) < \delta$, then $H(\pm w, \pm w_0) < \varepsilon$. Let $\lambda > 0$ be such that if $|t - s| < \lambda$, then *H(β(s), β(t)) < δ*.

Choose $s_1 > s_0$ such that $s_1 < s_0 + \lambda$ and $s_1 < 1$. We are going to obtain a contradiction by showing that $s_1 \in L$. Take $w \in \beta(s_1)$. Since $|s_1 - s_0| < \lambda$, there exists $w_0 \in \beta(s_0)$ such that $d(w, w_0) < \delta$. Thus $H(\pm w, \pm w_0) < \varepsilon$ and $H(f({[p,i_0], w}), f({[p,i_0], w_0})) < \varepsilon$. Since $w_0 \in \beta(s_0)$, we have $\pm w_0 \subset \pm \beta(s_0)$ and $f({[p,i_0], w_0}) = [{z_0, i_0}].$ Hence $\pm w \subset N(\varepsilon, \pm \beta(s_0))$ and $f({[p, i_0], w}] \subset B(\varepsilon, [z_0, i_0])$. Thus $\pm w \cap N(\varepsilon, {[z_0, i_0]}) = \emptyset$. This shows that $\pm w \cap f({[p, i_0], w}] =$ \emptyset and $P \cap f({[p, i_0], w}) = \emptyset$. Since $f({[p, i_0], w}) \subset N(\varepsilon, \pm z_0)$, we have $\pm p \cap f({[p, i_0], w}) = \emptyset$. Let $A_1 = {\{p, i_0\}, w\}}$. We have seen that $\pm A_1 \cap f(A_1) = \emptyset$ and $f(A_1) \cap P = \emptyset$. We can apply Claim 4 and obtain that $f(A) \in F_1(X)$.

We have shown that, for each $w \in \beta(s_1)$, $f({f[p, i_0], w}) \in F_1(X)$. If we define $\eta(w) = f({f[p, i_0], w})$ we have a continuous function *η* : *β(s₁*) → *F₁(X)*. Since *β(s₁)* is a subcontinuum of $π(C × {i₀}$ *)* and this continuum is homeomorphic to *C* and $F_1(X)$ is naturally homeomorphic to *X*, we can apply Claim 2 and obtain that either *η* is constant or there exists $j \in \{0, 1\}$ such that, for every $w = [u, i_0] \in \beta(s_1)$, $f(\{[p, i_0], w\}) = \{[u, j]\}$. In the second case, since $[a, i_0] \in \beta(s_1)$, we have $f({\langle [p, i_0], [a, i_0]\rangle}) = {\langle [a, j]\rangle}$. But we know that $f({\langle [p, i_0], [a, i_0]\rangle}) = f({\langle [p, i_0], [b, i_0 \oplus 1]\rangle}) = {\langle [z_0, i_0]\rangle}$. Thus $[a, j] = [z_0, i_0]$, this implies that $z_0 \in \{a, b\}$, which is contrary to our assumption. With this, we have shown that η is constant. Since $[a, i_0] \in \beta(s_1)$, we have $f(\{[p, i_0], w\}) = \{[z_0, i_0]\}$, for every $w \in \beta(s_1)$. Hence $s_1 \in L$, a contradiction. This completes the proof that $[z_0, i_0] \in \beta(s_0)$ and $f({[[p, i_0], [z_0, i_0]]) = [[z_0, i_0]]$. \Box

Let *K* be as in Claim 9. Since *K* is dense in *C*, there exists a sequence $\{p_k\}_{k=1}^{\infty}$ of points of *K* such that $\lim p_k = z_0$. Since $\lim f({([p_k, i_0], [z_0, i_0])}) = f({([z_0, i_0], [z_0, i_0])})$ and $f({([p_k, i_0], [z_0, i_0])}) = [{z_0, i_0]}$, for every $k \ge 1$, we have $f({[z_0, i_0], [z_0, i_0]}) = [{z_0, i_0}].$ Hence $[{z_0, i_0}]$ is a fixed point of f. This contradicts what we are supposing and finishes the proof that $F_2(X)$ has the fixed point property.

References

- [1] K. Borsuk, S. Ulam, Symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931) 875–882.
- [2] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967) 241–249.
- [3] H. Fast, S. Swierczkowski, The New Scottish Book, Wroclaw, 1946-1958.
- [4] A. Illanes, Hyperspaces of continua, in: Elliot Pearl (Ed.), Open Problems in Topology, vol. II, Elsevier B. V., Amsterdam, 2007, pp. 279–288.
- [5] A. Illanes, A tree-like continuum whose cone has a fixed-point-free map, Houston J. Math. 33 (2007) 499–518.
- [6] A. Illanes, A tree like continuum whose hyperspace of subcontinua admits a fixed-point-free map, Topology Proc. 32 (2008) 55–74.
- [7] A. Illanes, Fixed point property on symmetric products of chainable continua, preprint.
- [8] A. Illanes, S.B. Nadler Jr., Hyperspaces, Fundamentals and Recent Advances, Monogr. Textb. Pure Appl. Math., vol. 216, Marcel Dekker, Inc., New York, NY, 1999.
- [9] R.J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967) 35–46.
- [10] S.B. Nadler Jr., Hyperspaces of Sets: A Text with Research Questions, Monogr. Textb. Pure Appl. Math., vol. 49, Marcel Dekker, Inc., New York, Basel, 1978.
- [11] S.B. Nadler Jr., The Fixed Point Property for Continua, Aportaciones Mat. Textos (Mathematical Contributions: Texts), vol. 30, Sociedad Matemática Mexicana, México, 2005.
- [12] S.B. Nadler Jr., J.T. Rogers Jr., A note on hyperspaces and the fixed point property, Colloq. Math. 25 (1972) 255–257.
- [13] J. Oledzki, On symmetric products, Fund. Math. 131 (1988) 185-190.
- [14] J.T. Rogers Jr., The cone = hyperspace property, Canad. J. Math. 24 (1972) 279-285.