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1. Introduction

A continuum is a compact connected metric space with more than one point. Given a continuum X , consider the follow-
ing hyperspaces of X :

2X = {A ⊂ X: A is nonempty and closed},
C(X) = {

A ∈ 2X : A is connected
}
, and for each n � 1,

Fn(X) = {
A ∈ 2X : A has at most n points

}
.

All these hyperspaces are considered with the Hausdorff metric H .
A continuum X is said to have the fixed point property (f.p.p.) provided that for each continuous map f : X → X , there

exists a point p ∈ X such that f (p) = p.
A discussion on which is known about the f.p.p. of hyperspaces can be found in [8, Chapter VI] and [10, Chapter VII].

We only mention here some facts.
In 1952, B. Knaster posed the following question (see [3, Problem 186]): If X is a continuum with the f.p.p., then does

C(X) have the f.p.p.? A fundamental example on the theory of the f.p.p. is the cone over the continuum D0 (cone(D0))
which is the union of a circle and a spiral surrounding it. R.J. Knill (see [9]) showed that this cone does not have the f.p.p.,
in [14] J.T. Rogers, Jr. showed that cone(D0) and C(D0) are homeomorphic, thus C(D0) does not have the f.p.p. Hence D0
was the first example for which the hyperspace of subcontinua does not have the f.p.p. In [12] S.B. Nadler, Jr. and J.T. Rogers,
Jr. answered Knaster’s question by showing that C(D1) (D1 is the union of D0 and the disk bounded by its circle) does not
have the f.p.p.
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Answering an old question by J.T. Rogers, Jr., the second named author has recently shown (see [6]) that, if T0 is the
union of a simple triod and a ray surrounding it, then C(T0) does not have the f.p.p. The main difference between D1 and
T0 is that T0 is tree-like and one-dimensional continuum (with the f.p.p.). Recently, the continuum T0 has played another
important role in the f.p.p. theory on continua. Answering an old question on this topic, the second named author has
shown in [5] that cone(T0) does not have the f.p.p.

The spaces of the form Fn(X) are called symmetric products. They were introduced by K. Borsuk and S. Ulam in [1], where
they asked if every symmetric product of a continuum with the f.p.p. must have the f.p.p. J. Oledzki (see [13]) constructed
a 2-dimensional continuum to answer this question in the negative.

There are only a few results about the f.p.p. on symmetric products. Recently (see [7]), it has been shown that, if X is a
chainable continuum then F3(X) has the f.p.p.

In [11, 8.16, p. 120], S.B. Nadler, Jr. wrote:

“8.16. Is there a continuum X such that Fn(X) has the fixed point property for some n > 1 and, yet, Fm(X) does not
have the fixed point property for some m?

Comments. We require n > 1 in view of Oledzki’s example [13] (see comments to Question 8.14). We allow m < n in the
question . . . .”

In this paper we answer Nadler’s question by showing a continuum X such that F2(X) has the f.p.p. while X (and then
F1(X)) does not have the f.p.p.

Some other related questions on this topic can be found in [11] and [4].

2. The example

A continuum X is indecomposable provided that X cannot be expressed as the union of two of its proper subcontinua.
A Cook continuum is an indecomposable continuum X with the property that if C is a subcontinuum of X and f : C → X is
a continuous map, then f is constant or f (p) = p for every p ∈ C . The existence of Cook continua was showed by H. Cook
in [2, Theorems 8 and 9].

Example. There exists a continuum X such that F2(X) has the fixed point property while X does not have it.

In order to construct X , take a Cook continuum C . Fix two points a �= b in C . Let Z = C × {0,1}. In Z identify the
point (a,0) to the point (b,1) and the point (a,1) to the point (b,0). Consider {0,1} with the discrete topology and the
sum module 2, which is denoted by ⊕. Then, we are identifying each point of the form (a, i) to the point (b, i ⊕ 1). The
resulting space is denoted by X . Let π : Z → X be the identification map. Since X = π(C × {0}) ∪ π(C × {1}), π(C × {0})
and π(C × {1}) are connected and π((a,0)) = π((b,1)) ∈ π(C × {0}) ∩ π(C × {1}), we have that X is connected. Hence X
is a continuum. To simplify the notation, for each point (z, i) ∈ Z , we denote π((z, i)) by [z, i]. Let P = {[a,0], [b,0]}. Note
that P = {[a,1], [b,1]} = {[a,0], [a,1]} = {[b,0], [b,1]}. Let d be a metric for X . Given a point [z, i] ∈ X , a subset A of X
and a positive number ε, let B(ε, [z, i]) be the ε-neighborhood in X , around [z, i] and let N(ε, A) = {q ∈ X: there exists
a ∈ A such that d(q,a) < ε}. Given subsets A and B of X , let 〈A, B〉2 = {E ∈ F2(X): E ⊂ A ∪ B, E ∩ A �= ∅ and E ∩ B �= ∅}.

Claim 1. X does not have the fixed point property.

Proof. Let f0 : X → X be defined by f0([z, i]) = [z, i ⊕ 1]. Given i ∈ {1,2}, since f0([a, i]) = [a, i ⊕ 1] = [b, i ⊕ 2] =
f0([b, i ⊕ 1]), we have that f0([a, i]) = f0([b, i ⊕ 1]). Thus f0 is well defined and continuous. Suppose that there exists
[z, i] ∈ X such that f0([z, i]) = [z, i]. Then [z, i ⊕ 1] = [z, i]. This implies that z = a and z = b, a contradiction. We have
shown that f0 does not have fixed points. Therefore, X does not have the fixed point property. �
Claim 2. Let K be a subcontinuum of C and let g : K → X be a continuous function. Then g is constant or there exists i ∈ {0,1} such
that g(u) = [u, i] for every u ∈ K .

Proof. We can assume that K is nondegenerate. If g(K ) ⊂ P , since P is finite and K is connected we have that g(K ) is
a one-point set. Hence g is constant. Suppose then that there exists a point p ∈ K such that g(p) /∈ P . Let g(p) = [z, i].
Since [z, i] /∈ π(C × {i ⊕ 1}), there exists ε > 0 such that B(ε, [z, i]) ∩ π(C × {i ⊕ 1}) = ∅. By [8, Theorem 14.6], there exists
a continuous function α : [0,1] → C(K ) such that α(0) = {p}, α(1) = K and, if s < t , then α(s) � α(t). Let G : C(K ) → C(X)

be the induced function of g . That is, G(A) = g(A) (the image of A under g). Since α and G are uniformly continuous, there
exists δ > 0 such that, if |s − t| < δ, then H(G(α(t)), G(α(s))) < ε. Let m � 1 be such that 1

m < δ. Then H(G(α( 1
m )), {[z, i]}) =

H(G(α( 1
m )), G(α(0))) < ε. Thus G(α( 1

m )) ⊂ B(ε, [z, i]) ⊂ π(C × {i}). Hence g|α( 1
m )

: α( 1
m ) → π(C × {i}). Since π(C × {i}) is

homeomorphic to the Cook continuum C and α( 1
m ) is a subcontinuum of C , we have that either g|α( 1

m )
is constant or

g(q) = [q, i] for every q ∈ α( 1 ). We analyze both cases.
m
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Case 1. g|α( 1
m )

is constant.

Since p ∈ α( 1
m ), g(α( 1

m )) = {g(p)}. In this case, we are going to show, by induction, that for each k ∈ {1, . . . ,m},
g|α( k

m )
is constant. By hypothesis, this holds for k = 1. Now, suppose that g|α( k

m )
is constant and k < m. Since

H(G(α( k+1
m )), G(α( k

m ))) < ε and G(α( k
m )) = {g(p)}, we have that g(α( k+1

m )) ⊂ B(ε, g(p)) ⊂ π(C × {i}). Since π(C × {i})
is homeomorphic to C and α( k+1

m ) is a subcontinuum of C , we have either g|α( k+1
m )

is constant or g(q) = [q, i] for every

q ∈ α( k+1
m ). If we take q ∈ α( 1

m )\{p}, we have g(q) = g(p), thus g(q) �= [q, i] or g(p) �= [p, i]. Hence, g|α( k+1
m )

is constant.

This completes the induction. In particular, for k = m, we obtain g|K = g is constant. This ends the analysis of this case.

Case 2. g(q) = [q, i] for every q ∈ α( 1
m ).

Let J = {t ∈ [0,1]: g(q) = [q, i] for every q ∈ α(t)} and let t0 = sup J . Note that 1
m ∈ J , so J �= ∅ and 1

m � t0. We show that
t0 ∈ J . Let {tk}∞k=1 be a sequence in J such that lim tk = t0. Then limα(tk) = α(t0). Given q ∈ α(t0) there exists a sequence
{qk}∞k=1 in K such that qk ∈ α(tk), for every k � 1 and lim qk = q. Then g(qk) = [qk, i] for every k � 1. Thus g(q) = lim g(qk) =
lim[qk, i] = [q, i]. Hence t0 ∈ J . In particular, g(q) ∈ π(C × {i}) for every q ∈ α(t0). Therefore, g(α(t0)) ⊂ π(C × {i}).

Next, we show that t0 = 1. Suppose, to the contrary, that t0 < 1. Let λ > 0 be such that B(2λ, [a, i]) ∩ B(2λ, [b, i]) = ∅.
Let U = B(λ, [a, i]) ∪ B(λ, [b, i]) ∪ π(C × {i}). Note that U is open in X . Define β : clX (U ) → π(C × {i}) by

β
([q, j]) =

⎧⎪⎨
⎪⎩

[q, j], if [q, j] ∈ π(C × {i}),
[a, i], if [q, j] ∈ clX (B(λ, [a, i])) ∩ π(C × {i ⊕ 1}),
[b, i], if [q, j] ∈ clX (B(λ, [b, i])) ∩ π(C × {i ⊕ 1}).

Note that β is well defined and continuous. Since t0 < 1, g(α(t0)) ⊂ π(C × {i}) ⊂ U and U is open, there exists s > t0
such that g(α(s)) ⊂ U . If a /∈ α(t0), we can take s with the additional property that a /∈ α(s). If b /∈ α(t0), we also ask that
b /∈ α(s). Thus, if a ∈ α(s), then a ∈ α(t0) and g(a) = [a, i]. Also, if b ∈ α(s), then b ∈ α(t0) and g(b) = [b, i].

Since g(s) is a subcontinuum of K ⊂ C , π(C ×{i}) is homeomorphic to C and (β ◦ g)|α(s) : α(s) → π(C ×{i}) is continuous,
we have that either (β ◦ g)|α(s) is constant or (β ◦ g)|α(s)(q) = [q, i] for every q ∈ α(s). Note that, for every q ∈ α( 1

m ),
g(q) = [q, i], so β(g(q)) = [q, i]. Thus α( 1

m ) is a nondegenerate subcontinuum of α(s) such that (β ◦ g)|α( 1
m )

is not constant.

Hence (β ◦ g)|α(s) is not constant. Thus (β ◦ g)|α(s)(q) = [q, i] for every q ∈ α(s). That is, β(g(q)) = [q, i] for every q ∈ α(s).
Since t0 = sup J and t0 < s, there exists q ∈ α(s) such that g(q) �= [q, i]. If g(q) ∈ π(C × {i}), then [q, i] = β(g(q)) =

g(q), a contradiction. Hence g(q) /∈ π(C × {i}). Suppose, by example, that g(q) ∈ clX (B(λ, [a, i]))\π(C × {i}). Then [q, i] =
β(g(q)) = [a, i]. This implies that q = a and g(a) �= [a, i]. Thus a ∈ α(s) and, by the choice of s, we conclude that a ∈ α(t0)

and g(a) = [a, i], a contradiction. This completes the proof that t0 = 1.
Hence g(q) = [q, i] for every q ∈ α(1) = K . This ends the analysis for this case. �
We want to show that F2(X) has the fixed point property. Take then a continuous function f : F2(X) → F2(X).
Given p ∈ C , let ±p = {[p,0], [p,1]}. Given Y ⊂ X , let ±Y = ⋃{±p: ±p ∩ Y �= ∅}.

Claim 3. Let A = {[x, i], [y, j]} ∈ F2(X) be such that ±y ∩ f (A) = ∅ and f (A) /∈ F1(X). Then f |〈{[x,i]},π(C×{ j})〉2 is constant.

Proof. Let f (A) = {w1, w2}. Let ε > 0 be such that B(ε, w1) ∩ B(ε, w2) = ∅. Let δ > 0 be such that if B, D ∈ F2(X) and
H(B, D) < δ, then H( f (B), f (D)) < ε. By [8, Theorem 14.6] there exists a continuous function α : [0,1] → C(X) such
that α(0) = {[y, j]}, α(1) = π(C × { j}) and s < t implies that α(s) � α(t). Let λ > 0 be such that, if |s − t| < λ, then
H(α(s),α(t)) < δ. Let m � 1 be such that 1

m < λ. For each k ∈ {0,1, . . . ,m}, let Ek = 〈{[x, i]},α( k
m )〉2.

We are going to show, inductively, that f |Ek is constant. For k = 0, note that E0 = 〈{[x, i]},α(0)〉2 = 〈{[x, i]}, {[y, j]}〉2 =
{A} is a one point set, so f |E0 is constant. Suppose now that k ∈ {0,1, . . . ,m − 1} and f |Ek is constant. Since A ∈ E0 ⊂ Ek ,
we have f (D) = f (A) for every D ∈ Ek . Given B ∈ Ek+1, B is of the form B = {[x, i], [u, j]}, where [u, j] ∈ α( k+1

m ). Since

H(α( k+1
m ),α( k

m )) < δ, there exists [w, j] ∈ α( k
m ) such that d([w, j], [u, j]) < δ. Thus H({[x, i], [u, j]}, {[x, i], [w, j]}) < δ.

Hence H( f (B), f ({[x, i], [w, j]})) < ε. Since {[x, i], [w, j]} ∈ Ek , we have f ({[x, i], [w, j]}) = f (A) = {w1, w2}. Thus
H( f (B), {w1, w2}) < ε. Hence f (B) has exactly one element in each one of the sets B(ε, w1) and B(ε, w2).

Given s ∈ {1,2}, it is easy to show that the function gs : Ek+1 → B(ε, ws) given by: gs(B) is the only point in
f (B) ∩ B(ε, ws), is continuous. Define hs : α( k+1

m ) → B(ε, ws) ⊂ X by hs([v, j]) = gs({[x, i], [v, j]}). Clearly, hs is con-

tinuous. Since π(C × { j}) is homeomorphic to C , α( k+1
m ) is homeomorphic to a subcontinuum of C , so we can apply

Claim 2 and obtain that either hs is constant or there exists js ∈ {0,1} such that hs([v, j]) = [v, js] for every [v, j] ∈
α( k+1

m ). Since [y, j] ∈ α(0) ⊂ α( k+1
m ), {h1([y, j]),h2([y, j])} = {g1({[x, i], [y, j]}), g2({[x, i], [y, j]})} = f ({[x, i], [y, j]}) =

{w1, w2} and {w1, w2} ∩ {[y,0], [y,1]} = ∅, we have hs([y, j]) is not of the form [y, js], for each s ∈ {0,1}. Hence h1



4 G. Higuera, A. Illanes / Topology and its Applications 159 (2012) 1–6
and h2 are constants. Thus, for every [v, j] ∈ α( k+1
m ), since {w1, w2} = {h1([y, j]),h2([y, j])} = {h1([v, j]),h2([v, j])} =

{g1({[x, i], [v, j]}), g2({[x, i], [v, j]})} = f ({[x, i], [v, j]}), we have f |Ek+1 is constant. This ends the induction.
In particular, f |Em = f |〈{[x,i]},π(C×{ j})〉2 is constant. This completes the proof of Claim 3. �

Claim 4. If there exists A ∈ F2(X) such that (±A ∪ P ) ∩ f (A) = ∅ and f (A) /∈ F1(X), then f has a fixed point.

Proof. Let A = {[x, i], [y, j]} and f (A) = {[u,k], [v, l]}. Since ±y ⊂ ±A and ±A ∩ f (A) = ∅, we have ±y∩ f (A) = ∅. Then, we
can apply Claim 3 and obtain that f |〈{[x,i]},π(C×{ j})〉2 is constant. In particular, f (A) = f ({[x, i], [a, j]}) = f ({[x, i], [b, j ⊕ 1]}).
Let A1 = {[x, i], [b, j ⊕1]}. Since ±b = P and f (A1) = f (A) does not intersect P , we can apply Claim 3 to A1 and obtain that
f |〈{[x,i]},π(C×{ j⊕1})〉2 is constant. Since 〈{[x, i]},π(C × { j})〉2 ∪ 〈{[x, i]},π(C × { j ⊕ 1})〉2 = 〈{[x, i]}, X〉2, we have f |〈{[x,i]},X〉2 is
constant. In particular, f ({[x, i], [u,k]}) = f (A).

Let A2 = {[x, i], [u,k]}. Then f (A2) = f (A). Since ±x ⊂ ±A, we have ±x ∩ f (A2) = ∅. Thus, applying Claim 3,
we obtain that f |〈{[u,k]},π(C×{i})〉2 is constant. In particular, f (A2) = f ({[u,k], [a, i]}) = f ({[u,k], [b, i ⊕ 1]}). Let A3 =
{[u,k], [b, i ⊕ 1]}. Since ±b = P and f (A3) = f (A2) = f (A) does not intersect P , we can apply Claim 3 to A3 and ob-
tain that f |〈{[u,k]},π(C×{i⊕1})〉2 is constant. Hence f |〈{[u,k]},X〉2 is constant. In particular, f ({[u,k], [v, l]}) = f (A2) = f (A) =
{[u,k], [v, l]}. We have found a fixed point for f . �
Claim 5. Let A = {[x,0], [y,1]} ∈ F2(X) be such that ±A ∩ f (A) = ∅ and f (A) /∈ F1(X). Then f has a fixed point.

Proof. If P ∩ f (A) = ∅, by Claim 4 f has a fixed point and we have finished. Suppose then, by example, that f (A) has
the form f (A) = {[a,0], [z,1]}. Since ±A ∩ f (A) = ∅, we have ±y ∩ f (A) = ∅. By Claim 3, f |〈{[x,0]},π(C×{1})〉2 is constant. In
particular, f ({[x,0], [z,1]}) = f ({[x,0], [y,1]}) = f (A). Let A1 = {[x,0], [z,1]}. Since ±x ∩ f (A1) = ±x ∩ f (A) = ∅, we can
apply Claim 3 to A1 and conclude that f |〈{[z,1]},π(C×{0})〉2 is constant. In particular, f ({[z,1], [a,0]}) = f ({[z,1], [x,0]}) =
f (A1) = f (A) = {[a,0], [z,1]}. Thus, we have found a fixed point for f . �

In Claims 4 and 5, we have shown some particular conditions under which f has a fixed point. From now on, we suppose
that f does not have fixed points and we are going to obtain a contradiction. Given p ∈ C , recall that ±p = {[p,0], [p,1]}.
Note that ±(±p) = ±p. By Claim 5, since f does not have fixed points, we have ±p ∩ f (±p) �= ∅ or f (±p) ∈ F1(X) for
every p ∈ C . So, we can define the function g : C → F1(X) by

g(p) =
{

f (±p), if f (±p) ∈ F1(X),

f (±p)\(±p), if f (±p) /∈ F1(X).

Claim 6. The function g is continuous.

Proof. Note that the function ϕ : C → F2(X) given by ϕ(p) = f (±p) is continuous. So the set D = {p ∈ C : ϕ(p) ∈ F1(X)} is
closed in C . In order to see that g is continuous, take a sequence {pk}∞k=1 in C such that lim pk = p ∈ C . Consider two cases.

Case 1. f (±p) /∈ F1(X).

Since ±p ∩ f (±p) �= ∅, we may assume that [p,0] ∈ f (±p). Since f (±p) �= ±p, we have [p,1] /∈ f (±p). Then g(p) =
f (±p)\{[p,0]}. Since D is closed and p /∈ D , we may assume that pk /∈ D and [pk,1] /∈ f (±pk) for all k � 1. Thus [pk,0] ∈
f (±pk) for every k � 1. Given k � 1, we have g(pk) = f (±pk)\{[pk,0]}. Since f (±p) has two different points: [p,0] and
the unique point w ∈ g(p) and lim f (±pk) = f (±p), we have that, for each k � 1, we can write f (±pk) = {wk, vk}, where
lim wk = w and lim vk = [p,0]. Since lim[pk,0] = [p,0], we have vk = [pk,0] for almost all k. Then, for almost all k,
{wk} = g(pk). Hence lim g(pk) = g(p).

Case 2. f (±p) ∈ F1(X).

Since, for every k � 1, g(pk) ⊂ f (±pk) and lim f (±pk) = f (±p), we have lim g(pk) = f (±p) = g(p). �
We have seen that g is a continuous function. Since F1(X) is naturally homeomorphic to X , we can apply Claim 2

and obtain that g is constant or there exists i ∈ {0,1} such that g(p) = {[p, i]} for every p ∈ C . Note that f (±a) = f (±b)

implies that g(a) = g(b), so g is not one-to-one and then g is constant. Let [z0, i0] ∈ X be such that Im g = {[z0, i0]}. By the
definition of g , [z0, i0] ∈ f (±p) for every p ∈ C . Thus we can define a function h : C → F1(X) in the following way:

h(p) =
{

{[z0, i0]}, if f (±p) = {[z0, i0]},
f (±p)\{[z0, i0]}, if f (±p) �= {[z0, i0]}.
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Claim 7. The function h is continuous.

Proof. In order to see that h is continuous, take a sequence {pk}∞k=1 in C such that lim pk = p ∈ C . Consider two cases.

Case 1. f (±p) �= {[z0, i0]}.

Let w ∈ X be such that f (±p) = {w, [z0, i0]}. Then h(p) = {w}. Since lim f (±pk) = f (±p), we have that there exists a
sequence {wk}∞k=1 in X such that, for every k � 1, wk ∈ f (±pk) and lim wk = w . Since w �= [z0, i0], we may assume that
wk �= [z0, i0] for every k � 1. Thus, for each k � 1, f (±pk) = {wk, [z0, i0]} and h(pk) = wk . Therefore, lim h(pk) = h(p).

Case 2. f (±p) = {[z0, i0]}.

Since, for every k � 1, h(pk) ⊂ f (±pk) and lim f (±pk) = f (±p) ∈ F1(X), we have lim h(pk) = f (±p) = h(p). �
Claim 8. f (±p) = {[z0, i0]}, for every p ∈ C.

Proof. We have seen that h is a continuous function. Since F1(X) is naturally homeomorphic to X , we can apply Claim 2
and conclude that either h is constant or there exists i ∈ {0,1} such that h(p) = {[p, i]} for every p ∈ C . Note that f (±a) =
f (±b) implies that h(a) = h(b), so h is not one-to-one and then h is not constant. Suppose that Im h = {{[w0, j0]}}. If
[w0, j0] �= [z0, i0], then f (±p) = {[w0, j0], [z0, i0]} for every p ∈ C . Given p ∈ C , f (±p) /∈ F1(X). Since we are assuming
that f does not have fixed points, by Claim 5, ±p ∩ f (±p) �= ∅. Thus ±p ∩ {[w0, j0], [z0, i0]} �= ∅. But if we take a point
p0 ∈ C\{w0, z0,a,b}, we have [p0,0], [p0,1] /∈ {[w0, j0], [z0, i0]}, a contradiction. This shows that [w0, j0] = [z0, i0]. Hence
Im h = {{[z0, i0]}}. Thus, for each p ∈ C , h(p) cannot have elements in f (±p)\{[z0, i0]}. Therefore, f (±p) = {[z0, i0]}. �
Claim 9. Let K be a composant of C such that K does not contain the points z0,a and b. Let p ∈ K . Then f ({[p, i0], [z0, i0]}) =
{[z0, i0]}.

Proof. By Claim 8 we know that f (±p) = {[z0, i0]}. By [8, Theorem 14.6] there exists a continuous function α : [0,1] →
C(X) such that α(0) = {[p, i0 ⊕1]}, α(1) = π(C ×{i0 ⊕1}) and if s < t , then α(s) � α(t). Let J = {t ∈ [0,1]: f ({[p, i0], w}) =
{[z0, i0]} for every w ∈ α(t)}. Since the unique element in α(0) is [p, i0 ⊕ 1] and f ({[p, i0], [p, i0 ⊕ 1]}) = f (±p) = {[z0, i0]},
we have 0 ∈ J . Thus it makes sense to define t0 = sup J . It is easy to check that t0 ∈ J .

We want to prove that t0 = 1. Suppose to the contrary that t0 < 1. Then α(t0) is a proper subcontinuum of π(C ×{i0 ⊕1})
and this space is homeomorphic to C , therefore it is indecomposable and π(K × {i0 ⊕ 1}) is one of its composants. Thus
α(t0) ⊂ π(K × {i0 ⊕ 1}). Since [a, i0 ⊕ 1], [b, i0 ⊕ 1], [z0, i0 ⊕ 1] do not belong to π(K × {i0 ⊕ 1}), we have [z0, i0] /∈
π(K × {i0 ⊕ 1}). Hence [z0, i0], [z0, i0 ⊕ 1] /∈ α(t0) and {[z0, i0], [z0, i0 ⊕ 1]} ∩ α(t0) = ∅. This implies that [z0, i0] /∈ ±α(t0).
Thus there exists ε > 0 such that N(ε, {[z0, i0]}) ∩ N(ε,±α(t0)) = ∅. Let δ > 0 be such that δ < ε and if A, B ∈ F2(X) and
H(A, B) < δ, then H( f (A), f (B)) < ε. We can also ask that δ has the property that if w, w0 ∈ X and d(w, w0) < δ, then
H(±w,±w0) < ε. Let λ > 0 be such that, if |t − s| < λ, then H(α(s),α(t)) < δ.

Choose t1 > t0 such that t1 < t0 + λ and t1 < 1. We are going to obtain a contradiction by showing that t1 ∈ J .
Take w ∈ α(t1). Since |t1 − t0| < λ, there exists w0 ∈ α(t0) such that d(w, w0) < δ. Thus H(±w,±w0) < ε and
H( f ({[p, i0], w}), f ({[p, i0], w0})) < ε. Since w0 ∈ α(t0), we have ±w0 ⊂ ±α(t0) and f ({[p, i0], w0}) = {[z0, i0]}. Hence
±w ⊂ N(ε,±α(t0)) and f ({[p, i0], w}) ⊂ B(ε, [z0, i0]). Thus ±w ∩ N(ε, {[z0, i0]}) = ∅. We have shown that ±w ∩
f ({[p, i0], w}) = ∅. Since [p, i0 ⊕ 1] ∈ α(0) ⊂ α(t0), ±[p, i0 ⊕ 1] ⊂ ±α(t0), then ±[p, i0 ⊕ 1] ∩ N(ε, {[z0, i0]}) = ∅ and
±[p, i0 ⊕ 1] ∩ f ({[p, i0], w}) = ∅. Let A = {[p, i0], w}. We have seen that ±A ∩ f (A) = ∅. Since w ∈ α(t1) ⊂ π(C × {i0 ⊕ 1})
and [p, i0] ∈ π(C × {i0}), we can apply Claim 5 and conclude that f (A) ∈ F1(X) (remember that we are assuming that f
does not have fixed points).

We have proven that, for each w ∈ α(t1), f ({[p, i0], w}) ∈ F1(X). If we define ψ(w) = f ({[p, i0], w}) we have a contin-
uous function ψ : α(t1) → F1(X). Since α(t1) is a subcontinuum of π(C × {i0 ⊕ 1}), this continuum is homeomorphic to
C and F1(X) is naturally homeomorphic to X , we can apply Claim 2 and obtain that either ψ is constant or there exists
j ∈ {0,1} such that, for every w = [u, i0 ⊕1] ∈ α(t1), f ({[p, i0], w}) = {[u, j]}. In the second case, since [p, i0 ⊕1] ∈ α(t1), we
have f ({[p, i0], [p, i0 ⊕ 1]}) = {[p, j]}. But, by Claim 8, f ({[p, i0], [p, i0 ⊕ 1]}) = {[z0, i0]}. Thus [p, j] = [z0, i0]. This implies
that p ∈ {a,b, z0}. This is a contradiction since p ∈ K . We have shown that ψ is constant. Since [p, i0 ⊕ 1] ∈ α(t1), we have
f ({[p, i0], w}) = {[z0, i0]}, for every w ∈ α(t1). Hence t1 ∈ J , a contradiction. This completes the proof that t0 = 1.

We have proven that f ({[p, i0], w}) = {[z0, i0]} for every w ∈ π(C × {i0 ⊕ 1}).
In the case that z0 = a, we have [z0, i0] = [b, i0 ⊕ 1] ∈ π(C × {i0 ⊕ 1}), so f ({[p, i0], [z0, i0]}) = {[z0, i0]} and we finish.

The case z0 = b is similar. Therefore, we may assume that z0 /∈ {a,b}. In particular, [z0, i0] /∈ P .
By [8, Theorem 14.6], there exists a continuous function β : [0,1] → C(X) such that β(0) = {[a, i0]}, β(1) = π(C × {i0})

and that satisfies that, if s < t , then β(s) � β(t). Let L = {t ∈ [0,1]: f ({[p, i0], w}) = {[z0, i0]} for every w ∈ β(t)}. Since
[a, i0] = [b, i0 ⊕ 1] ∈ π(C × {i0 ⊕ 1}), by what we have shown, f ({[p, i0], [a, i0]}) = {[z0, i0]}, so 0 ∈ L. Then it has sense to
define s0 = sup L. It is easy to check that s0 ∈ L.
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If [z0, i0] ∈ β(s0), then f ({[p, i0], [z0, i0]}) = {[z0, i0]} and we finish. Suppose then that [z0, i0] /∈ β(s0). This implies that
s0 < 1. We are going to obtain a similar contradiction as that we obtained when we supposed that t0 < 1.

If [z0, i0 ⊕ 1] ∈ β(s0) ⊂ π(C ×{i0}), then z0 ∈ {a,b}, which is absurd. Hence ±z0 = {[z0, i0], [z0, i0 ⊕ 1]} does not intersect
β(s0). This implies that [z0, i0] /∈ ±β(s0). Then, there exists ε > 0 such that N(ε, {[z0, i0]}) ∩ N(ε, (±β(s0)) ∪ P ) = ∅. Since
p /∈ {z0,a,b}, we have {[p, i0], [p, i0 ⊕ 1]} ∩ {[z0, i0], [z0, i0 ⊕ 1]} = ∅, so we can also ask that N(ε,±p) ∩ N(ε,±z0) = ∅. Let
δ > 0 be such that δ < ε and satisfies that, if A, B ∈ F2(X) and H(A, B) < δ, then H( f (A), f (B)) < ε. We also ask that δ

has the property that, if w, w0 ∈ X and d(w, w0) < δ, then H(±w,±w0) < ε. Let λ > 0 be such that if |t − s| < λ, then
H(β(s), β(t)) < δ.

Choose s1 > s0 such that s1 < s0 + λ and s1 < 1. We are going to obtain a contradiction by showing that s1 ∈ L.
Take w ∈ β(s1). Since |s1 − s0| < λ, there exists w0 ∈ β(s0) such that d(w, w0) < δ. Thus H(±w,±w0) < ε and
H( f ({[p, i0], w}), f ({[p, i0], w0})) < ε. Since w0 ∈ β(s0), we have ±w0 ⊂ ±β(s0) and f ({[p, i0], w0}) = {[z0, i0]}. Hence
±w ⊂ N(ε,±β(s0)) and f ({[p, i0], w}) ⊂ B(ε, [z0, i0]). Thus ±w ∩N(ε, {[z0, i0]}) = ∅. This shows that ±w ∩ f ({[p, i0], w}) =
∅ and P ∩ f ({[p, i0], w}) = ∅. Since f ({[p, i0], w}) ⊂ N(ε,±z0), we have ±p ∩ f ({[p, i0], w}) = ∅. Let A1 = {[p, i0], w}.
We have seen that ±A1 ∩ f (A1) = ∅ and f (A1) ∩ P = ∅. We can apply Claim 4 and obtain that f (A) ∈ F1(X).

We have shown that, for each w ∈ β(s1), f ({[p, i0], w}) ∈ F1(X). If we define η(w) = f ({[p, i0], w}) we have a contin-
uous function η : β(s1) → F1(X). Since β(s1) is a subcontinuum of π(C × {i0}) and this continuum is homeomorphic to
C and F1(X) is naturally homeomorphic to X , we can apply Claim 2 and obtain that either η is constant or there exists
j ∈ {0,1} such that, for every w = [u, i0] ∈ β(s1), f ({[p, i0], w}) = {[u, j]}. In the second case, since [a, i0] ∈ β(s1), we have
f ({[p, i0], [a, i0]}) = {[a, j]}. But we know that f ({[p, i0], [a, i0]}) = f ({[p, i0], [b, i0 ⊕ 1]}) = {[z0, i0]}. Thus [a, j] = [z0, i0],
this implies that z0 ∈ {a,b}, which is contrary to our assumption. With this, we have shown that η is constant. Since
[a, i0] ∈ β(s1), we have f ({[p, i0], w}) = {[z0, i0]}, for every w ∈ β(s1). Hence s1 ∈ L, a contradiction. This completes the
proof that [z0, i0] ∈ β(s0) and f ({[p, i0], [z0, i0]}) = {[z0, i0]}. �

Let K be as in Claim 9. Since K is dense in C , there exists a sequence {pk}∞k=1 of points of K such that
lim pk = z0. Since lim f ({[pk, i0], [z0, i0]}) = f ({[z0, i0], [z0, i0]}) and f ({[pk, i0], [z0, i0]}) = {[z0, i0]}, for every k � 1, we have
f ({[z0, i0], [z0, i0]}) = {[z0, i0]}. Hence {[z0, i0]} is a fixed point of f . This contradicts what we are supposing and finishes
the proof that F2(X) has the fixed point property.
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