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Abstract

We investigate the structure of C-minimal valued groups that are not abelian-by-2nite. We
prove among other things that they are nilpotent-by-2nite.
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1. Introduction and preliminaries

1.1. Introduction

Macpherson and Steinhorn introduced C-minimality in [5] as a variant of the notion
of o-minimality. In a C-minimal structure, a ternary relation, with some speci2c prop-
erties, the C-relation, plays the role analogous to the order in an o-minimal structure:
any parameter-de2nable subset is quanti2er-free de2nable with formulae using just the
C-relation and the equality. Less developed than o-minimality for the moment, this
notion leads already to some promising results (see [5,2]), applies to expansions of
algebraically closed valued 2elds [4], may have in some ways a development analo-
gous to o-minimality (see [2]). Some of the tools of stability can be developed in this
context [1,3]. One of the main interests was to provide a natural setting for studying
algebraically closed valued 2elds and some groups with a chain of uniformly de2nable
normal subgroups with trivial intersection. For example in any valued 2eld (F; v) a
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C-relation can be de2ned in a natural way by

C(x;y; z) iB v(z−x) ¡ v(z − y)

and this relation is preserved by the addition and the multiplication by non-zero ele-
ments. The valued 2eld (F; v) is bi-interpretable with the C-2eld (F; C) obtained by
expanding the 2eld structure by the C-relation. If (F; v) is algebraically closed, then,
by quanti2er elimination results, the de2nable subsets can be described, modulo a 2nite
set, as 2nite Boolean combinations of additive cosets of fractional ideals

A� = {x ∈ F | v(x) ¿ �} and M� = {x ∈ F | v(x) ¿ �};
where � belongs to the group of valuations vF . These cosets can be de2ned by an
atomic formula or a negation of an atomic formula using the C-relation and parameters
from F : the structure (F; C) is C-minimal. Conversely, the authors of [2] proved that
the C-minimal 2elds are exactly the algebraically closed valued 2elds. The situation is
somehow analogous to the o-minimal context, where o-minimal 2elds are real closed.

The situation is more complicated for C-minimal groups and they are far less un-
derstood than the o-minimal ones: we do not know which groups can be endowed
with a C-minimal structure. On the other hand we have many examples of abelian
and even non-abelian C-minimal groups. For instance, from results of [8] we have
that the additive group of any valued 2eld is C-minimal. In [9] we gave examples
of C-minimal groups that are not virtually abelian (i.e. abelian-by-2nite). In all these
examples the C-relation comes from a valuation, that is a map v from the group G to a
chain I with a last element ∞ with no immediate predecessor, satisfying v−1(∞) = 1G,
v(xy−1)¿min{v(x); v(y)} and v(x)¡v(y)→ v(xz)¡v(yz) for every x; y; z ∈G. The
C-relation is de2ned by

C(x;y; z) iB v(xz−1) ¡ v(yz−1):

In [5] some structure theory of C-minimal groups was developed. The authors divide
them in three classes. In the 2rst one the C-relation derives from a group valuation
in the sense above (in this case we speak of C-minimal valued groups), while in
the two others it is not the case. Nevertheless, the description given there suggests
that C-minimal groups not belonging to the 2rst class somehow mix o-minimal totally
ordered groups and C-minimal valued groups. It seems necessary to study the valued
case before the two others; also we believe that for many questions the general case can
be derived from the valued case without too much work. Moreover we can use some
of the familiar machinery about valuations. In a C-minimal valued group G= (G;+; v)
we have a uniformly de2nable family of normal subgroups:

K� = {x ∈ G | v(x) ¿ �} and H� = {x ∈ G | v(x) ¿ �};
where � �=∞ belongs to the chain of valuations I . They play the role of the fractional
ideals in C-minimal 2elds: every de2nable subset of G is, modulo a 2nite set, a 2nite
Boolean combinations of cosets of these subgroups. Macpherson and Steinhorn proved
also that every proper de2nable subgroup is a 2nite union of cosets of one of these
groups. We will recall their results in the next section.
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In [8] we gave a partial characterization for abelian C-minimal valued groups and
many new examples. We found, in that case, that for abelian valued C-groups G for
which the C-relation satis2es some kind of compatibility with the multiplication by any
prime number p, being C-minimal is equivalent to the o-minimality of the enriched
chain (I;6; (fp)p prime; (Rn)n∈N) where for each prime number p, fp is the map induced
on I by the multiplication by p in G, and for each natural number n, Rn is a unary
relation de2ned on I such that Rn(�) holds if and only if the quotient K�=H� has more
than n elements.

In [9] we gave the 2rst examples, as far as we know, of C-minimal groups that are
not virtually abelian. These groups are nilpotent of class two. This proves that a large
class of groups 2ts the setting of C-minimality. The problem remains of precisely how
large is this class.

In the present paper we prove that every C-minimal valued group is virtually nilpo-
tent. We do not have for the moment any example of a C-minimal group that is not
virtually nil-2, and that would be the next question to study. There are some con-
straints: we prove here that the exponent of such a group is 2nite and that every
de2nable subgroup has a connected component. Moreover there is a 2nite subset E of
the associated chain I of valuations such that I\E is a 2nite union of dense intervals
and the corresponding residual structures, i.e. the K�=H�’s with �∈ I\E, are in2nite
and of the same cardinality and exponent.

1.2. Notation

Let (G; :;−1 ) be a group, A and B subsets of G, a and b elements of G and F a
subgroup of G.

We denote by 〈A〉 and by Z(A) respectively the subgroup generated by A and the
centralizer of A in G. The conjugate ab and the commutator of a and b are the elements:

ab = b−1ab and [a; b] := a−1b−1ab:

More generally we de2ne the sets

[a;B] := {[a;y] |y ∈ B};

[A;B] := {[x;y] | x ∈ A; y ∈ B};
AB := {xy | x ∈ A; y ∈ B}:

If F is normal, Z(a=F) := {x∈G | [x; a]∈F} and Z(A=F) is the subgroup:

Z(A=F) := {x ∈ G | [x;A] ⊆ F}:
Let A1; : : : ; An be n subsets of G and a1; : : : ; an be elements of G. We de2ne as usually
the iterated commutators by

[a1; a2]2 := [a1; a2]
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and for m¡n

[a1; a2; : : : ; am+1]m+1 := [[a1; a2; : : : ; am]m; am+1]:

Moreover,

[A1;A2; : : : ;An]n := {[x1; x2; : : : ; xn]n | xi ∈ Ai}:
For a; b∈G,

[a;n b] := [a; b; b; : : : ; b]n+1:

If F is a subgroup of G, then {�n(F) | n∈N∗} is the lower central series of F , that is
�1(F) :=F and �n(F) := 〈[F ;F ; : : : ;F]n〉.

A group F is said to be nilpotent of class n if �n+1(F) = {1}. We will say that F
is nil-2 if it is nilpotent of class 2, that is �3(F) = {1}. The group F is said to be an
n-Engel group if for all x; y∈F we have [x;n y] = 1. If P is some property then we
say that G is virtually P if G has a subgroup F of 2nite index such that F satis2es
P. For example virtually nilpotent means nilpotent-by-2nite.

We will frequently use the following well-known identities:

1.2.1. [a; xy] = [a;y][a; x]y = [a;y][a; x][a; x;y].
1.2.2. [xy; a] = [x; a]y[y; a] = [x; a][x; a;y][y; a].

The following lemma is an easy consequence of 1.2.1 and 1.2.2:

Lemma 1.2.3. Let G be a group, B a subgroup of G and  a normal subset of G
(i.e.  g = for every g∈G) containing 1. Then for every a; c∈G, c ⊆ [a;B] if and
only if c∈ [a;B] and  ⊆ [a;B].

Proof. Suppose that c ⊆ [a;B]. Then clearly c belongs to [a;B] and we can 2nd
b0 ∈B such that c= [a; b0]. If x∈ then xb0 ∈ ⊆ c−1[a;B] and there is b∈B such
that xb0 = [b0; a][a; b], thus x= [a; bb−1

0 ] belongs to [a;B]. Conversely assume that
c= [a; b0] with b0 ∈B and  ⊆ [a;B]. Since for every b∈B, [a; b0][a; b]b0 = [a; bb0],
we have [a; b0] = [a; b0] b0 ⊆ [a;B].

1.3. Valued groups

In [8] we gave to the notion of valued group the following meaning: if (G; ·;−1 ; 1)
is a group, and (I;6;∞) is a chain with a last element ∞ which has no immediate
predecessor, then a valuation from G to I is a surjective map v : G→ I satisfying:

(i) v(x) =∞ iB x= 1,
(ii) v(x)¡v(y)→ v(xz)¡v(yz),

(iii) v(xy−1)¿min{v(x); v(y)}.

Note that by (iii) and (i), v(x) = v(x−1) for every x∈G. Moreover, if v(x)¡v(y), then
v(x) = v(xyy−1)¿min{v(xy); v(y)}¿v(x) therefore v(xy) = v(x).
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De�nition 1.3.1. For each #∈ I \ {∞}, the sets

K# := {x ∈ G | v(x) ¿ #} and H# := {x ∈ G | v(x) ¿ #}
form a chain of subgroups of G such that for #¡#′, H#′ 8K#′ ⊆H#8K#. Since v(x)¡
v(y) implies v(x)¡v(yx), H# is normal in K#. The quotients K#=H# will be called the
residual structures of the valued group.

Note that G belongs to the chain de2ned above if and only if I has a 2rst element
#0; then we have G=K#0 . If this is not the case, and in order to simplify, we will
set H−∞ :=G and add −∞ to the chain I as a 2rst element (without successor). The
valuation becomes a surjective map from G to I \ {−∞}. For simplicity we write also
K∞ = {1} and H∞ = {1}.

De�nition 1.3.2. We call $G (or simply $) the chain of subgroups

$G := {K# | # ∈ I} ∪ {H# | # ∈ I}:

Consider now the action of G on itself by conjugation. Clearly, this action induces,
by (ii), an order preserving action on the chains $ and I . For this reason each right
coset of an element belonging to $ is also a left coset of a, maybe diBerent, element
of $ and vice versa. Moreover, the action of G on $ is trivial if and only if each
element of $ is normal in G. Equivalently, for any x and y,

v(xy) = v(x):

In that case, the action of G by conjugation induces an action on each residual structure
K#=H#. If each of these actions is also trivial, we will say that the valued group is plain.
It is easy to see that the following conditions are equivalent:

(i) G is plain,
(ii) for every x and y in G \ {1}, v([x;y])¿max{v(x); v(y)},

(iii) for every x in G, Z(x=Hv(x)) =G.

If G is plain then clearly the residual structures must be abelian. Moreover, for every
%∈ IG and every a∈G the map

&a;% : Z(a=K%) →K%=H%;

x �→ [a; x]H%

is a morphism: using 1.2.1 and that G acts trivially on each residual structure we get
that for x; x′ ∈Z(a=K%), [a; xx′]H% = [a; x′][a; x]x

′
H% = [a; x][a; x′]H%.

In the next section we will be interested in plain valued groups and in particular in
plain valued groups of 2nite exponent. We prove below that such a group is locally
2nite and locally nilpotent. To prove this we will use the solution of the restricted
Burnside Problem (see for example [10]): for every strictly positive integers k and
q there is a bound on the orders of 2nite k-generator groups of exponent dividing
q. It follows that there is a bound c(k; q) on the nilpotency class of 2nite nilpotent
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k-generator groups of exponent dividing q, and, if N (q) := c(2; q), that any locally
2nite and locally nilpotent group H of exponent dividing q is an N (q)-Engel group:
for all x; y∈G, [x;N (q) y] = 1.

Lemma 1.3.3. Let G be a plain valued group of 8nite exponent q. Then G is locally
8nite and locally nilpotent and hence an N (q)-Engel group.

Proof. Let F be a subgroup of G generated by the 2nite subset E1 = {a0; a1; : : : ; ak−1},
and Fn be the quotient F=�n(F). These groups are nilpotent, generated by the classes
of a0; a1; : : : ; ak−1 and of exponent dividing q. It follows that each Fn is 2nite (see for
example Theorem 2.24 in [7]). By the solution of the restricted Burnside Problem their
order is bounded. Therefore, the lower central series must be stationary.

Consider, for n¿0, the 2nite set:

En+1 := {[ai0 ; ai1 ; : : : ; ain ]n+1 | i0; : : : ; in ∈ k} = [En; E1]:

Then, for every n¿0, �n(F) = 〈EFn 〉, the group generated by the normal closure of En in
F (see for example Lemma 2.1.10 in [10]). Let #n be the 2rst element of {v(x) | x∈En}.
Since any element x∈ �n(F) can be written x=

∏
i∈l (m+ii )gi with g0; : : : ; gl−1 ∈F ,

+0; : : : ; +l−1 ∈{−1; 1} and m0; : : : ; ml−1 ∈En, it follows, by the properties of the valua-
tion, that v(x)¿min{v(mi) | i∈ l}¿#n. But En⊆ �n(F), thus #n = min{v(x) | x∈ �n(F)}.
Moreover, En+1 = [En;E1] and, since G is plain, it follows that if #n �=∞ then #n¡#n+1.
Thus �n(F) �= {1} implies �n+1(F)8 �n(F). The lower central series being stationary
we conclude that �N (F) = {1} for some integer N and then F is 2nite and nilpotent.
This proves that G is locally 2nite and locally nilpotent, and by the remark above, that
G is an N (q)-Engel group.

1.4. C-structures

We recall now some relevant facts and results about C-structures, C-minimal struc-
tures and C-minimal groups. Most of them can be found in [2,5,8].

A C-structure is a structure (M;C) where C(x;y; z), the C-relation, is a ternary
relation satisfying the following axioms:

• C1 : ∀xyz (C(x;y; z)→C(x; z; y)),
• C2 : ∀xyz (C(x;y; z)→¬C(y; x; z)),
• C3 : ∀xyzw [C(x;y; z)→ (C(w;y; z) ∨ C(x;w; z))],
• C4 : ∀xy ∃z [x �=y→ (y �= z ∧C(x;y; z))].

We will also call C-structure any expansion M= (M;C; : : :) of a structure like above,
for instance groups or 2elds with a C-relation. Such a structure is C-minimal if for ev-
ery elementary extension M′ of M, any parameter-de2nable subset of M ′ is quanti2er-
free de2nable in (M ′; C). That is de2nable with quanti2er-free formulae using only the
C-relation and the equality, allowing also parameters from M ′.

When studying groups or 2elds endowed with a C-relation one asks for some
kind of compatibility with the operations: for instance a C-group is a C-structure
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G= (G;C; ·;−1 ; 1), where (G; ·;−1 ; 1) is a group, C is a C-relation and G satis2es
furthermore the following axiom:

Cg : ∀xyzuv (C(x;y; z) ↔ C(uxv; uyv; uzv)):

Any valued 2eld, with valuation v, can be endowed with a C-relation de2ned by

C(x;y; z) iB v(z − y) ¿ v(z − x)

for which it is a C-8eld: the C relation is compatible in the sense above with the
addition and the multiplication by non-zero elements. In [8] we saw that any valued
group can be endowed with a structure of a C-group: let (G; ·;−1 ; 1) be a group, and
v a valuation from G to a chain I ; then

C(x;y; z) iB v(zy−1)¿v(zx−1) (iB v(y−1z)¿v(x−1z))

de2nes a C-relation on G, and G= (G;C; ·;−1 ; 1) is a C-group. Moreover, G satis2es
the following sentence:

Cv : ∀x ¬C(x; x−1; 1):

Conversely, if G= (G;C; ·;−1 ; 1) is a non-trivial C-group, that is with at least 2 ele-
ments, then the relation 4 given by

x 4 y iB ¬C(y; x; 1)

de2nes a total preorder on G. The quotient of G by the associated equivalence relation
is a totally ordered set I , with a last element, the class of 1. This class contains a
single element and has no immediate predecessor. The canonical surjection satis2es
the axioms (i) and (ii) of valuations. The third property is satis2ed iB and only if
G |= Cv. We will call valued C-group any C-group whose C-relation can be de2ned
as above from a valuation. The class of valued C-groups is hence axiomatized by the
axioms of groups together with the set {C1;C2;C3;C4;Cg;Cv}.

Let F be a C-2eld. In [2], it was proved that in the C-2eld F the C-relation always
comes from a non-trivial 2eld valuation v. The additive group of the 2eld together with
the C-relation is obviously a valued C-group. The multiplicative group with the same
C-relation is a C-group but not a valued C-group: if x has a strictly negative valuation
then we have C(x; x−1; 1). On the other hand, the multiplicative subgroup of elements
of valuation 0, that is the invertible elements of the valuation ring, with the induced
C-relation, is a valued C-group; the associated valuation is no longer v but may be
identi2ed with the map x �→ v(x − 1).

If G= (G;C; ·;−1 ; 1) is a valued C-group, we write IG and vG (or simply I and v)
for the associated chain and valuation. The elements of the chain of subgroups $G can
easily be de2ned by means of the C-relation: if a is any element of valuation # then

K# = {x ∈ G | ¬C(x; a; 1)} and H# = {x ∈ G |C(a; x; 1)}:



270 P. Simonetta / Annals of Pure and Applied Logic 122 (2003) 263–287

2. The structure of non-abelian C -minimal valued groups

In this section we will prove, among other things, the following results:

Theorem I. Let G be a C-minimal valued group. Then G is virtually plain and vir-
tually nilpotent.

The following theorem gives more information in the case where G is not nil-2-by-
2nite.

Theorem II. Let G be a C-minimal valued group. If G is not nil-2-by-8nite then:

• G has 8nite exponent,
• IG is a 8nite union of points and dense intervals,
• every de8nable subgroup of G is virtually connected. The exponent of the connected

component of G is a prime power.

The only known examples of non-virtually abelian C-minimal valued groups are
virtually nil-2 (see below). It is relevant that these examples satisfy also the conclusion
of Theorem II. It seems not diIcult to construct an example whose exponent is in2nite
but we do not know any example of a non-virtually abelian C-minimal valued group
that is not virtually connected or whose chain of valuations is discrete.

We will keep to the following framework: in (2.1) we summarize the already known
results and some direct consequences. We will make extensive use of these results and
for most of them we give a proof here in order to be self-contained. We will also
recall an example of a C-minimal valued group that is not virtually abelian. This
will help us to understand the remainder. In (2.2) we prove that a C-minimal valued
group is virtually plain, the 2rst part of Theorem I. This is fundamental: to prove
the remaining results we can in fact work under the assumption that G is plain. In
(2.3) we study the behavior of the commutator function on de2nable subgroups of a
plain C-minimal valued group G, especially on de2nably connected subgroups. This
subsection contains essentially all techniques we will use to prove the remaining part
of Theorems I and II. In (2.4) we prove that a C-minimal valued group that is not
virtually nil-2 has 2nite exponent and that any C-minimal valued group is virtually an
n-Engel group for some integer n. In (2.5) we work under the assumption that G is
connected. We prove that any connected C-minimal valued group is nilpotent. If G
has 2nite exponent we prove moreover that this exponent is a prime power. In (2.6)
we prove that a C-minimal valued group that is not virtually nil-2 has a connected
component. As this component is nilpotent this will 2nish the proof of Theorem I. We
prove also the remaining statements of Theorem II. In the last Section (2.7) we work
under the assumption that G is connected, not nil-2, and the chain IG is dense. The
aim is to understand better the structure of C-minimal valued groups that are not nil-2.
We prove among other things that all the residual structures are then in2nite groups
of the same 2nite exponent p (a prime number) and same cardinality.
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2.1. We begin this section by summarizing some known results on non-abelian valued
C-minimal groups and direct consequences. Most of them can be found in [5].

In [5] a description of de2nable subsets of a C-minimal structure was given. They
may be described as 2nite Boolean combinations of sets of the form {x∈M |C(a; b; x)}
or {x∈M |C(x; a; b)} where a; b∈M . Clearly, in a valued C-group G= (G;C; ·;−1 ; 1),
either these sets or their complements are left cosets (and right cosets) of elements of
the chain $G. Then in our setting we get the following description: if G is C-minimal
then any de2nable subset E of G is a Boolean combination of cosets of elements of
$G. More precisely, E can be written as a 2nite disjoint union of sets of the form

(a0: 0)\((a1: 1) ∪ · · · ∪ (an: n))

(or simply (a0: 0) if n= 0) where a0; : : : ; an are elements of G and  0; : : : ;  n are
elements of $G.

As a consequence it was shown in [5].

Fact 2.1.1. Let G be a C-minimal valued C-group:

(i) The chain (I;6) is o-minimal in the following sense: any G-de8nable subset of
I is a 8nite union of intervals with endpoints in I .

(ii) For #∈ I , the residual structure K#=H# is either 8nite or strongly minimal: for
every elementary extension G′ of G, any G′-de8nable subset of KM

′
# =HM′

# is
8nite or co8nite.

It comes that any in2nite residual structure K#=H# is elementary abelian or divisible
abelian. We also easily deduce:

Lemma 2.1.2. Let G be a C-minimal valued C-group and . be a de8nable subchain
of $.

(i) The union of all the elements of . is in $. If . has no last element ( for the
inclusion) then this union is an H# where # has no successor in I .

(ii) The intersection of all the elements of . is in $. If . has no 8rst element ( for
the inclusion) then this intersection is a K# where # has no predecessor in I .

Notation. Let E be a subset of G de2ned by a formula /(x; Ja). If E contains 1 then
the union of all K# such that K#⊆E is a non-empty de2nable subgroup  E that belongs
to $. Note that  E may be de2ned by the formula:

∀y (¬C(y; x; 1) → /(y; Ja)):

If F is a de2nable subgroup of G, we will denote by DFI(F) the family of de2nable
subgroups of F of 2nite index.

The following results are explicitly or implicitly in [5]. Since we will use them very
often, we give a proof here.
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Lemma 2.1.3. Let G be a C-minimal valued C-group, E a de8nable subset of G and
F a de8nable subgroup of G.

(i) E is in8nite if and only if it contains a coset of some H# with # �=∞.
(ii) If E intersects in8nitely many cosets of some non-trivial  ∈$ then it contains

in8nitely many cosets of  .
(iii) If for some �∈ I \ {∞}, E intersects in8nitely many cosets of K� then it contains

a coset of H# for some #¡�.
(iv) If F intersects in8nitely many cosets of H� then it contains K�.
(v)  F is a subgroup of F of 8nite index. Hence every de8nable subgroup of G

is a 8nite union of cosets of some element of $ and every de8nably connected
de8nable subgroup of G belongs to $.

(vi) Let . be a de8nable family of subgroups of F , and assume that in every ele-
mentary extension of G, .⊆DFI(F). Then the intersection of the elements of
. belongs to DFI(F) (hence . must be 8nite).

Proof. These results come from the description of de2nable subsets. We may assume
that E=D0\(D1 ∪D2 ∪ · · · ∪Dn) where the Di are cosets of elements of $. We allow
of course the case where n= 0 and E=D0. If  ∈$, at most one coset of  may
intersect Di without being contained in it. This proves (ii). Suppose now that E inter-
sects (hence contains) in2nitely many cosets of some K�. To prove (i) and (iii) we
may assume that �∈ I has no predecessor (this includes the case �=∞) for if # is
the predecessor of � in I then H# =K�. Using a translation we may also assume that
E contains K�, so D0 is itself in $ while D1; : : : ; Dn are not in $. By the assumptions
the set 1= {#∈ I |K�8H#8D0} is an in2nite interval with no last element and K�
is the intersection all the H# with #∈1. For each i∈{1; : : : ; n} there is exactly one
#i ∈1 such that Di⊆K#i\H#i . If #∈1 is greater than #1; : : : ; #n then H# must be disjoint
from D1; : : : ; Dn and H#⊆E.

(iv) By (ii) we may assume that F intersects 2nitely many cosets of K�. Then
F ∩K� contains in2nitely many cosets of H�, and the result follows from the strong
minimality of K�=H�.

(v) The group  F is the greatest element of $ contained in F . By (iii) and (iv) F
cannot contain in2nitely many cosets of  F .

(vi) We may assume that G is !-saturated. If .= {Fl | l∈L} is a de2nable family
of subgroups of 2nite index of F , then, by (v), the family .′ = { Fl | l∈L} is a
de2nable chain of subgroups of 2nite index of F . By compactness and !-saturation
this chain must be 2nite. Its smallest element belongs to DFI(F) and is contained in
the intersection of the elements of .. Alternatively, we can derive this result from the
fact that the theory of a C-minimal structure does not have the independence property
(see [5,6, Lemma 1.3]).

If /(x; Jy) is a formula such that for every tuple Ja the set of realizations of /(x; Ja)
is a subgroup FJa of G, we can easily deduce from 2.1.3 (v) and by compactness that
there is a bound N/ on the indexes of the groups  F Ja in FJa, and we can take for N/
the least common multiple of these indexes. Applying this for instance to the double
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centralizer:

Z(Z(a)) := {x ∈ G | ∀y ∈ G ([y; a] = 1 → [y; x] = 1)}
and writing eG the least common multiple of the indexes of  Z(Z(a)) in Z(Z(a)), we get
that aeG ∈ Z(Z(a)) for every a∈G. Moreover, since $ is a totally ordered by inclusion,
for every b∈G we have either  Z(Z(a)) ⊆ Z(Z(b)) or  Z(Z(b)) ⊆ Z(Z(a)). Hence

Corollary 2.1.4. Let G be a C-minimal valued C-group. For any a; b∈G, either
[aeG ; b] = 1 or [a; beG ] = 1.

The subgroup generated by an element a∈G acts by conjugation on the chain $.
As this action preserves the inclusion, the orbit of  ∈$ under this action must be
trivial or in2nite. But if  *Z(a) then  Z(Z(a)) ⊆ and  a

eG = , thus the orbit must
be trivial. Therefore

Corollary 2.1.5 (Macpherson and Steinhorn [5]). Let G be a C-minimal valued
C-group. The elements of the chain $ are normal subgroups of G.

The family {K� |K� is abelian} is de2nable. The union of the elements of this chain
is the de2nable abelian normal subgroup of G

AG := {x ∈ G | ∀y ∈ G (¬C(y; x; 1) → [y; x] = 1)}:
By 2.1.2 AG belongs to $. If F is any de2nable abelian subgroup of G then  F ⊆AG.
In particular, for every a∈G,  Z(Z(a)) ⊆AG. Hence, the group AG has the following
properties (see also [5]):

Lemma 2.1.6. For every de8nable abelian subgroup F of G, AG ∩F ∈DFI(F). The
quotient G=AG has 8nite exponent which is a divisor of eG.

Remark 2.1.7. By Lemma 2.1.3 (v), if  is a connected de2nable subgroup of G, i.e.
 has no proper de2nable subgroup of 2nite index, then  is in $. If F and  are
two de2nable subgroups of G, we will say that  is a connected component of F if
 ∈DFI(F) and  is connected. The group F may not have a connected component,
but if such a component exists it is unique and belongs to $.

We may characterize the connected subgroups of G: consider the following subchains
of I and $:

De�nition 2.1.8.

IM := {% ∈ I |K%=H% is in2nite};
IS := {% ∈ I\{∞} | % has no successor};
IS′ := {% ∈ I | ∃%′ ¿ % (%; %′) is dense};
IP := {% ∈ I | % is not the 2rst element of $ and % has no predecessor};
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$M := {K% | % ∈ IM}; $S := {H% | % ∈ IS};
$S′ := {H% | % ∈ IS′}; $P := {K% | % ∈ IP}:

The sets IS , IS′ and IP are de2nable in the chain (I;6). If (I;6) is o-minimal then
IS\IS′ and IP\IS′ are 2nite. Moreover, if IS′ is non-empty then it is a 2nite disjoint union
of intervals [�i; #i), where i∈ n and −∞6�0¡#0¡ · · ·¡�i¡#i¡ · · ·¡�n−1¡#n−1

6∞. A subgroup F belongs to $S if and only if it is an H% that is not a K%′ .
A subgroup F belongs to $P if and only if it is a K% that is not an H%′ . Moreover
$M ∪$S is the set of de2nable connected subgroups of G.

We will use also the following characterization of the sets $M , $S , $S′ and $P:

Lemma 2.1.9. Let G be a C-minimal valued group. Let F be a de8nable subgroup
of G.

(i) F ∈$M i; F is connected and there is a de8nable normal subgroup H of F such
that F=H is in8nite and strongly minimal.

(ii) F ∈$S i; F is connected and is the union of an increasing de8nable family of
proper subgroups.

(iii) F ∈$S′ i; F =
⋃
H8F;H∈$S H .

(iv) F ∈$P i; F is the intersection of a de8nable subchain .⊆$ such that F =∈..

Proof. (iv) follows immediately from 2.1.2. (iii) follows from 2.1.2 and the
o-minimality of (I;6).

(i) and (ii): If K% ∈$M then clearly H% is a proper de2nable subgroup of K% and
K%=H% is in2nite and strongly minimal. If H% ∈$S then H% is the union of all the K# for
#¿% and all these groups are proper subgroups of H%. Assume now for contradiction
that F is connected, F is the union of an increasing de2nable family (Fi)i∈L of proper
subgroups and that there is a proper de2nable normal subgroup H of F such that F=H
is in2nite and strongly minimal. If for all i∈L,  Fi ⊆H , then H has 2nite index in
each group Ei generated by Fi and H . This is not possible since the strongly minimal
group F=H cannot be the union of an increasing de2nable family of 2nite subgroups.
Therefore there is i∈L such that  H ⊆ Fi . Without loss of generality we can then
assume that for all i∈L, H ⊆Fi. By strong minimality of F=H the group H has 2nite
index in each Fi. Again we get a contradiction because F=H cannot be the union of
an increasing de2nable family of 2nite subgroups.

In [9] we gave the following example of a non-abelian-by-2nite C-minimal group.
To my knowledge so far such an example is unique:

Example 2.1.10. Given an algebraically closed valued 2eld (F; v) of characteristic
p¿0, with valued group 7, valuation ring Av = {x∈F | v(x)¿0} and maximal ideal
Mv = {x∈F | v(x)¿0}, and an element +∈Mv of strictly positive valuation �= v(+),
we consider the quotient of Av by its ideal +2:Av = {x∈F | v(x)¿2�} and we denote
its underlying set by G. We de2ne a new operation on G by setting, for
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any a; b∈Av,

(a+ +2:Av) ∗ (b+ +2:Av) = a+ b+ +apb+ +2:Av:

It is easy to verify that this operation is a group law on G, with unit 0 + +2:Av.
The inverse of any element a + +2:Av being −a + +ap+1 + +2:Av. The commutator of
a + +2:Av and b + +2:Av is +(apb − abp) + +2:Av. This group becomes a plain valued
group for the valuation v′ from G to the dense chain I = [0; 2�)∪{∞} de2ned by
v′(a + +2:Av) = v(a) if v(a)¡2�, and v′(+2:Av) =∞. For the corresponding C-relation
C′ we obtain a C-group G= (G;C′; ∗;−1 ; 0) which is interpretable in the C-minimal
2eld (F; C;+; :;−; 0; 1) where C is the natural C-relation on F de2ned by C(x;y; z) if
and only if v(z− x)¡v(z−y). It is easy to prove that the group G is also C-minimal.
Moreover G is a nil-2 and of exponent p if p is odd and 4 if p= 2. The group
G is not abelian-by-2nite. Note also that the chain $ is exactly the set of connected
de2nable subgroups of G. In particular, all the residual structures are in2nite groups
of exponent p.

The commutator has a particular behavior in this group. Let 8 be the function
de2ned from I× I to I by 8(�; #) = �+min{p�+#; p#+�} if min{p�+#; p#+�}¡�
and 8(�; #) =∞ otherwise. This function is continuous and increasing in each of its
variables (strictly increasing as long as ∞ is not reached). We have the following
relations:

[K�;K#] := {[x;y] | x ∈ K�; y ∈ K#} = K8(�;#);

[H�;K#] = [K�;H#] = [H�;H#] = H8(�;#):

In particular, [G;G] =K� =Z(G).
What is relevant here is that the set of commutators of two de2nable connected

subgroups of G is a de2nable connected subgroup. In the next section we will prove
that this situation can be generalized in some way to any C-minimal plain valued
group.

2.2. Remember that G is plain if and only if for every x; y∈G \ {1}, v([x;y])¿
max{v(x); v(y)}. Equivalently the action of G on itself by conjugation induces trivial
action on each residual structure, i.e. Z(a=Hv(a)) =G for any a∈G. We prove the 2rst
assertion of Theorem I: every C-minimal valued group is virtually plain.

Theorem 2.2.1. Let G be a C-minimal valued group. There is a de8nable subgroup
F ∈$ which is plain and of 8nite index in G.

Proof. We may assume that G is !-saturated. The groups Z(a=Hv(a)) form a uni-
formly de2nable family of subgroups of G. Their intersection is a de2nable subgroup
F = {x∈G | ∀y∈G \ {1} v([x;y])¿v(y)} and  F is plain. If F ∈DFI(G) then we are
done. By 2.1.3 (vi) we just need to prove the following statement:

for every a ∈ G; Z(a=Hv(a)) ∈ DFI(G):
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So we study the action of G by conjugation on some residual structure K�=H�. Let
us introduce some notation: for a∈K�\H� and  ∈$, a � is the orbit of the coset
a:H� under the action of  . The stabilizer of a:H� in G is the subgroup Z(a=H�).
Let D(a)∈DFI(Z(a=H�)) be the normal subgroup D(a) := Z(a=H�). Clearly a � is 2nite
if and only if Z(a=H�)∩ , and thus D(a)∩ , belong to DFI( ). If a � is not trivial
then D(a)8 . We want to prove that aG� is 2nite. Assume for contradiction that aG� is
in2nite. As K�=H� is 2nite or strongly minimal, a � is 2nite or co2nite for every  ∈$.

Claim 1. If a � is not trivial then either D(a)∈DFI( ) or  ∈DFI(G) and a � = aG� .

Proof of Claim 1. If D(a) =∈DFI( ), then a � is in2nite. Since aG� can be written as a
union of  -orbits of the same cardinality we must have a � = aG� by strong minimality
of K�=H�. But then each coset of  in G contains an element of Z(a=H�). Since
D(a)∈DFI(Z(a=H�)), the index of  in G must be 2nite.

By !-saturation it follows easily that the set { ∈$ |D(a)⊆ } must be 2nite.
Moreover, there is #∈ I such that D(a)∈DFI(H#) and K# ∈DFI(G). As D(a) is not of
2nite index in G we have #∈ IM , i.e. K#=H# is in2nite and strongly minimal. Moreover,
aK#� = aG� and w.l.o.g. we may assume that G=K#. The group G is then connected.

Claim 2. G=D(a) is abelian. If b∈K�\H� then either bG� = aG� or bG� = {b:H�}.

Proof of Claim 2. As G=H# is abelian, the conjugates of any element x∈G belong
to the coset x:H#. But H#=D(a) is 2nite, and modulo D(a), x has a 2nite number of
conjugates so Z(x=D(a))∈DFI(G). As G is connected, it follows that Z(x=D(a)) =G
and G=D(a) is abelian. As the orbit aG� is co2nite in K�=H�, either b∈ aG� or bG� is
2nite and Z(b=H�)∈DFI(G). As G is connected, bG� is trivial in the second case.

Let B :=Z(G=H�)∩K� and C :=Z(a=B) = {x∈G | [a; x]∈B}.

Claim 3. B and C are de2nable normal subgroups of G. Moreover G=C and K�=B are
in2nite strongly minimal groups and G=C acts regularly on (K�=B)\{1} by conjugation.

Proof of Claim 3. B is obviously a normal subgroup of G and we have H�⊆B8K�.
In particular, H� ∈DFI(B) and K�=B is in2nite and strongly minimal. As B is normal,
C is also a subgroup of G. The group C contains D(a) and is thus normal in G by
the second claim. From that claim we also deduce that B=H� is the complement of
aG� in K�=H�. It follows easily from all this that G=C acts transitively on (K�=B)\{1}
and that the stabilizers are trivial. The action of G=C on (K�=B)\{1} is then regular
and these two sets are in de2nable bijection which implies that G=C is also strongly
minimal.

The action of G=C on (K�=B) allows us to endow K�=B with a new operation: for
x; x′ ∈G and y∈K�=B we set axB× ax′B := axx

′
B and y× 1 = 1×y := 1. Then it is
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easy to see that the structure (K�=B; ·;×; 1; aB) is an in2nite (strongly minimal) 2eld.
The group G=C is isomorphic to the multiplicative group of this 2eld. Therefore G=C,
is of unbounded exponent. But this contradicts 2.1.6: since the group AG is abelian
and belongs to $, we have either AG ⊆H� or K�⊆AG, and in both cases AG ⊆C.

Theorem 2.2.1 implies that every connected C-minimal group is plain. In [5] it was
proved that only a 2nite number of quotients K%=H% may not be abelian. Theorem 2.2.1
proves, furthermore, that if K%=H% is not abelian then H% ∈DFI(G).

2.3. In this subsection we assume that the C-minimal valued group G is plain. We
study the behavior of the commutator function on de2nable subgroups of G.

Lemma 2.3.1. Let a be an element of G and B be a de8nable subgroup of G.

(i) The set [a;B] is a 8nite union of cosets of  [a;B].
(ii) Assume that B*Z(a) and let L be the set L := { ∈$ | ⊆B and [a;B] = [a; ]}.

Then L⊆DFI(B) and is 8nite. If  ∈L, then Z(a) intersects every coset of  
in B.

Proof. As G is plain the residual structures are abelian and for every %∈ I and every
a∈G the map

&a;% : Z(a=K%) →K%=H%;

x �→ [a; x]H%

is a morphism. Moreover any subset of K% which is a union of cosets of H% is normal
in G.

(i) By 2.1.2 (i) the union of all the H# contained in [a;B] is an H% for some %¿ v(a).
Lemmas 1.2.3 and 2.1.3 (iii) imply that [a;B] is a union of cosets of H% and intersects
a 2nite number of cosets of K%. Let A be the set A := [a;B]∩K%. Then A is a union
of cosets of H% and as A= {x∈G | xH% ∈ &a; %(B∩Z(a=K%))}, it is a normal subgroup
of G. Now, again by 1.2.3, [a;B] is a union of cosets of A and the intersection of
[a;B] with any coset of K% contains at most one coset of A: for if c and d belong to
the same coset of K% and are such that cA∪dA⊆ [a;B] then, as A′ =A∪ c−1dA is a
normal subset of G, we must have A′ ⊆ [a;B] thus cA=dA. Hence [a;B] is a 2nite
union of cosets of the subgroup A. Note that, since K%=H% is 2nite or strongly minimal,
A is either a 2nite union of cosets of H% or equal to K%. Clearly,  [a;B] = A and [a;B]
is a 2nite union of cosets of  [a;B].

(ii) If  ∈$ is a subgroup of B and if [a;B] = [a; ] then B is equal to the group
generated by  and the centralizer Z(a)∩B of a in B. Assume that B= is in2-
nite. As  Z(a) ∈DFI(Z(a)) and $ is totally ordered by inclusion,  ⊆ Z(a) ⊆Z(a)
and [a;B] = {1}, a contradiction. Moreover, the cardinality of L := { ∈$ | ⊆B and
[a;B] = [a; ]} is bounded by the index of  Z(a) in Z(a).

This has interesting consequences when we suppose that B belongs to the chains
$M , $S , $S′ or $P de2ned in 2.1.8:
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Corollary 2.3.2. Let a be an element of G and B be a de8nable connected subgroup
of G.

(i) [a;B] is a connected subgroup of G. If B*Z(a) then [a;B]∈$M (resp. [a;B]∈$S ,
[a;B]∈$S′) if and only if B∈$M (resp. B∈$S , B∈$S′).

(ii) If {1} �=B⊆ [a;G] then there is a unique de8nable connected subgroup B′ of G
such that [a;B′] =B. Moreover B′ is the connected component of Z(a=B) and
B′ ∈$M (resp. B′ ∈$S , B′ ∈$S′) if and only if B∈$M (resp. B∈$S , B∈$S′).

Proof. We prove the 2rst parts of (i) and (ii):
(i) If  ∈DFI( [a;B])∩$ then Z(a= )∩B∈DFI(B). If B is connected we conclude

that B⊆Z(a= ), [a;B] = [a;B] and  [a;B] is connected.
(ii) Clearly, [a; Z(a=B)] =B. If  ∈DFI(Z(a=B))∩$ then it is easy to see that  [a; ]

must be of 2nite index in B, thus equal to B. Therefore [a; ] = [a; Z(a=B)] = [a; Z(a=B)].
By the proof of 2.3.1 (ii) the set L := { ∈$ | [a; ] =B} is 2nite and has a smallest
element B′. Moreover, this subgroup has 2nite index in Z(a=B) and must be connected.
Clearly B′ is the unique connected subgroup belonging to L.

To 2nish the proof it is now suIcient to verify the following:

Claim. Let B and C be two non-trivial de2nable connected subgroups of G. Assume
that [a; B] =C. Then

• B∈$M if and only if C ∈$M .
• If B; C ∈$S then B∈$S′ if and only if C ∈$S′ .

Proof of the Claim. We use the characterization of 2.1.9.
If C =K# where #∈ IM , the group F =B∩Z(a=H#) is a proper normal subgroup of

B and &a; # induces a de2nable isomorphism between B=F and K#=H# which is strongly
minimal. This implies that B∈$M .

If C =H# where #∈ IS then H# =
⋃
%¿# K% and B is the union of the increasing

de2nable family of proper subgroups F% =B∩Z(a=K%) for %¿#, thus B∈$S .
This proves B∈$M (resp. $S) if and only if C ∈$M (resp. $S). The second asser-

tion comes easily from 2.1.9 (iii).

Lemma 2.3.3. Let a be an element of G and B∈$P . Then

(i) [a;B]∈$P .
(ii) If Z(a=B) =∈DFI(G) then there is B′ ∈$P such that [a;B′] =B. If B �= {1} then

B′ is unique and B′ = Z(a=B).

Proof. (i) We may assume [a;B] �= 1. Suppose B=K� with �∈ IP . Then, for each
%¡�, H%=K� is in2nite and K� =

⋂
%¡� H%. Clearly, [a;K�]⊆

⋂
%¡� [a;H%].

Suppose that y∈⋂
%¡� [a;H%]\[a;K�]. Then, for each %¡�, the set {x∈H%\K� | [a; x]

=y} is not empty and we can construct a sequence (xn)n∈! such that for each n∈!,
v(xn)¡v(xn+1)¡� and [a; xn] =y. For n �= n′, we have xnx−1

n′ ∈Z(a)\K�. Together with
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2.1.3 (v) this would imply that K�⊆Z(a), contradicting our hypothesis. Therefore
[a;K�] =

⋂
%¡� [a;H%]. Note that [a;K�] is a proper subset of each [a;H%] by 2.3.1

(ii). The group  :=
⋂
%¡�  [a;H%] is a subset of [a;K�], and a proper subset of each

 [a;H%]: otherwise, there would be some %¡�, such that [a;H%] = [a;K�]. By 2.1.9,
 ∈$P . For each %¡�, Z(a= [a;H%])∩H% ∈DFI(H%), hence contains K�. This proves
that [a;K�] = and [a;K�]∈$P .

(ii) Assume now that Z(a=K�) =∈DFI(G). Then K�8 [a;G] and, as � has no pre-
decessor, there is #¡� such that H#⊆ [a;G], and K� =

⋂
#¡%¡� H%. It is easy to see

that  Z(a=K�) =
⋂
#¡%¡�  Z(a=H%) and that  Z(a=K�) is a proper subgroup of each  Z(a=H%).

By (i) and 2.1.9,  Z(a=K�) and [a; Z(a=K�)] belong to $P . Now, this last subgroup has
2nite index in [a;Z(a=K�)] =K� and it is thus equal to K�. To prove the unicity, it is
suIcient to remark that if B18B2 are two elements of $P then the index of B1 in
B2 is in2nite. Thus [a;B1] = [a;B2] implies B1; B2 ⊆Z(a) by 2.3.1 (ii).

Remark 2.3.4. We have proved that for every �∈ IP and every a∈G,  Z(a=K�) belongs
either to DFI(G) or to $P . If E is a de2nable subset of G then Z(E=K�) =

⋂
a∈E

Z(a=K�). If for every a∈E,  Z(a=K�) =∈$P , this will be true in every elementary exten-
sion of G. By 2.1.3 (vi) Z(E=K�)∈DFI(G). If for some a∈E, Z(a=K�) =∈DFI(G) then
 Z(E=K�) ∈$P: clearly  Z(E=K�) =

⋂
a∈E  Z(a=K�) ∈$P by 2.1.2. If for example �=∞

then Z(E=K∞) =Z(E) and either Z(E)∈DFI(G) or  Z(E) ∈$P .

For �∈ IP let E� be the set {a∈G |Z(a=K�)∈DFI(G)}. This set is de2nable since
a∈E� if and only if  [a;G] ⊆K�. It follows that Z(E�=K�)∈DFI(G) for every �∈ IP
and hence the group GP :=

⋂
�∈IP Z(E�=K�) belongs to DFI(G) by 2.1.3. We have: for

every de2nable subset E of G and every �∈ IP , either GP ⊆Z(E=K�) or  Z(E=K�) ∈$P .
For every interval (#1; #2]⊆ (IGP\IP), H#2 ⊆Z(E=K�) implies K#1 ⊆Z(E=K�).

Proposition 2.3.5. Let B and C be two de8nable subgroups of G such that [B;C] �= 1.
Then [B;C] intersects 8nitely many cosets of  [B;C].
If C ∈$S ∪$M ∪$P then [B;C]∈$. Moreover:

(1) If C ∈$S then [B;C]∈$S .
(2) If C ∈$M then

(i) either [B;C]∈$M and there is b∈B such that [B;C] = [b;C]
(ii) or [B;C]∈$S and there is  ∈DFI(B)∩$S and c∈C such that [B;C] =

[B; c] = [ ; c].
(3) If C ∈$P then

(i) either [B;C]∈$P and there is b∈B such that [B;C] = [b;C]
(ii) or [B;C]∈$S′ and there is  ∈DFI(B)∩$S′ and c∈C such that [B;C] =

[B; c] = [ ; c]. In this case C has a connected component.

Proof. For b∈B, we have  [b;C] ⊆ [B;C] hence C ∩Z(b= [B;C]) is of 2nite index in C.
By 2.1.3 (vi) the group C′ =C ∩ ⋂

b∈B Z(b= [B;C])∈DFI(C). For the same reason,
B′ =B∩ ⋂

c∈C Z(c= [B;C])∈DFI(B). Then [B′; C]⊆ [B;C] and [B; C′]⊆ [B;C]. Using
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the identities on commutators we 2nd that [B;C] intersects 2nitely many cosets of
 [B;C].

Assume now that C ∈$S ∪$M ∪$P . As [B;C] =
⋃
b∈B [b;C], the set [B;C] is, by

Lemmas 2.3.2 and 2.3.3, the union of a de2nable family of elements of $ and by 2.1.2
(i) belongs to $. Note that [B;C] =∈$S implies [B;C] = [b;C] for some b∈B. By 2.3.2
and 2.3.3 we just have to consider the cases where C ∈$M ∪$P and [B;C] =H% ∈$S .
Clearly [B;C] =

⋃
%′¿% K%′ .

Assume 2rst that C ∈$M and suppose for contradiction that for every c∈C, [B; c]8
[B;C]. Then, for every c∈C,  [B;c] is a proper subgroup of H% and there is %′¿% such
that [B; c]⊆K%′ . It follows that C =

⋃
%′¿%{x∈C | [B; x]⊆K%′}: this means that C is

the union of an increasing de2nable family of proper subgroups, which is not possible
by 2.1.9. Hence [B; c] =H% for some c∈C and B has a connected component  ∈$S
such that [ ; c] =H% by 2.3.2.

Assume now that C ∈$P . Since H% =
⋃
b∈B [b;C] is a union of elements of $P

it follows, by o-minimality, that %∈ IS′ . Moreover, for some b∈B and some %′ ∈ S ′,
[b;C] =K%′ . This implies, from 2.3.2, that C has a connected component C0 that be-
longs either to $M or to $S′ according to whether K%′ belongs to $M or not. Write
C as a 2nite disjoint union C0 ∪C0:c1 ∪C0:c1 ∪ · · · ∪C0:cn−1 of cosets of C0. Us-
ing the identities on commutators and that [B;C0]∈$ is normal, we get that for i∈ n,
[B;C0:ci]⊆ [B; ci]:[B;C0]. Suppose for contradiction that for every c∈C, [B; c]8 [B;C].
Then for every i∈ n there is %i¿% such that [B; ci]⊆K%i . As [B;C0]∈$ we must have
[B;C] = [B;C0]. Moreover, by the case above, we have C0 ∈$S . Since H% =

⋃
b∈B

[b;C0], we can 2nd some b∈B such that [B; ci]⊆K%i ⊆ [b;C0] for each i∈ n. But
then [b;C] = [b;C0]∪ [b; c1]:[b;C0]∪ [b; c2]:[b;C0]∪ · · · ∪ [b; cn]:[b;C0] = [b;C0]∈$S ,
which is impossible since [b;C]∈$P . Hence [B; c] =H% for some c∈C and B has a
connected component  ∈$S′ such that [ ; c] =H% by 2.3.2.

We easily deduce from 2.3.5 the following corollary. The proof is left to the reader.

Corollary 2.3.6. Let B and C be two elements of $M ∪$P such that [B;C] �= 1. Then
there is b∈B and c∈C such that [B;C] = [B; c] = [b;C]. It follows:

(1) B,C ∈$M implies [B;C]∈$M .
(2) B,C ∈$P implies [B;C]∈$P .
(3) B∈$M and C ∈$P implies [B;C]∈$P ∩$M and C has a connected component

that belongs to $M .

2.4. We prove here that a C-minimal valued group G that is not virtually nil-2 has
2nite exponent (this is the 2rst assertion of Theorem II). From 1.3.3 it will follow that
G is virtually an N -Engel group for some integer N .

Proposition 2.4.1. Let G be a C-minimal valued group. There is a subgroup F ∈
DFI(G) such that �2(F) is of 8nite exponent. If G is not of 8nite exponent then F
is nil-2.
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Proof. We may assume that G is plain.
Remember that e= eG is the least common multiple of the indexes of  Z(Z(a)) in

Z(Z(a)) for a∈G. Set G1 :=
⋂
a∈G Z(a= [a;G]). By 2.3.1 (i) each Z(a= [a;G]) has 2-

nite index in G (and the same will be true in every elementary extension of G). By
2.1.3 (vi), G1 ∈DFI(G). For any a∈G, [a;G1]⊆ [a;G]. Let c= [a; b] with a; b∈G1.
Thanks to 2.1.4 we have either [a; be] = 1 or [ae; b] = 1. Using the identities on com-
mutators and by induction, ce = [a; b]e belongs to  [c;G]. Then u−1cu= ce+1 for some
u∈G. Again [c; ue] = 1 or [ce; u] = 1. It follows that either c= c(e+1)e or ce = ce(e+1).
Hence the exponent of the group  [G1;G1] is 2nite. By 2.3.5, for a∈G1, the group
G1 ∩Z(a= [G1;G1]) belongs to DFI(G1) and 2.1.3 (vi) implies that F :=G1 ∩

⋂
a∈G1

Z(a= [G1;G1]) also belongs to DFI(G1). Then [F ;F]⊆ [G1;G1] and �2(F) has 2nite ex-
ponent. Moreover F= [G1;G1] is abelian. Let L be the normal subgroup L := {x∈F | xe ∈
 [G1;G1]}. If a∈F\L then, as ae∈ Z(Z(a)), we have  [G1;G1]⊆ Z(Z(a)) and a∈Z( [G1;G1]).
It follows that Z( [G1;G1]) contains every non-trivial coset of L. We have two cases:
either F =L and hence G has 2nite exponent, or Z( [G1;G1]) =F and F is nil-2.

In 1.3.3 we proved that any plain valued group of 2nite exponent is an N -Engel
group for some integer N . As any nilpotent group of class n is obviously n-Engel we
easily deduce:

Corollary 2.4.2. Let G be a C-minimal valued group. There is F ∈DFI(G) which is
an N -Engel group for some integer N .

2.5. From the last subsection we deduce that any connected subgroup of a C-minimal
valued group G is an N -Engel group for some integer N . We will use this to prove
that any connected C-minimal valued group G is nilpotent. If G has 2nite exponent
we will also prove that this exponent is a prime power. Proposition 2.3.5 shows that
if B belongs to $S ∪$M then we can de2ne a map C �→ [B;C] from $S ∪$M to
$S ∪$M ∪{1}. The following Lemma proves that this map has no 2xed points.

Lemma 2.5.1. Let B and C be two non-trivial de8nable connected subgroups of G.
Then [B;C] is a proper (connected) subgroup of B∩C.

Proof. The groups B and C belong to $ and we may assume that C ⊆B. As B is
a connected C-minimal valued group, B is plain and an N -Engel group for some in-
teger N . By 2.3.5 [B;C] is a connected subgroup of C and we want to prove that
[B;C] �=C. This is clear if C =K� ∈ $M : as B is plain, for any b∈B and c∈C we
have v([b; c])¿�, hence [B;C]⊆H�. Assume now that C =H� ∈$S and, for contra-
diction, that [B;C] =C. Then for each x∈B such that C*Z(x), [x;C]∈$S . The
N -Engel condition implies that [C;N x] = 1 therefore [x;C]8C. As C =

⋃
x∈B [x;C],

we have C ∈$S′ by o-minimality of I : there is some :∈ I such that :¿� and the
interval (�; :) is densely ordered. Since [C;N B;B; : : : ;B] =C there are z ∈C and
y1; : : : ; yN ∈B such that �¡v([z; y1; : : : ; yN ]N+1)¡:. Write z0 = z, and, for 0¡n6N ,
zn = [z;y1; : : : ;yn]n+1. We have �¡v(z0)¡v(z1)¡ · · ·¡v(zN )¡:, and Kv(zn) ∈$P for
n∈N + 1. The group Fn = {x∈B | [Kv(zn−1); x]⊆Hv(zn)} is a proper de2nable subgroup
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of the connected group B. By 2.3.3, we see that if x∈B \Fn then Kv(zn) ⊆ [Kv(zn−1); x].
The set

⋃
0¡n6N Fn intersects 2nitely many cosets of the group

⋃
0¡n6N  Fn hence the

set B\⋃0¡n6N Fn is not empty. If a belongs to this set then zN ∈ [Kv(z0);Na] = {1}: a
contradiction.

Proposition 2.5.2. If G is connected then it is nilpotent.

Proof. We know that G is an N -Engel group for some integer N . By 2.5.1, and in-
duction, for every integer n¿0, �n+1(G) = [�n(G);G] is a connected de2nable proper
subgroup of G and belongs to $. If �n(G) is not trivial then �n+1(G)8 �n(G). As-
sume that �2N (G) �= {1}. Then, for 0¡n62N , �n+1(G)8 �n(G). For 0¡n6N the set
Fn = {x∈G | [�2n−1(G); x]⊆ �2n+1(G)} is a proper de2nable subgroup of G. If x∈G\Fn
then �2n+1(G)⊆ [�2n−1(G); x] since these two subgroups are in $. The set

⋃
0¡n6N Fn

intersects 2nitely many cosets of the group
⋃

0¡n6N  Fn hence the set G\⋃0¡n6N Fn is
not empty. If a belongs to this set then �2N+1(G)⊆ [G;N a] = {1} thus G is nilpotent
of class at most 2N .

Assume that G is connected. Then the derived subgroup of G is equal to [G;G] and
is de2nable. For p∈P, the set of prime numbers, de2ne

/p(G) := Gp:[G;G] = {xp:[G;G] | x ∈ G}:
/p(G) is a de2nable normal subgroup of G: the p-Frattini subgroup of G (see [11]).
Moreover, /p(G) is connected: if F ∈DFI(/p(G)) then, as [G;G] is connected, we
have [G;G]⊆F and the set {x∈G | xp ∈F} is a de2nable subgroup of G of 2nite
index. Thus /p(G)∈$. If /p(G) is a proper subgroup of G then for any n∈ I\{∞}
such that /p(G)⊆H% we have that K%=H% is a group of exponent p. It follows that, for
x∈G\/p(G), v(px)¿v(x), and if q∈P\{p} then v(qx) = v(x) hence /q(G) =G. Since
G is nilpotent, if G has 2nite exponent then the exponent of G=[G;G] and consequently
that of G (see for example [11] Lemma 3.13) is a power of p. If the exponent of G is
in2nite, then G is nil-2 and for e= eG and a; b∈G we have [ae; b] = [a; be] = [a; b]e = 1.
It follows that e is a power of p like the exponents of G=Z(G) and of [G;G]. We
have proved the following:

Theorem 2.5.3. Let G be a connected C-minimal valued group. Then G=Z(G) and
[G;G] have 8nite exponent, and this exponent is a prime power. If G is of 8nite
exponent, then this exponent is a prime power.

2.6. The main result of this subsection is that a C-minimal valued group that is not
virtually nil-2 has a connected component. Together with 2.5.2 this will prove that
every C-minimal valued group is virtually nilpotent and hence conclude the proof of
Theorem I.

By Remark 2.3.4 there is GP ∈DFI(G)∩$G such that GP is plain, and for every
a∈GP and �∈ IP , either GP ⊆Z(a=K�) or  Z(a=K�) ∈$P and [a; Z(a=K�)] =K�. Note
that, with the induced C-relation, GP is a C-minimal valued group whose chain IGP is
a co2nite 2nal segment of IG.
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It follows that, if IP = {∞}, then the centralizer of every element is either 2nite or
contains GP . But 2.4.2 implies that the centralizer of every element is in2nite, thus GP
is abelian and G is abelian-by-2nite.

We assume that IP �= {∞} and let ; and < be respectively the greatest lower bound
of IP and the least upper bound of IP\{∞}. We consider the subgroups F of GP
having the following property:

(A) There is %1, %2 in I such that %1 ∈ IS′ , %1¿%2, and either H%1 ∈DFI(F) , or
H%1 ∈DFI(H%2 ) and K%2 ∈DFI(F).

We have:

• if %∈ IS′ then K% and H% satisfy (A).
• If F satis2es (A), then obviously F has a connected component, which is either H%1

or K%2 if this group belongs to $M and K%2 ∈DFI(F).
• If F ′ ∈DFI(F) then F satis2es (A) if and only if F ′ satis2es (A).
• If F and F ′ are two in2nite de2nable subgroups of G and if for some a∈G,

[a;F] =F ′ then F satis2es (A) if and only if F ′ satis2es (A) (this follows eas-
ily from Corollary 2.3.2).

Lemma 2.6.1. Suppose F ∈$GP and a∈GP .

(i) If F does not satisfy (A), then K;⊆Z(F).
(ii) If a∈Z(K;) then [a;GP]⊆K<.
(iii) If a∈Z(Z(K;)) and F �= {1} does not satisfy (A) then  [a;GP]8F .

Proof. (i) By 2.3.4 K;⊆Z(F) if and only if H;⊆Z(F) if and only if [F ;K�] = 1
for every �∈ IP . Assume for contradiction that [F ;K�] �= 1 for some �∈ IP . By 2.3.5,
[F ;K�] =K# with #∈ IP\{∞}. If for every a∈K�, we have Z(a=H#)∩F ∈DFI(F)
then, by 2.1.3 (vi), F ′ := Z(K�=H#) ∩ F ∈DFI(F). But then, [F ′;K�] =K#′ with #′ ∈ IP
and #′¿#. By 2.3.4 F ⊆Z(K�=K#′), a contradiction. It follows that, for some a∈K�,
Z(a=H#)∩F =∈DFI(F). Then #∈ IM and [a;F] =K#. By 2.3.2 F has a connected com-
ponent K% with %∈ IM . By 2.3.1 (ii) we have Z(b=H#)∩H% ∈DFI(H%) for every b∈K�
and by 2.1.3 (vi), F ′ := Z(K�=H#) ∩H% ∈DFI(H%). Using that F does not satisfy (A) and
2.3.5 we get as before [F ′;K�] =K#′ with #′ ∈ IP and #′ �= # and this leads again to a
contradiction, because it follows easily, by 2.3.4, that H%, K% and 2nally F are sub-
groups of Z(K�=K#′).

(ii) We just need to prove that GP ⊆Z(a=K�) for every �∈ IP\{∞}. But this follows
from 2.3.3 and 2.3.4 since we cannot have  Z(a=K�) ∈$P and [a; Z(a=K�)] �= 1.

(iii) Assume for contradiction that F ⊆ [a;GP]. Then [a;Z(a=F)] =F . Now Z(a=F)
does not satisfy (A) and  Z(a=F) ⊆Z(K;) by (i). This implies F = {1}.

We distinguish two cases according to whether GP satis2es (A) or not:
First case: Assume that GP does not satisfy (A). Then Lemma 2.6.1 (i) and (ii)

imply that K;⊆Z(GP) and [GP;GP]⊆K<. Clearly GP is nil-2 and G is virtually nil-2.
Note that, if GP is not abelian, then K; ∈DFI(Z(GP)) and ;∈ IP by 2.3.4.
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Second case: Assume that GP satis2es (A). Then GP (and a fortiori G) has a
connected component G◦. In this case, we have ;∈ IS′\IP . Moreover, if H; ∈DFI(GP)
then G◦ =H;, and if H; =∈DFI(GP) then for some %∈ IM , G◦ =K% and H; ∈DFI(H%).
In both cases Z(GP) =Z(K;) by 2.3.4. If GP is not abelian then  Z(GP) ∈$P . Assume
that some F ∈$ does not satisfy (A). Then Lemma 2.6.1 implies F ⊆ Z(GP) and
for every a∈GP ,  [a;GP] ⊆F ⊆ Z(GP). It follows that GP ⊆Z(a= Z(GP)) by 2.3.4 and
[GP;GP]⊆Z(GP). The group GP is nil-2.

We can 2nish now the proofs of Theorem I and II:

Proof of Theorem I. The 2rst part is 2.2.1. By what we have just seen, if G is not
virtually nil-2 then it has a connected component which is nilpotent by 2.5.2

Proof of Theorem II. If G is not nil-2-by-2nite then GP is not nil-2. It follows that
every de2nable subgroup of G satis2es property (A) and has a connected component.
Assume for contradiction that I\IS′ is in2nite. Then it contains by o-minimality an
in2nite interval [#; �). Obviously K# does not satisfy (A): a contradiction. The other
assertions follow directly from 2.4.1 and 2.5.3.

The following problems arise naturally:

• construct a C-minimal group that is not virtually nil-2;
• is there a C-minimal valued group that is not virtually abelian and does not satisfy

property (A)?

2.7. In this last subsection we want to give more information about the structure of
a C-minimal valued group G that is not virtually nil-2, if such a group exists. From
Theorem II we know that the chain I is not far from being dense. To avoid being
too tedious we will assume that G is connected (hence plain) and that the chain I is
dense. This is not far from the general case, and from what follows it is indeed not
diIcult to obtain a general result, which we will state without proof among some 2nal
remarks.

If I is dense then every element �∈ I that is not the 2rst element of I belongs to IP .
In the case where I has a 2rst element ; �=−∞, that is G=K;, then the connectedness
of G implies ;∈ IM . Hence I = IM ∪ IP . By 2.3.6 the commutator of two elements of
$M ∪$P also belongs to $M ∪$P . It follows that we have a de2nable symmetric
function 8 from I × I to I such that for every �; #; %; ∈ I ,

8(�; #) = % if and only if [K�;K#] = K%:

This function has the following properties:

Lemma 2.7.1. Fix � and # in I\{∞}.

(i) [K�;H#] = [H�;K#] =H8(�;#),
(ii) 8(�; #)¿max{�; #}.
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(iii) The partial map 8(�; :) is increasing, strictly increasing on {=∈ I |8(�; =) �= 1}
and satis8es the intermediate value property.

Proof. The proof of (i) and (ii) is trivial if 8(�; #)=∞ so we may assume 8(�; #) �=∞.
(i) By the hypothesis made on I we have #∈IS and thus [K�;H#]=H% with %∈IS ∪{∞}
by 2.3.5. Clearly % is not the 2rst element of I , hence %∈ IP and 2.3.4 implies that either
 Z(K�=K%) is equal to G or  Z(K�=K%) belongs to $P . It follows that H%8 [K�;K#]⊆K%
and 8(�; #) = %.

(ii) This is a consequence of the plainness of G: for every x; y∈G\{1}, v([x;y])¿
max{v(x); v(y)}.

(iii) The 2rst part is a direct consequence of (i). To prove that 8(�; :) satis2es the
intermediate value property we take %¿8(�; #) and we show that there exists =∈ I
such that [K�;K=] =K%. We may assume % �=∞. We distinguish two cases:

First case: K� =∈$M . As in the proof of 2.3.5 we take a set {a0; a1; : : : ; an−1} of
representatives of the cosets of H� in K�. Fix any K ∈$M ∪$P . Since [H�;K] and each
[ai;K] belong to $ we get, using the identities on commutators, that [K�;K] = [H�;K]∪
[a0;K]∪ [a1;K]∪ · · · ∪ [an−1;K]. As [H�;K]∈$S ∪{1} and [K�;K] =∈$S we deduce
that [K�;K] = [a0;K]∪ [a1;K]∪ · · · ∪ [an−1;K] = [ai;K] for some i∈ n. Since [K�;G]
*K%, for at least one i∈ n we have Z(ai=K%) �=G and in this case  Z(ai=K%) ∈$P and
[ai; Z(ai=K%)] =K% by 2.3.3 and 2.3.4. It follows that  Z(a1=K%) ∩ · · · ∩ Z(an−1=K%) =K= ∈
$P and [K�;K=] =K%.
Second case: K� ∈$M . Consider the following de2nable subset of I :

L := {= ∈ I | ∃x ∈ K�; [x;K=] = K%}:

The set L is not empty: for every x∈K�, [x;K#] belongs to $ and for at least one of
them K%⊆ [x;K#]; apply then 2.3.4. For each =∈L, F= := {x∈K� | [x;K=]⊆K%} is a
de2nable subgroup of K�. Clearly, if =¡=′ then F=⊆F=′ . Moreover, K� =

⋃
=∈L F=: if

x∈K� then either [x;K=]⊆K% for every =∈L, or there is =∈L such that [x;K=] =K%
by 2.3.3. By 2.1.9, for some =∈L, K� =F=. Therefore [K�;K=]⊆K%. Since there is
x∈K� such that [x;K=] =K%, we have [K�;K=] =K%.

From 2.7.1 (i) and 2.3.1 (i) it follows that, for every �; #∈ I such that 8(�; #) �=∞,
we can de2ne a function >�;# from K�=H�×K#=H# to K8(�;#)=H8(�;#) with

>�;#(xH�; yH#) = [x;y]H8(�;#):

This function is bilinear: For a; a′ ∈K�=H� and b; b′ ∈K#=H#,

>�;#(a · a′; b) = >�;#(a; b) · >�;#(a′; b)

and

>�;#(a; b · b′) = >�;#(a; b) · >�;#(a; b′):

We show now Proposition 2.7.2 under the assumptions made above.
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Proposition 2.7.2. All the residual structures of G are in8nite and of the same car-
dinality.

Proof. To prove the 2rst part we may assume that G is !-saturated. We begin by
proving that IM is not empty. Assume the contrary. Then the cardinality of the residual
structures is bounded. We claim that we can 2nd two in2nite intervals [�; #] and [�′; #′]
of I such that:

• 8(�; �) = �′ and 8(#; #) = #′,
• there are integers n; m¿0 such that |K%=H%|= n for every %∈ [�; #] and |K%=H%|=m

for %∈ [�′; #′],
• the restriction of 8 to [�; #]× [�; #] strictly increasing and continuous in each vari-

able.

This easily follows from o-minimality of I and Proposition 2.7.1, so we leave it to
the reader (to prove the two 2rst items consider for example the map % �→8(%; %),
the last one follows then immediately from 2.7.1 (iii)). Fix ;; <∈ [�; #], and a set
a0; : : : ; an−1 ∈K; of representatives of the cosets of H; in K;. If %=8(;; <) then, by
the proof of 2.7.1 (iii), there is i∈ n such that K% = [ai;K<]. The map x �→ >;;<(ai; x)
induces a morphism from K<=H< onto K%=H%. As H<, [ai;H<] and H% are connected we
see that [ai;H<] =H% and the kernel of this morphism is the projection of Z(ai)∩K<
by 2.3.1. Taking ;= < we get m= |K%=H%|¡|K;=H;|= n. But this means that for every
<∈ [�; #], and every i∈ n, Z(ai)∩ (K<\H<) is not empty. This implies K<⊆Z(ai) for
every <∈ (�; #] and i∈ n by 2.1.3 (v). It follows that [K;;K<] = 1 for every <∈ (�; #],
a contradiction.

Thus IM is not empty. Take K1 ∈$M and assume, for contradiction, that there is some
non-trivial K2 ∈$P\$M . If K1 ⊆Z(G) then K18 [G;G]. It follows that K1 ⊆ [a;G] for
some a∈G, and K1 = [a;K] for some K ∈$M applying 2.3.2. The same is true if we
replace K1 by K2 and $M by $P\$M (this time we use 2.3.3 and 2.3.2). It follows
that we may assume that [K1;G] �= 1 and [K2;G] �= 1. Consequently [K1;K] �= 1 and
[K2;K] �= 1 for some K ∈$P ∪$M . By 2.3.6 K and K2 belong to $M , a contradiction.

We can drop now the hypothesis of !-saturation. We have proved that all the
residual structures are in2nite, thus strongly minimal. We 2nd that, if 8(�; #) �=∞,
then every partial function >�;#(a; :) (or >�;#(:; b)) is a morphism that is either triv-
ial or onto with 2nite kernel. It follows that K�=H�, K#=H# and K8(�;#)=H8(�;#) all
have the same (in2nite) cardinality (and the same exponent). Consider now the set
I1 = {�∈ I | ∃= 8(�; =) �=∞}. If �; #∈ I1 then we can always 2nd =∈ I such that
8(�; =) �=∞ and 8(#; =) �=∞. Hence the cardinality of K�=H� is the same for ev-
ery �∈ I1. If % =∈ I1 then there are �; #∈ I1 such that 8(�; #) = % because G is not nil-2.
We conclude then that all the residual structures have the same in2nite cardinality.

Final remarks. (1) In the general case we obtain that if G is a C-minimal valued
group that is not virtually nil-2, then all, but a 2nite number, of residual structures are
in2nite (and then have the same in2nite cardinality).

(2) We could have considered more generally any C-minimal valued group satisfying
property (A). We have proved that in this case G has a connected component G◦. Let
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J be the following subinterval of I :

J := {% ∈ I | [G◦;G◦] ⊆ H% ⊆ Z(G◦)}:
Note that J is not empty if and only if G◦ is nil-2. We can prove that there is a 2nite
subset E of I such that I\(J ∪E)⊆ (IS′ ∩ IM ).

(3) Let G be a non-abelian C-minimal valued group whose residual structures are
in2nite. This is equivalent to say that G and all the elements of the chain $ are
connected. It is easy to prove that in this situation we can de2ne on I a function 8
from I × I to I such that for every �; #; %; ∈ I ,

8(�; #) = % if and only if [K�;K#] = K%

and this function has the properties of Lemma 2.7.1. It will follow that, if

J := {% ∈ I | [G;G] ⊆ H% ⊆ Z(G)};
then I\J is a union of two (or only one if J is empty) dense intervals. In particular G
satis2es property (A). To prove this it is enough to see that if we suppose that there
is � such that �∈ I\IS and 8(�; �) �=∞ and if we write �+ for the successor of �,
then �+ ∈ I\IS , 8(�+; �+) �=∞ and 8(�+; �+) =8(�; �)++: it follows that the range
of the de2nable map % �→8(%; %) is not a 2nite union of intervals, contradicting the
o-minimality of I .
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