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Abstract To prepare a stable complex of doxycycline (Doxy) and hydroxypropy-b-cyclodextrin
(HP-b-CD) for ophthalmic delivery, the optimum formulation and preparation conditions were

investigated using response surface methodology (RSM), artificial neural network (ANN) and

support vector machine (SVM) modeling. The molar ratios of HP-b-CD/Doxy and Mg2þ/Doxy,

inclusion time and temperature were selected as independent variables (X1–X4) and inclusion

efficiency and stability of the Doxy-HP-b-CD complex were selected as dependent (response)

variables (Y1 and Y2). The optimal formulation predicted by genetic algorithm (GA) combined with

the models was characterized by microscopy and nuclear magnetic resonance spectrometry, and the

stability of Doxy in the complex was evaluated. The highest values of Y1 and Y2 were obtained

using an ANN model combined with GA which predicted the values of X1–X4 to be 4, 10.8, 12 h

and 25 1C, respectively. The modeling and optimization results indicated that a feed-forward

back-propagation ANN with one hidden layer and 10 hidden units showed better fitting to both
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responses compared to the RSM and SVM models. GA proved to be an efficient tool in multi-

objective optimization of a pharmaceutical formulation.

& 2013 Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical

Association. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Doxycycline (Doxy) belongs to the tetracycline group of broad-

spectrum antibiotics. A number of formulations are available

including solid dosage forms such as pellets1 and liquid dosage

forms such as ophthalmic preparations2. However, the poor

stability of Doxy in aqueous solution is a major obstacle to the

widespread clinical application of ophthalmic preparations. The

aim of this study was to overcome this instability and prepare a

stable formulation of Doxy for ophthalmic delivery.

Hydroxypropyl-b-cyclodextrin (HP-b-CD) is well known for its

ability to stabilize molecules by forming drug-CD complexes3. In

addition, Doxy forms a chelate with magnesium ion which also

increases Doxy stability4. In a previous study5, we formulated a

Doxy-HP-b-CD inclusion complex in a thermally sensitive polox-

amer hydrogel which could be stored in the cold and would form

a hydrogel when applied to the surface of the eye. In the present

study, we investigated a solid Doxy-HP-b-CD(Mg2þ) inclusion

complex which could be dissolved before use and would remain

stable in aqueous solution for a week.

The concept of design of experiments (DOE) was introduced to

optimize the Doxy formulation in this study. The molar ratios of

HP-b-CD/Doxy (X1) andMg2þ/Doxy (X2) together with inclusion

time (X3) and temperature (X4) were selected as independent

variables and inclusion efficiency (Y1) and stability of Doxy (Y2)

were identified as dependent variables (i.e., responses). Central

composite design (CCD) together with some advanced modeling

technologies provided a rational approach to the optimization

process. Response surface methodology (RSM) was also applied6,7

despite recognition of the fact that this polynomial approach is

limited in its application to multi-objective optimization of

formulations.

Two novel optimization techniques, artificial neural networks

(ANN) and support vector machine (SVM) modeling were applied

in this study. ANN is a computer program designed to simulate

the learning capabilities of neurological systems using different

learning algorithms8. Compared to RSM, ANN has prominent

advantages for modeling complex non-linear relationships and can

handle multiple independent and dependent variables simulta-

neously. For this reason, ANN has been successfully applied to

solve various problems in the development of drug delivery

systems9–12. SVM is a novel algorithm which can solve non-

linear problems by performing linear regression in a multi-

dimensional feature space. Due to its remarkable accuracy and

generalization performance, SVM has been extensively applied to

quantitative structure activity relationship (QSAR) studies in

recent years13,14.

As there are two response variables in the present study, a

multi-objective simultaneous optimization technique was

employed to transform the multi-objective problem into a single-

objective problem. However, since it is difficult to minimize or

maximize all objective functions simultaneously using classical

optimization methods when objective functions are in a trade-off
relationship, the genetic algorithm (GA) approach was used. The

superior ability of GAs to determine the global optimum and to

carry out parallel computing of multi-objective functions has led

to an increasing number of applications in pharmaceutical and

related fields15,16. In this study, the use of GAs for global

optimization was combined with other modeling techniques in

GA-based approaches such as GA-ANN17,18 and GA-SVM19,20

to determine the composition of a Doxy-HP-b-CD(Mg2þ) for-

mulation with optimum inclusion efficiency and stability in

aqueous solution. This optimum formulation was further char-

acterized by microscopy and NMR spectroscopy21.

2. Materials and methods

2.1. Materials

Doxy monohydrate (Doxy �H2O, purity 98.5%) and Doxy

hydrochloride (Doxy �HCl, purity 92.5%) were kindly provided

by Yancheng Suhai Pharmaceutical Co., Ltd. (Jiangsu, China).

HP-b-CD was obtained from Roquette (Lestrem, France). All

other reagents were of analytical grade and used as received.

2.2. Preparation of Doxy-HP-b–CD(Mg2þ) complex

Thirty formulations of the Doxy-HP-b-CD(Mg2þ) complex

were prepared based on central composite design for RSM,

ANN and SVM analysis to determine relationships between

the selected independent and dependent variables. The 30

formulations included different molar ratios and process

parameters according to DOE. In all cases, Doxy �H2O

containing 25 mg Doxy was added to aqueous magnesium

chloride solutions of different concentrations and magnetically

stirred at a specific temperature until equilibrium was attained.

Solutions were then filtered through 0.45 mm membranes and

lyophilized to obtain the solid inclusion complexes.

2.3. Assay for Doxy

Doxy was assayed by HPLC using the method in the Chinese

Pharmacopoeia22. A Waters HPLC system was equipped with a

reversed-phase Luna C18 column (250 mm� 4.6 mm, 5 mm,

Phenomenex, USA) maintained at 35 1C and a UV detector set

at 280 nm. The mobile phase consisted of 0.05 M ammonium

oxalate: dimethylformamide: 0.2 M diammonium phosphate 65:

30: 5, pH 8.070.2 delivered at a flow rate of 1.0 mL/min. The

injection volume was 20 mL.

2.4. Determination of inclusion efficiency

Inclusion efficiency of Doxy was determined using molecular

sieve chromatography to separate free Doxy from the HP-b-CD
inclusion complex. Stirred solutions (0.5 mL) were added



Table 1 Experimental domain according to central com-

posite design and the measured responses for 30 different

formulations of the Doxy-HP-b-CD (Mg2þ) inclusion

complex.

Sample No. Factor Response

X1 X2 X3 X4 Y1 Y2 Y
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to columns (50 mm� 10 mm) packed with Dextran (Sepha-

dexs G-10, International Specialty Products Inc.) and eluted

with water at a flow rate of 0.65 mL/min. The first 25 mL of

eluent was collected and analyzed for Doxy content. Inclusion

efficiency was calculated using the following equation:

Inclusion efficiency ð%Þ ¼
Amount of Doxy in eluate

Total amount of Doxy
� 100% ð1Þ
1 2.75 3.75 12 30 96.35 89.43 0.676

2 6.25 3.75 12 30 88.56 90.2 0.423

3 2.75 9.25 12 30 98.05 93.67 0.835

4 6.25 9.25 12 30 93.7 97.12 0.762

5 2.75 3.75 20 30 91.5 82.53 0.351

6 6.25 3.75 20 30 94.82 82.93 0.437

7 2.75 9.25 20 30 90.77 82.37 0.329

8 6.25 9.25 20 30 90.07 83.63 0.346

9 2.75 3.75 12 40 86.9 84.83 0.260

10 6.25 3.75 12 40 93.51 82.05 0.378

11 2.75 9.25 12 40 89.86 85.27 0.380

12 6.25 9.25 12 40 92.32 87.92 0.520

13 2.75 3.75 20 40 90.32 77.58 0.104

14 6.25 3.75 20 40 93.51 83.8 0.439

15 2.75 9.25 20 40 84.74 83.19 0.117

16 6.25 9.25 20 40 95.04 83.82 0.473

17 1 6.5 16 35 84.2 81.93 0.054

18 8 6.5 16 35 85.3 91.31 0.235

19 4.5 1 16 35 95.27 85.63 0.538

20 4.5 12 16 35 85.85 87.83 0.244

21 4.5 6.5 8 35 99.17 83.82 0.555

22 4.5 6.5 24 35 95.79 80.68 0.359

23 4.5 6.5 16 25 95.05 93.84 0.744

24 4.5 6.5 16 45 96.85 89.61 0.694

25 4.5 6.5 16 35 94.81 89.77 0.641

26 4.5 6.5 16 35 94.69 85.53 0.521

27 4.5 6.5 16 35 92.48 89.72 0.567

28 4.5 6.5 16 35 92.73 91.07 0.605

29 4.5 6.5 16 35 96.93 91.2 0.739

30 4.5 6.5 16 35 94.16 85.13 0.496
2.5. Stability studies

A controlled sample of Doxy �HCl was prepared with the same

concentration of Doxy (0.1%, w/w) as in the inclusion complex.

Solutions of Doxy �HCl and the Doxy-HP-b-CD inclusion com-

plexes were then stored at 4072 1C and a relative humidity of

7575% for 10 days. Drug content was determined at the begin-

ning and after 5 and 10 days to determine the stability of Doxy.

2.6. DOE

A four-factor-five-level CCD was employed in STATISTICA

trial version 8.0 software (Statsoft Inc., Tulsa, Oklahoma).

Responses were measured in a total of 30 runs (Table 1) and

used for RSM, ANN and SVM modeling.

2.7. RSM

2.7.1. Selection of variables and generation of non-linear

model

Data relating to the two responses were fitted to classical second-

and third-order polynomials. In the second-order polynomial

model

Y ¼ b0 þ
Xn
i ¼ 1

biXi þ
Xn�1
i ¼ 1

Xn
j ¼ iþ1

bijXiXj þ
Xn
i ¼ 1

biiX
2
i ð2Þ

Y is the measured response and b0 is an intercept. The coefficients

corresponding to linear effects (bi), interaction (bij) and quadratic

effects (bii) for the factors Xi and Xj were determined from the

results of experiments.

In the third-order polynomial model

Y ¼ b0 þ
Xn
i ¼ 1

biXi þ
Xn
i ¼ 1

Xn
j ¼ 1

bijXiXj

þ
Xn
i ¼ 1

Xn
j ¼ i

Xn
k ¼ j

bijkXiXjXk ð3Þ

Y and b0 are as above and bi, bij and bijk represent the

estimated coefficients for the factors Xi, Xij and XiXjXk,

respectively.

Experimental data were analyzed by nonlinear estimation in

SAS version 9.0 (Cary, NC, USA). The value of R2 and the F-test

were used to identify the model with the best fit and to evaluate

the lack of fit within each model. In order to determine the most

stable and interpretable variables of the second- and third-order

polynomials, relevant variables were selected by forward and

backward methods. These methods can diminish the full equation

form by removing useless variables which have little impact on the

predictive ability of the model.
2.7.2. Desirability function

In order to find the optimum formulation, the multi-criteria

problem was treated as a single criterion problem by using the

desirability function approach23. In this study, the two

responses were targeted to maximum, and the desirability

function for the maximum response was defined as:

di ¼
Yi�Ymin

Ymax�Ymin
ð4Þ

where Ymin and Ymax represent the lowest and highest possible

values, respectively, and Yi indicates the experimental value.

Based on the observed response values, the limits were set as:

Y1/Ymax¼100.0, Y1/Ymin¼84.0; Y2/Ymax¼98.0, Y2/Ymin¼77.0.

After obtaining the individual desirability function for each

response, a global desirability function (D) was calculated by

combining the individual desirability functions using the geometric

mean as shown below.

D¼
Yk
i ¼ 1

di

 !1=k

ð5Þ

where k is the number of responses. The result of RSM1 means the

optimization based on the desirability function and RSM2 means

the optimization based on genetic algorithm.
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2.8. ANN modeling

A three layer feed-forward back-propagation (BP) network

incorporating the four independent variables in the input layer

and the two response variables in the output layer was fitted to

the data set according to CCD (Fig. 1). Ten nodes in the

hidden layer and the nodes in adjacent layers were fully

interconnected with links, the intensity of connection between

two nodes being described by a weight function. By summing

the input from the previous layer and implementing a transfer

function, the output of a node to the next layer was computed.

A popular transfer function is the logistic sigmoid function

described by the following equation:

f ðyjÞ ¼
1

1þ exp ð�a� yjÞ
ð6Þ

Here f(yj) is the output from the jth neuron, a denotes the

slope of the sigmoidal function and yj is defined as:

yj ¼
Xn
i ¼ 1

Wijxi þ Bj ð7Þ

where xi is the input to the ith node from the previous layer

with a total of n nodes, Wij is the corresponding weight and Bj

is a bias term. The logistic sigmoid and pure linear functions

were used as transfer functions in the hidden and output layers

of the ANN, respectively. The ANN was trained iteratively to

minimize the performance function of the mean square error

(MSE) between the results of the output neurons and the

actual outputs. After each cycle, the gradient of the perfor-

mance function of the MSE was used to adjust the network

weights and biases. Once the MSE reached 10�4, the training

was terminated and the corresponding ANN was built.

MATLAB version 7.9.0 (Mathworks Inc., Natick, MA,

USA) was employed in the development and training of

ANN. The initial weights and biases of the network were

generated automatically by the program.

2.9. SVM modeling

SVM, as developed by Cortes and Vapnik24, is a novel

machine learning method acquiring popularity due to some

appealing features and its promising empirical performance.

SVM was originally designed to handle classification problems

but, with the introduction of the e-insensitive loss function, the
Figure 1 Optimum neural network architecture based on central

composite design.
application of SVM has been broadened to apply to non-

linear regression. The basic idea of SVM is to map the original

input data into a highly dimensional feature space using a

kernel function. Linear regression is then performed in this

feature space and the non-linear problem is resolved in a linear

space. The SVM model is described by the following function:

f ðxÞ ¼
Xl
i ¼ 1

ð�ai þ ani ÞKðxi;xÞ þ b ð8Þ

where xi is a feature vector corresponding to a training object

and b is a constant. The components of the vectors ai and ai
n

are the introduced Lagrange multipliers. For the kernel

function, K(xi, x), the Gaussian radial basis function in

Eq. 9 was selected due to its effectiveness and efficiency in

the training process.

Kðxi;xÞ ¼ exp �
Jxi�xJ

2g2

� �
ð9Þ

where g is the parameter of the kernel and xi and x are two

independent variables. LIBSVM software (available at http://

www.csie.ntu.edu.tw/cjlin/libsvm) was used to process the

SVM regression25.

2.10. Genetic algorithm (GA)

GA is used to search the solution space by simulated evolution

of ‘‘survival of the fittest’’. GA can solve linear and nonlinear

problems through exploring all areas of state space and

exploiting potential regions by mutation, crossover and selec-

tion operations applied to individuals in the population26.

The evolutionary process of GA consists of three steps:

(1) initialization of the first generation; (2) evaluation of

the fitness of each individual by an objective function; and

(3) using genetic operators of parent selection, including

application of reproduction, crossover and mutation to pro-

vide the first offspring generation. Iteration of step 2 and 3 is

performed until the objective function converges.

In this study, the optimization of the process was accom-

plished using the Sheffield MATLAB Genetic Algorithm

Toolbox Version 1.2 in MATLAB (version 7.9.0)27.

2.11. Validation of models

In order to assess the reliability of the generated mathematical

models, optimized check point formulations were prepared

and evaluated for various responses. The experimental values

of the responses were quantitatively compared with the

predicted values to calculate the percentage of the prediction

bias. This is helpful in establishing the validity of generated

equations and describing the application domain of these

models.

2.12. Characterization of the optimum Doxy-HP-b-
CD(Mg2þ) complex

Based on the modeling results, the optimum formulation of

the Doxy-HP-b-CD(Mg2þ) inclusion complex was prepared

and characterized by microscopy and NMR analysis. A

physical mixture was also prepared for contrast analysis by

grinding together the appropriate mixture of Doxy, HP-b-CD
and MgCl2 in a quartz mortar.
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2.12.1. Microscopy

The morphology of samples was investigated using an inverted

microscope (Olympus, X71, Japan) operating at � 400 mag-

nification. Solid samples of raw materials, the physical mixture

and inclusion complex were mounted directly onto glass slides

for analysis.
2.12.2. NMR spectroscopy
1H NMR was performed using an Avanc III NMR spectro-

meter (Bruker, Germany) at 400 MHz. Samples containing the

equivalent of 10 mg Doxy were dissolved in CD3OD. Chemi-

cal shifts (d) are reported in ppm and referenced to the residual

CD3OD signal at 3.31 ppm.
3. Results and discussion

3.1. RSM

3.1.1. Selection of variables and generation of non-linear

model

Using the second order polynomial model (Eq. 2), the

efficiency was unsatisfied as the R2 values for overall response

(Y) and the responses for inclusion efficiency (Y1) and stability

(Y2) were 0.8498, 0.8115, and 0.7861, respectively. The fact

that all are o0.9 indicates a lack of variability in this model

and the need for the more highly variable cubic equation

(Eq. 3). Comparing forward and backward methods based on

the R2 values shows that the backward method gives the

highest fitting efficiency. Using the F-test to evaluate the lack
Figure 2 Three dimensional response surface plots and two dimensio

Mg2þ/Doxy (X2), and (B) inclusion time (X3) and inclusion temperatur

CD/Doxy (X1) and Mg2þ/Doxy (X2), and (D) inclusion time (X3) an

input factors were kept constant at mid-range values (HP-b-CD/D

temperature 35 1C).
of fit within each model gives Po0.0001 in all cubic equations

indicating the third order polynomial model generates a

significantly better fit.

Y ¼ 3:380�0:138X4�0:045X1X1�0:112X1X2�0:047X1X3

þ0:052X1X4 þ 0:059X2X2 þ 0:035X2X3�0:020X2X4

�0:002X3X3 þ 0:013X1X1X2 þ 0:006X1X1X3

�0:005X1X1X4�0:0004X2X2X3 þ 0:0004X2X3X4

þ0:0002X2X4X4ðR
2 ¼ 0:9603 F ¼ 22:59 Po0:0001Þ

ð10Þ

Y1 ¼ 133:704�20:831X1 þ 8:140X2�2:554X1X2

þ0:812X1X3 þ 1:207X1X4�0:131X2X2�0:103X2X3

þ0:0464X3X3�0:220X3X4�0:0625X4X4

þ0:287X1X1X2�0:0762X1X1X4�0:0183X1X3X4

þ0:00478X3X4X4ðR
2 ¼ 0:9090 F ¼ 10:71 Po0:0001Þ

ð11Þ

Y2 ¼ 83:681þ 10:616X3�1:856X4 þ 0:150X2X2

�0:707X3X3 þ 0:102X1X1X1 þ 0:103X1X1X2

�0:0643X1X1X4�0:0540X1X2X3 þ 0:0116X1X3X4

þ0:00587X1X4X4�0:00654X2X2X4 þ 0:00545X2X3X4

þ0:0124X3X3X3ðR
2 ¼ 0:9059 F ¼ 11:85 Po0:0001Þ

ð12Þ

3.1.2. Response surface
Response surfaces were generated in order to understand the

effect of each variable on the responses. Fig. 2A–D shows the
nal contour plots for (A) molar ratios of HP-b-CD/Doxy (X1) and

e (X4) versus inclusion efficiency (Y1) and (C) molar ratios of HP-b-
d inclusion temperature (X4) versus stability (Y2). The remaining

oxy 4.5; Mg2þ/Doxy 6.5; inclusion time: 16 h; and inclusion



Figure 3 Change of solution for Y1 and Y2 by GA-ANN.
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three-dimensional response surface and the projected

two-dimensional contour plot. Three-dimensional plots are

useful to describe interactions while contour plots are exceed-

ingly valuable when there is only one response. From the three

dimensional diagrams, it is easy to understand the interactions

between two independent variables and one dependent vari-

able. Fig. 2A and C shows the obtained surfaces are convex

and symmetrical suggesting the mole ratios (X1 and X2) are the

main factors influencing the responses Y1 and Y2. In Fig. 2B

and D, the flat surfaces reveal that inclusion time (X3)

and inclusion temperature (X4) did not affect Y1 and Y2

significantly.

3.2. ANN modeling

The model parameters of ANN were selected by trial and

error. According to the minimum validation, the optimum

network consisted of one hidden layer with 10 nodes, while the

number of training cycles or iterations was found to be 500.

To build a successful ANN model, the number of hidden

nodes is the key factor. Too few hidden nodes handicap the

learning capacity of the ANN model, while too many hidden

nodes may cause over-fitting for the training data set. There

are several methods to determine the number of neurons in a

hidden layer, such as using a formula or empirically by the

programmers. As a result, these methods are either stereo-

typed or subjective. Kolomogorov’s theory indicates that

hidden nodes with twice the number of input variables plus

one are adequate to compute an arbitrary continuous func-

tion28. Jadid and Fairbairn29 proposed an upper limit on the

number of hidden nodes. Carpenter and Hoffman30 intro-

duced an equation to define the number of nodes in the hidden

layer based on the number of inputs and outputs and the

number of training sets.

In this work, the optimal number of hidden units was

determined by the exhaustive method which sets out all

possible solutions and finds the answer to meet the conditions.

One to 20 neurons were used to explore one by one in the

network and then, according to the maximum value of R2, the

optimum network architecture was obtained. Finally, a net-

work consisting of four input and two output units, with 10

hidden units arranged in a single hidden layer was selected

(Fig. 1). On this basis, the R2 values for Y1 and Y2 were 0.9947

and 0.9721, respectively, indicating that a quality trained

model with appropriate predictive capability was constructed.

3.3. SVM modeling

The performance of SVM for regression depends on the

combination of several factors including the type of kernel

function, the Gaussian function parameter g, the e-insensitive
loss function e, and the capacity parameter C. First, the radial

basis function (RBF), which is commonly employed in many

studies because of its satisfactory performance and limited

number of parameters to be adjusted31, was chosen as the

kernel function to determine the sample distribution in the

mapping space. The corresponding g of the kernel function has

a major effect on the number of support vectors and is closely

connected with the performance of SVM and the training

time. The parameter e prevents the entire training set meeting

boundary conditions and allows the possibility of sparsity.
The parameter C controls the trade-off between maximizing

the binding and minimizing the training error.

To determine the optimal values of the above parameters, a

grid search was performed on the original data set using

combinations of the parameters in the following ranges: e
0.01–0.15; C 5–30; g 0.1–3.0. Screening was performed using

an incremental step of 0.01 for all parameters. Based on the

thorough search, the optimal values of e, C and g suitable for

SVM modeling of the responses were respectively 0.1, 9.19,

2.14 for Y1 and 0.1, 11.31, 0.5 for Y2. The Y1 optimal model

gave a root mean square error (RMSE) of 0.4458 and R2 of

0.9723. Corresponding values for the Y2 model were 1.4100

and 0.9305, respectively. With these optimal parameters, the

SVM regression simulated the complicated nonlinear relation-

ship between the independent and dependent variables.
3.4. Multi-objective optimization and GA

GA was employed to search for the optimum formulation

after the RSM, ANN and SVM models were developed.

Appropriate implementation of GA includes the following

three steps; definition of the fitness function, definition and

implementation of the genetic representation, and definition

and implementation of the genetic operators. In the RSM

model, Eqs. 11 and 12 for Y1 and Y2 were used as fitness

functions for GA parallel solving, and Eq. 10 for the global

response Y was used as the fitness function to compute the

optimal value. In the ANN model, after obtaining the

relationship between the causal factors and the response

variables according to Eqs. 6 and 7, ANN generated a

nonlinear model as fitness function for GA. In the SVM

model, according to Eq. 8, an integrated equation was

generated as fitness function for GA.

The control parameters used in GA were set as follows:

population size 100; generations 500; precision of variables 20;

generation gap 0.9; crossover rate 0.4; and mutation rate 0.4.

Fig. 3 shows the change of solution for Y1 and Y2 by GA-

ANN. For the ANN data set, after 100 generations evolved,

the solutions of Y1 and Y2 not only became stable but also

reached the optimal result at the same generation. This clearly

indicates that GA possesses an excellent ability for parallel

computing and can effectively resolve the problem of multi-

objective optimization, which is better than classical optimiza-

tion methods.



Table 2 Experimental and predicted values of Y1 and Y2 for the optimum formulation of the Doxy-HP-b-CD(Mg2þ) inclusion

complex as determined by RSM, ANN and SVM models.

Modeling method Factor Response Biasa (%)

Experimental Predicted

X1 X2 X3 X4 Y1 Y2 Y1 Y2 Y1 Y2

RSM1 3.0 9.0 16.0 32.5 0.79170.01 (Y) 0.847 (Y) 7.08 (Y)

RSM2 3.5 11.2 10.0 30.0 93.2572.18 87.4973.15 96.60 92.75 3.59 6.02

ANN 4.0 10.8 12.0 25.0 99.1971.24 95.5471.51 99.75 97.44 0.57 1.99

SVM 3.7 9.3 12.5 26.5 98.0571.92 91.5371.89 99.09 96.72 1.06 5.67

aBias (%)¼(predicted value�experimental value)/experimental value� 100.

Figure 4 Micrographs of Doxy/HP-b-CD systems. (A) Doxy; (B) HP-b-CD; (C) physical mixture of Doxy/HP-b-CD (Mg2þ) and (D)

inclusion complex of Doxy/HP-b-CD (Mg2þ).

Figure 5 1H NMR spectra. (A) Doxy and (B) inclusion complex of Doxy/HP-b-CD(Mg2þ) in CD3OD.
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The optimum formulation generated by three models and

the corresponding responses are summarized in Table 2.

Values of X1–X4 for the optimum formulation obtained from

the ANN model were 4, 10.8, 12 h and 25 1C, respectively.
3.5. Comparison of RSM, ANN and SVM modeling

Comparing the modeling performance of the three methods,

ANN definitely produced the greatest R2 values (0.9947 for Y1

and 0.9721 for Y2). This indicates that ANN based on non-linear

modeling with high variability of neuron connections is the most

appropriate method to model a complicated system with multiple

factors and responses. In contrast, RSM showed a lack of

variability in R2 values (0.9090 for Y1, 0.9059 for Y2) due to the

limitations of regression equations. Interestingly, SVM with its

limited previous application to formulation optimization showed

good modeling in terms of R2 values (0.9723 for Y1 and 0.9305 for

Y2) because of its relatively high variability for non-linear

modeling. However, compared to ANN, SVM is probably more

suitable for handling classification problems.

In view of the percentage bias in the experimental data

(Table 2), RSM1 based on the desirability function showed

relatively poor prediction (7.08% bias for Y) presumably

reflecting a defect of this traditional unitary method. RSM2

based on GA optimization yielded better prediction (3.59%

bias for Y1 and 6.02% bias for Y2) than RSM1 reflecting the

excellent ability of GA for parallel computing. The reason

SVM yielded better prediction (1.06% bias for Y1 and 5.67%

bias for Y2) than RSM can be ascribed to the relatively higher

level of generalization of SVM for non-linear modeling.

However, the lowest percentage bias (0.57% for Y1 and
Table 3 1H NMR chemical shifts of Doxy and Doxy-HP-

b-CD(Mg2þ) in CD3OD at 20 1C.

Hydrogen dDoxy dDoxy/HP-b-CD(Mg2þ) Dda

7-H 6.95 6.98 0.03

8-H 7.48 7.53 0.05

9-H 6.84 6.87 0.03

4-N(CH3)2 2.75 2.71 �0.04

6-CH3 1.55 1.58 0.03

aDd¼dDoxy/HP-b-CD(Mg2þ)�dDoxy.

Table 4 Stability of aqueous solutions of the Doxy-HP-b-CD in

Sample Time (day) Appearance

Doxy �HCl (Control) 0 Light yellow clear

5 Light brown minor de

10 Brown more depositio

Doxy/HP-b-CD 0 Light yellow clear

5 Light yellow clear

10 Yellow minor deposit

Doxy/HP-b-CD(Mg2þ) 0 Light yellow clear

5 Light yellow clear

10 Yellow minor deposit
1.99% for Y2) was obtained by the ANN method, convin-

cingly indicating the validity of the generated model.

3.6. Characterization of the optimum HP-b-CD Doxy inclusion

complex

3.6.1. Microscopic observation

Microscopic examination of pure materials, the physical mixture

and the optimum inclusion complex are shown in Fig. 4. Doxy

(Fig. 4A) appears as club-shaped crystals whereas HP-b-CD
(Fig. 4B) exhibits amorphous spherical particles. In the physical

mixture (Fig. 4C), Doxy crystals and HP-b-CD particles are

clearly observed, indicating the absence of a host-guest interaction.

In contrast, the Doxy-HP-b-CD (Mg2þ) inclusion complex

(Fig. 4D) is in the form of irregular particles of variable size with

completely different morphologies from Doxy and HP-b-CD
supporting the formation of an inclusion complex.

3.6.2. NMR spectroscopy

Since Doxy is hydrophobic and has low aqueous solubility, it

can be encapsulated in the hydrophobic cavity of HP-b-CD.

When inclusion occurs, the changes in the physical and

chemical environment affects the electronic density of Doxy

hydrogen atoms which can be detected by NMR. Given the

limited aqueous solubility of Doxy, NMR was performed on

solutions of drug and inclusion complex in CD3OD32,33. The
1H NMR spectra of Doxy and its inclusion complex using a

molar ratio of 1:4 are shown in Fig. 5 with corresponding

proton shifts summarized in Table 3. As shown in Fig. 5B,

proton shifts for H7, H8, H9, 4-N(CH3)2 and 6-CH3 of Doxy

are clearly observed in the complex suggesting a deep

penetration of the Doxy molecule into the cavity of HP-b-CD.

3.7. Stability studies

As shown in Table 4 and Fig. 6, Doxy �HCl degraded rapidly

at 40 1C with the sample changing from yellow to brown and

the amount of related substance increasing significantly. In

contrast, the stability of Doxy in the Doxy-HP-b-CD and

Doxy-HP-b-CD (Mg2þ) complexes was higher as shown by

less color change (Fig. 6) and formation of less related

substances (Table 4). The results indicate that the formation

of an inclusion complex in the presence of Mg2þ enhances the

stability of Doxy to the greatest extent. This is probably
clusion complex stored at 4072 1C for 10 days (n¼3).

Doxy content (%) Related substance (%)

100.00 0.9371.55

position 91.2070.75 5.5272.23

n 83.1074.21 9.5070.62

100.00 0.7370.15

93.2171.57 3.6370.27

ion 88.6773.61 6.4170.53

100.00 0.6570.06

98.9371.24 1.4370.44

ion 95.5471.51 5.9070.34



Figure 6 Changes in the appearance of solutions of (A) Doxy �HCl, (B) the Doxy-HP-b-CD complex and (C) the Doxy-HP-b-CD
(Mg2þ) complex solution on storage at 40 1C over 10 days.
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because (1) Mg2þ and Doxy formed a chelate at the site of the

phenol diketone which protects Doxy from hydrolysis and (2)

Doxy is embedded in the HP-b-CD cavity in such a way that

its sensitive groups are protected.
4. Conclusions

ANN with one hidden layer and 10 hidden units showed the best

modeling and prediction for inclusion efficiency and stability of

the Doxy-HP-b-CD (Mg2þ) inclusion complex. The optimal

formulation of the complex was obtained by a GA-ANN method.

Its formation was supported by NMR spectroscopy and it was

shown to stabilize Doxy in aqueous solution. Overall the results

show that a GA-based approach is a powerful tool for optimizing

pharmaceutical formulations in a cost and time efficient manner.
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