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Abstract 

We will use a surgical technique to imbed the composition graph G[H] when G has minimum 
degree 2 and H has even order. This imbedding is shown to be minimal when G is triangle-free. 
Along the way, we construct genus imbeddings of the joinG + H when both factors have even 
order, G is empty or 1-regular, and G has order at least twice that of H. Variants and 
applications to specific graphs, such as complete tripartite graphs, are given. 

I. Introduction 

The history of the genus parameter  for graphs is a rich one which dates to 1890 
when Heawood [5] first published his Map Coloring Conjecture. Ringel began 
working on this problem in the early 1950s and, with numerous contributions by 

others, most notably Youngs and Gustin, finally established the genus of the complete 

graphs in 1968. (See [8]). As this work was taking place, interest grew in the genus 
parameter  as applied to other graphs. (See [9] or [13] for lists of genus results as of 

1978 and 1984, respectively.) Although work has been done on various complete 
multipartite graphs (which can be expressed as joins) as well as other graph products 

such as cartesian products, amalgamations, and tensor products, to name a few, very 
little has been written on the genus of graphical joins and compositions in general. 

The sole published exception is a paper by White [11] in which he established the 
genus of compositions G[H] in which H has even order and maximum degree less 
than two. The current paper is a strengthened version of a portion of [4] which 

focused on the problem of determining the genus of joins and compositions in general. 
(It is hoped that the remainder of this previous work will appear  in the near future.) 

Before setting about the work at hand, a word or two about basic terminology and 
notation is in order. A graph G is here understood to be devoid of multiple edges and 
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loops. A (p, q)-graph having order p and size q. The complement of a graph G is denoted 
G. A (p, 0)-graph is said to be empty and is denoted by / (p .  The disjoint union of 
m copies of G is denoted by mG. A triangle-free graph contains no 3-cycles. Finally, the 
9enus of G is denoted by 7(G). We will define join and composition in Section 3 as well 
as various terms of our own invention throughout the paper. Other terms and 
notation used, but not explicitly defined here, can be found in [3] or [13]. 

The goal in this paper is to use a surgical technique based on graphical surfaces to 
find minimal or near-minimal imbeddings of joins and compositions of graphs. The 
concept of a 9raphical surface, which is simply a fattened graph, will be developed in 
Section 2. We review the definitions of these graph products in Section 3 and state the 
main theorems to be proved. At this point, an overview of the proof of Theorem 1 is 
given which motivates the invention of a combinatorial structure called a proposition 
chain. In Section 4, we explore proposition chains and manufacture the machinery 
necessary to prove our main theorems. The remainder of the paper consists of these 
proofs as well as variations and applications of these theorems. The reader will 
observe that the proof of Theorem 2 depends very heavily on Theorem 1 and its proof, 
as composition is seen to be a generalization of join. 

2. Graphical surfaces 

Any connected graph G can be used as a template for building an orientable surface 
S(G) which is called the 9raphical surface based on G. This surface is formed by 
associating a sphere with each vertex of G and joining two such spheres with a tube if 
and only if the vertices associated with these spheres are adjacent in G. Recalling that 

the betti number fl(G) of a connected (p, q)-graph G is calculated as q - p + 1, which is 
simply the number of edges of G not included in any given spanning tree, we have the 
following. 

Lemma 1. v(S(G)) = fl(G). 

Proof. First observe that for any tree T, 7(T) = 0 and that a straightforward induc- 
tion on the order of T yields 7(S(T)) = 0 Now, let T be any spanning tree for G. The 
surface S(G) can be constructed from S(T) by simply adding a tube for each edge in 
E(G)-  E(T). Thus, S(G) is formed by adding fl(G) handles to a surface which is 
homeomorphic to a sphere, creating an orientable surface of genus fl(G). [] 

For  purposes of clearly describing imbeddings of graphs in these graphical surfaces, 
we will impose a bit more structure on S(G) and develop an associated vocabulary and 
notation. Begin with the connected graph G imbedded in some orientable surface Sk. 
(This imbedding need not be minimal.) If this surface Sk is situated in R3, it partitions 
R 3 into the surface itself and two half-spaces - -  the unbounded outside and the 
bounded inside. For  each vertex u e V(G), place a sphere S(u) in R 3 centered at u. Now, 
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for each edge e = uv ~ E(G), place a tube T(e) = T(uv) in g 3 centered along e. By 
choosing a small enough common radius for these spheres and a much smaller 
common radius for the tubes, we can guarantee that (1) no two spheres intersect, (2) 
two tubes intersect only if the corresponding edges are adjacent and then they only 
intersect inside the sphere which corresponds to the common endpoint. (3) no tube is 
self-intersecting, and (4) a sphere intersects a tube if and only if the corresponding 
vertex and edge are incident and, in this case, the intersection consists of a single circle. 
We will also assume that the surface Sk is locally fiat at each vertex of G to a distance 
at least equal to the common radius of the spheres and that the portions of the edges of 
G imbedded in these flat subregions lie along straight lines. Finally, at each sphere 
S(u), delete the portion inside S(u) of every tube T(e) corresponding to an edge 
e incident with u, and delete the portion of S(u) which is inside each such tube. The 
resultant surface is clearly the surface S(G). Despite these final deletions, we will 
continue to use the notations S(u) and T(e) for the remaining portion of the original 
structure so named. 

Let us now consider any particular sphere S(u) in the surface S(G). Because of the 
local flattening of the surface holding G, Sk intersects S(u) in a great circle which we 
will call the equator of S(u). The antipodal points in S(u) which are the greatest 
distance from the equator will be called the poles of S(u). In particular, the pole outside 
Sk will be called the north pole of S(u) and the one inside Sk will be called the south pole 
of Sk. Furthermore, meridian refers to any great arc in S(u) which has the poles as its 
endpoints (or, at least that portion of one which remains after the aforementioned 
deletions). 

Lemma 2. l f  G is any connected graph then the composition graph G [/(2] has a quadri- 
lateral imbedding in the surface S(G). Furthermore, if G is triangle-free then this 
imbedding is minimal. (That is, 7(G[/(2]) ~< fl(G) with equality if G is triangle-free.) 

Proof. Begin by placing a vertex at each pole of each sphere in the graphical surface 
S(G). Now, for each pair of adjacent vertices u and v in G, the four edges joining the 
poles of S(u) to the poles of S(v) must be imbedded. First, imbed the edge joining the 
north poles of these spheres so that the portions of this edge which lie in the spheres 
follow meridians of the spheres and so that the portion of this edge which lies in the 
tube T(uv) consists of the locus of points in the northern half of T(uv) which are 
farthest from Sk. Likewise, imbed the south-pole-to-south-pole edge to follow meridi- 
ans in S(u) and S(v) and to be the locus of points in the southern half of T(uv) which are 
farthest from Sk. These two edges separate the remainder of T (uv) into two tubal 
regions. If, in imbedding the remaining two edges, we continue to insist on following 
meridians in the spheres, we are forced to choose between the two possible assign- 
ments of the remaining two edges to these two tubal regions. Fig. 1 shows these two 
possible imbeddings. A tube containing these four imbedded edges will be said to have 
either a positive or negative orientation, depending on the way in which the north-to- 
south edges are imbedded. The (arbitrary) assignment of these terms is also indicated 
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in the figure, where a bar above the notation for a tube indicates a 'negative' 
orientation and the absence of one indicates a positive one. 

That this mapping of G [/£2] to the surface S(G) is an imbedding, or can easily be 
made one (that is, that no edges cross) is guaranteed by the requirement that portions 
of edges lying in a sphere follow meridians, since a meridian can intersect at most one 
tube. That this imbedding is quadrilateral is illustrated in Fig. 2, which shows the four 
possible region shapes. These shapes are determined by two factors: (1) the original 
imbedding of G in Sk (i.e., the order in which the edges incident with a vertex u radiate 
out from u, which is the same as the order in which the tubes joined to S(u) are 
arranged around the equator of S(u); and (2) the orientations of the tubes. Thus, the 
imbedding is quadrilateral. 

S(u) S(v) 
T(uv) 

Fig. 1. 

s(~) s(~) 
T(uv) 

b. 

Fig. 2. 
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Finally, if G is a triangle-free graph then so is G [/~1]. The standard argument from 
the Euler-Poincar6 formula shows that a quadrilateral imbedding of a triangle-free 
graph must be minimal. [] 

The imbeddings to be constructed will begin with the quadrilateral imbedding 
described in Lemma 2, and will be completed by imbedding diagonals in some of these 
quadrilateral regions. Consider Fig. 2 again. Notice that, in each case, one pair of 
opposite vertices in the region boundary consists of the two poles of a single sphere. 
Such a region is said to be centered on this sphere and the diagonal of the region which 
joins the poles of this sphere will be called the short diagonal. The other diagonal will 
be called the Ion 9 diagonal of the region. All four regions shown in Fig. 2 are viewed 
from outside of the surface, with a vertical short diagonal - -  north pole on top. Using 
this perspective, the four types of regions shown can be named according to the poles 
which would be joined by the long diagonal - -  reading from left to right. Using N for 
north and S for south, the region types shown in the figure, from the top down, are NS, 
SN, NN, and SS. 

Our work hinges on being able to construct regions with specific long diagonals. 
(Imbedding short diagonals will, in general, not be a problem. To imbed an edge 
joining the poles of, say, S(u), we need only find a region centered on S(u) in which the 
long diagonal need not be imbedded. Notice that there are degGu such regions.) To 
construct a region whose long diagonal joins a pole of S(v) to a pole of S(w), find 
a vertex u ~ V(G) which is a common neighbor of v and w and arrange the tubes 
around the equator of S(u) so that T(uv) and T(uw) are next to each other; i.e., one of 
the two portions of the equator of S(u) connecting T(uv) and T(uw) is unbroken by 
other tubes. Part (a) of Fig. 2 shows that when both tubes are positively oriented, the 
long diagonal would join the north pole of the westmost sphere to the south pole of 
the eastmost sphere. Part (b) of Fig. 2 shows that when both tubes are negatively 
oriented, the long diagonal joins the south pole of the westmost sphere to the north 
pole of the eastmost sphere. So, to construct a region through which the edge joining 
the north pole of S(v) to the south pole of S(w) can be imbedded, either attach T(uv) 
immediately to the west of T(uw) along the equator of S(u) and orient both tubes 
positively, or attach T(uv) immediately to the east of T(uw) along the equator of S(u) 
and orient both tubes negatively. That is, either of the following orderings of the 
oriented tubes to S(v) and S(w) from west to east around the equator of S(u) will serve 

the purpose: ... T(uv) T(uw) ... or ... T(uw) T(uv) ... 

Similarly, either ... T(uw) T(uv) ... or ... T(uv) T(uw) ... will form a region whose 
long diagonal joins the south pole of S(v) to the north pole of S(w). To form a region 
whose long diagonal joins the north poles of S(v) and S(w) requires, in addition to the 
adjacency of attachment sites of the tubes along the equator of S(u), only that the 
western tube be negatively oriented and the eastern tube be positively oriented as in 

... T(uv) T(uw) ... or ... T(uw) T(uv) ... Finally, according to part (d) of Fig. 2, 

the south to south diagonal can be found in the region formed by ... T(uv) T(uw) ... 
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or ... T(uw) T(uv) ... Thus, our task will be accomplished by judiciously orienting 
tubes and ordering them around the equators of the spheres to which they are 
attached. These observations motivate the development of proposition chains below, 
but let us first describe the graphs with which we will be working and state the 
theorems to be proved. 

3. Joins, compositions, and theorems 

Given two graphs G and H, the join G + H is formed from the disjoint union of 
these two graphs by adding all edges of the type uv where u ~ V(G) and v ~ V(H), as 
illustrated in Fig. 3. 

Observe that if G and H are empty graphs then G + H is a complete bipartite graph. 

That is, K,, + K,  = K,,,,. Thus, Lemma 2 gives us our first genus formula for joins. (It 
should be mentioned that the following is a special case of the general genus formula 
for complete bipartite graphs proved by Ringel in 1965 [7].) 

Lemma 3. The complete bipartite 9raph with even order partite se ts  K2ra,2n has 

a quadrilateral imbeddin 9 in the surface S(K,,,.). Thus, 7(K2,., zn) = (m - 1)(n - 1). 

Proof. This is an immediate corollary of Lemma 2 which follows from the following 

three observations: (i) g 2 m  ' 2n -- Km,n [K2]; (ii) K,,,, is a connected, triangle-free graph; 
and (iii) f l(gm,n) = mn - (m + n) + 1 = (m - 1)(n - 1). [] 

The second type of graph product of interest is the composition (or lexicographic 
product), denoted G[H]. This graph is constructed from G by replacing each vertex of 
G by a copy of H and then adding edges as follows. If H.  and Hv are the copies of 
H which replace vertices u and v respectively, add all edges of the type u' v' where 
u' ~ V(Hu) and v' E V(Hv) if and only if uv E E(G). For example, K2DH] = H + H. In 
this way, each edge of G may be said to induce a subgraph of G[H] which is 
isomorphic with H + H. This connection between joins and compositions will be 

G H G + H  

Fig. 3. 
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exploited later. Just as the complete bipartite graphs are the simplest joins, it could be 

argued that graphs of the form G[K, ]  are the simplest compositions. The analogy 

leads us to the following. 

Lemma 4. f f  G is a nontrivial, connected (p,q)-graph and n is a positive integer, then 

G[K2,] has a quadrilateral imbeddin 9 in the surface S(G[K,]). Thus 7(G[Kz,]) <~ 
nZq - n p  + 1, with equality if G is triangle-free. 

Proof. As with Lemma 3, this also follows immediately from Lemma 2. It suffices to 

observe that: (i) G[K2n] = (G [K,])  [K2 ]; (ii) fl(G [K,] )  = n2q - n p  + 1; and (iii)if G is 

triangle-free then so is G[-K,]. []  

We are now in a position to state our main theorems, which are generalizations of 

Lernmas 3 and 4. 

Theorem 1. I f  m and n are positive integers and H is any graph of order 2n, then 

(i) 7(K2m + H) = (m - 1)(n - 1), provided m ~ 2(n - 1), and 
(ii) 7(mK2 + H) = (m - 1)(n - 1), provided m >~ 2n. 

Theorem 2. I f  G zs a nontrivial, connected (p, q)-graph with minimum degree at least 2, 
and H is a graph of positive even order 2n, then 7(G[H]) ~< n2q - np + 1, with equality if 
G is triangle-free. 

The proofs of both theorems begin in the same fashion. Start with the quadrilateral 
imbeddings mentioned in Lemma 3 or 4 respectively, and add edges as diagonals of 
some of the quadrilateral regions. This final step is preceded by the work of configur- 
ing the imbedding so as to contain regions with the required diagonals. Although the 
proofs of these theorems must be postponed until after the next section, let us take 
a closer look at the work ahead in proving Theorem 1. 

We begin with part (i). Observe that it suffices to imbed the graph K2m + K2, in 

a minimal surface for Kzm,2 n. The surface in which Kzm + Kzn will be imbedded is 
S(K,,.,), a fattened version of the complete bipartite graph Kin.,. Think of this surface 
as being composed of two clusters of spheres joined by all possible tubes running from 
spheres in the first cluster to spheres in the second cluster. The poles of the m spheres 

in the first cluster hold the vertices of Kzm and the n spheres in the second cluster hold 
the vertices of K2,. Each of the tubes carries the four edges which join the poles of the 
two end spheres as has been described. The way in which these edges are imbedded in 
a tube imparts an orientation to the tube and the orientations of the tubes together 
with the order in which they are attached to the spheres in the first cluster determine 
the long diagonals of the regions centered on the spheres in the first cluster. Our 
objective is to order and orient the tubes so as to form a collection of regions with the 
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property that, for every pair of poles of different spheres in the second cluster, there is 
a region centered on a sphere in the first cluster whose long diagonal joins these poles. 

Each sphere in the first cluster is attached to n tubes (joining it to the n spheres in 
the second cluster). Thus there are n regions centered on each sphere in the first 

cluster. S i n c e t h e r e a r e ( 2 ; ) - n = 2 n ( n  - 1) long diagonals to imbed (n of the edges 

of Kzn will be imbedded as short diagonals in regions centered on the n spheres in the 
second cluster), there must be 2n(n - 1) regions centered on spheres within the first 
cluster and, hence, there must be at least 2(n - 1) spheres in the first cluster. We will 
show that this is sufficient to prove part (i). The only difference between the parts of 
Theorem 1 is that in part (ii), one of the n regions centered on each sphere in the first 
cluster will be used to imbed a short diagonal and will, therefore, be unavailable to use 
for the purpose of imbedding a long one. Thus, there must be at least 2n spheres in the 
first cluster. We will show that this is sufficient to prove part (ii). 

Thus, the proposed procedure can be summarized as follows. Order and orient the 
n tubes attached to the first sphere in the first cluster to form n regions, centered on 
this sphere, which have long diagonals joining n different pairs of poles of spheres in 
the second cluster. This order is cyclic in the proof of part (i) and linear in part (ii). This 
is done for each sphere in the first cluster, in turn, until all pairs of poles of 
second-cluster spheres can be joined by long diagonals through the regions formed. 
For our purposes, the n tubes being ordered and oriented around each sphere in the 
first cluster can be treated as the same n objects--identified with the second-cluster 
spheres to which they are attached. In order to study these collections of ordered 
and oriented objects, we introduce a combinatorial structure called a proposition 
chain. 

4. Proposition chains 

A linear (or cyclic ) n-chain is a linear (respectively, cyclic) ordering of the elements of 
a set L = {{o, {1 . . . . .  { n - l ) '  Call the elements of L the links of the n-chain. When 
denoting a cyclic n-chain, the 'first' link will be repeated as the 'last' to indicate the 
wrapping around of the chain. Thus, the absence of this repeated element will indicate 
a linear n-chain. For example, f3 (1 {0 {4 Y2 (3 is a cyclic 5-chain whereas {3 (1 {0 {4 {2 
is a linear 5-chain. When n is small and there is little chance of confusion, chains may 
be represented as a chain of subscripts. That is, the examples just given may be 
rendered as 3 1 0 4 2 3 and 3 1 0 4 2. 

It is immediate that n ! is the number of linear n-chains on a given set of n elements 
and (n - 1)! is the number of cyclic n-chains. Our interest here lies in slightly more 
challenging counting problems involving couples and propositions chains, both of 
which are defined below. 

Define a couple to be any (unordered) pair of adjacent links in a chain. Our first 
problem is to find the minimum number of n-chains necessary to form all possible 
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couples, specifying that these chains are either all linear or all cyclic. Such a collection 
will be called a complete collection. The solution to this problem is the following. 

Lemma 5. l f  n is a positive integer then the minimum cardinality of a complete collection 
of linear (or cyclic) n-chains is Fn/2~ (respectively, ~(n - 1)/27). 

Proof. First observe that there is a total of 

couples to be formed in the collection. Since each linear n-chain forms n - 1 couples, 
a complete collection of linear n-chains must contain at least n/2 chains. Similarly, 
since each cyclic n-chain forms n couples, a complete collection of cyclic n-chains must 

contain at least (n - 1)/2 chains. Thus, the indicated cardinalities are seen to be lower 
bounds. In order to establish them as upper bounds as well, we need only exhibit 
complete collections having these cardinalities. 

The problem is easily solved by associating each of the n links with a vertex in the 
complete graph K, and translating the problem into one of factoring the complete 
graph into spanning paths or cycles, which are then associated with linear or cyclic 
chains, respectively. It is well known that K,  is factorable into spanning cycles if and 
only if n is odd and into spanning paths if and only if n is even. (cf. [-3, p. 237]). Thus, if 
n is odd, the (n - 1)/2 spanning cycles into which K,  is factorable correspond to 
(n - 1)/2 cyclic n-chains in a complete collection. Similarly, if n is even, the n/2 
spanning paths into which K, is factorable correspond to n/2 linear n-chains in 

a complete collection. 
Two cases remain. If n is odd, a complete collection of l-n/27 linear n-chains can be 

constructed from the complete collection of linear (n + 1)-chains mentioned above, by 
deleting the same vertex from each of the chains. If n is even, a complete collection of 
[-(n - 1)/27 cyclic n-chains can be constructed from the complete collection of linear 
n-chains mentioned above, by joining the first and last links in each chain. [] 

Understanding how these complete collections are constructed is vital to the work 
ahead. Consequently, we will briefly review the idea behind the proof of the factoriz- 
ation theorem referred to in our proof of Lemma 5. We begin by showing how to 
factor K, into spanning paths when n is even. Arrange the n vertices as vertices of 
a regular n-gon and label these vertices with the elements of the cyclic group Z,  as in 
Fig. 4. 

The first spanning path zigzags across the n-gon starting with one edge of the 
n-gon and ending with the opposite edge (shown as the solid path). All subsequent 
paths are obtained by rotation. (The second path is shown as a dotted line.). 
The n/2 spanning paths are the rows in the table below. Note that each entry, 
beyond those in the first row, is obtained from the one directly above it by adding 1 
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0 1 

n-2 ~3 

1 +n/2 n/2 

Fig. 4. 

(mod n). 

0 1 n - 1  2 ... 3 + 1  

1 2 0 3 ... 3 + 2  3 + 1  

2 3 1 4 ... 3 + 3  3 + 2  

~ - 1  ~ 3 - 2  ~ + 1  ... 0 n - 1  

In order to obtain the factorization into spanning cycles of a complete graph K,  of 
odd order, begin with the factorization of K,_ 1 into spanning paths. Then insert 
vertex n - 1 between the first and last vertices in each path. For  instance, if the table 
above is modified by adding n to the beginning and end of each row, the factorization 
of K,  + 1 into spanning cycles would result. 

Example. The upper left-hand table below represents the decomposition of K 6 into 
spanning paths and so, under the correspondence between vertices of complete graphs 
and link sets, it also represents a complete collection of linear 6-chains. The upper 
right-hand table represents the decomposition of Kv into spanning cycles as well as 
a complete collection of cyclic 7-chains. The table at the lower left represents 
a complete collection of cyclic 6-chains. Note that each of the last three of these 
collections is derived from the first. 

0 1 5 2 4 3 6 0 1 5 2 4 3 6 

1 2 0 3 5 4 6 1 2 0 3 5 4 6 

2 3 1 4 0 5 6 2 3 1 4 0 5 6 

0 1 2 4 3 0 1 5 2 4 3 0 

1 2 0 3 4 1 2 0 3 5 4 1 

2 3 1 4 0 2 3 1 4 0 5 2 
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Let us now move on to proposition chains. Suppose each of the links of a chain 
is an ordered pair; i.e., {~--(ai, bi) for i =  0, 1,2, . . . , n -  1. Define a second set of 

links based on the first set by 2i -- (bi, ai) for i = 0,1,2, ... ,n - 1 and say that {~ and 
F~ are the positive and negative orientations of the ith link, respectively. A linear 
(or cyclic) n-proposition chain is a linear (respectively, cyclic) ordering of n oriented 
links. Observe that an n-proposition chain on the link set {{o, (1 . . . . .  ( , -1}  induces 
a chain (of the same type- - l inea r  or cyclic) on the set A = {ao, al . . . .  ,a , -1 ,  bo, 
bl, . . . ,  b,-1}. A complete collection of n-proposition chains is a collection of 
n-proposition chains on the same link set L, either all linear or all cyclic, such that 
the set of induced chains on the set A is a complete collection of (2n)-chains. Since 

all couples with the same subscript (i.e., aib~ or equivalently biai) are formed in 
each n-proposition chain, define a proper couple or Couple (with a capital C) to 
mean a couple whose elements have different subscripts; i.e., couples comprised of 
coordinates from different links. So, in constructing complete collections of prop- 
osition chains, our concern will focus on forming all Couples. Our next problem is 
analogous to our first: find the minimum cardinalities among all complete collec- 
tions of linear (or cyclic) n-proposition chains. However, before we set about 
solving this latest problem, an explanation of the name is in order. (The following 
paragraph serves only to explain our choice of vocabulary and can be omitted 
without loss of continuity.) 

Suppose p and q are propositions as in the study of elementary logic. Suppose 
also, that some liberties are taken with the usual logical notation. Let a bar over 
a proposition denote negation and let juxtaposition of two propositions denote 
a conditional statement; i.e., use pq to replace the more customary p -~ q. Further- 
more, let a chain of propositions, either linear or cyclic, be understood as being 
merely a formal shorthand for the collection of conditional statements denoted by 
the several adjacent pairs of propositions in the chain. For  example, the cyclic chain 
pqrsp represents the collection of conditional statements pq, qr, rs, and st. (The 
analogy with logic breaks down a bit in that transitivity is not implied. We cannot 
conclude, for instance, that pr follows from the compound statement pqr.) The 
contrapositive of such a chain of propositions is a second chain which is constructed 
from the first by writing the propositions in reverse order and negating all of them. 
Thus, the contrapositive of a chain of propositions represents the collection of 
contrapositives of the component conditional statements comprising the original 
chain. For  this reason, we say that the contrapositive of a chain of propositions is 
(logically) equivalent to the original. It is precisely this equivalence which motivates 
the name proposition chain. 

Define the contrapositive of an n-proposition chain to be a second n-proposition 
chain which is constructed from the first by writing the links in reverse order and 
changing the orientation of each. Also, we say that two n-proposition chains are 
equivalent if and only if they form precisely the same couples. 

Lemma 6. An n-proposition chain is equivalent to its contrapositive. 
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Proof. The couple a~ b i is formed by f~ : i  = (bi, a~) (b~, ai) or by : i  :i = (ai, bi) (a~, b;). 

Similarly, the couple aia i is formed by :~ {i or by : i  :i and the couple bibj is formed by 

fz :~ or by ?ifl. Thus, any couple formed by an adjacent pair of oriented links in an 
n-proposition chain is also formed by the contrapositive. [] 

Thus for each pair of links :~ and :i, 0 ~< i ~< j ~< n, a complete collection of n- 
proposition chains must contain at least four chains containing (i and :i,  as adjacent 

l i nks - -one  for each of the following: ... :~:~ ... or ... (if~ . . . . . . . .  ~ : j  ... or 

• . . {~ : i  . . . .  , . . . : i ~ . . .  or . . . : i : / / , . . . ,  and . . . : i ( i . . .  or . . . : i : i . . .  Since the 
number of couplings has quadrupled from simple chains to proposition chains, one 
might expect that the minimum cardinality of complete collections might also have 
quadrupled. Lemma 7 shows that this is very nearly the case. 

Lemma 7. I f  n is a positive integer then the minimum cardinality o f  a complete collection 
of  linear (or cyclic) n-proposition chains is 2n (respectively, 2(n - 1)). 

Proof. In each of the four cases below, a collection which contains all 2n(n - 1) 
Couples will be constructed. Since each linear n-proposition chain forms n -  1 
Couples, a complete collection of linear n-proposition chains must contain at least 
2n proposition chains. Similarly, since each cyclic n-proposition chain forms 
n Couples, a complete collection of cyclic n-proposition chains must contain at 
least 2 ( n -  1) proposition chains. Thus, the indicated cardinalities are lower 
bounds. In order the establish them as upper bounds as well, we need only exhibit 
complete collections having these cardinalities. (In each case below, an example is 
provided to help clarify the construction. These examples are not part of the proof 
per se.) 

Case 1 (linear, n even): In the proof of Lemma 5, in the case ofn even, we constructed 
a complete collection of linear n-chains consisting of n/2 chains with the property that 
each couple appeared exactly once. A complete collection of n-proposition chains can 
be formed from four copies of this previous collection of chains by orienting links as 
follows: in the first copy all links have positive orientation, in the second copy all links 
have negative orientation, in the third copy orientations of links in each proposition 
chain alternate with the first link being positive, and the orientations in the last copy 
are precisely opposite to those in the third. The result of this procedure is a collection 
of4(n/2) = 2n proposition chains. This collection is clearly complete. Choose integers 
i and j  such that 0 ~< i < j ~< n. Then, by definition, the complete collection with which 
we started contains a chain in which fl and : j  are adjacent, say :i is first. Then this 
chain corresponds to four proposition chains in the collection just constructed in 

which the first contains ... :gfj  . . . .  the second contains ... :~(  i . . . .  and the third 

and fourth contain ... ~ : i  .-- and ... ~ : i  ... in some order (depending on whether 
:~ is in an even or odd position in the original chain). 
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For  example, with n = 6 we have the following. (Notice that  in this, and all 

subsequent examples, only the subscripts are given.) 

0 1 5 2 4 3 

1 2 0 3 5 4 

2 3 1 4 0 5 

0 1 5 2 4 3 

1 2 0 3 5 4  

2 3 1 4 0 5 

0 i 5 2 4 3  

1 2 0 3 5 2 *  

2 3 1 2 , 0 3  

0 1 5  2 7 4 3  

1 2 0 3 5 4  

3 1 4 0 5 

Case 2 (cyclic, n odd): We follow a procedure quite similar to that  used in the p roof  

of Lemma 5. Suppose n is odd and begin with the complete collection of linear (n - 1) 

proposi t ion  chains constructed in case 1. Insert  the positively oriented ( ,_  1 between 

the first and last links in the first n proposi t ion chains and the negatively oriented f , _  1 
between the first and last links in the last n proposi t ion chains. Consider  the following 

depiction of the collection just constructed to verify that  all Couples involving the 

(n - 1)st link are formed. (Only the subscripts are given in the four tables below.) 

(n - 1) 0 ... ( ~ )  (n - l) 

( n - l )  1 ... ( ~ + 1 )  ( n - l )  

( n - l )  2 ... ("-222 + 2 ) ( n - l )  

(n-- 1) ( ~ - - 1 )  ... (n--2)  ( n -  1) 

(n -- 1) 0 .-. ('-~2) ( n -  1) 

(n-- 1) i ... (-¢5 ~ +  1) (n-- 1) 

( n - l )  2 ... ("-~2 + 2 )  ( n - l )  

( n - l )  ~ - 1  ... ( n - 2 )  ( n - l )  

(n - 1) 0 

(n - 1) 1 

(n - 1) 2 

( n - l )  ( ~ - 1 )  .. 

• . ( " - ~ 2 )  ( n  - -  1)  

.. ("--12 +1)  ( n - l )  

• . (~2 +2)  ( n - l )  

(n - 2) (n - 1) 

(n - l) 0 ... ("-~2) (n - 1) 

( n -  1) i --- ('~2 + 1) (n--  1) 

( n - l )  2 ... ("---re + 2 )  ( n - l )  

(n-- 1) ("--~2 -- 1) ... (n--2)  (n-- 1) 

For  example, with n = 7 we have the following; 

6 0 1 5 2 4 3 6  

6 1 2 0 3 5 4 6  

6 2 3 1 4 0 5 6  

6 0 1 5 2 4 3 6  

6 1 2 0 3 5 4 6  

6 2 3 1 4 0 5 6  

6 0 i 5 2 4 3 6  

6 1 2 0 3 5 4 6  

6 2 3 1 4 0 5 6  

6 0 1 3 2 4 3 6  

6 1 2 0 3 3 4 6  

6 2 3 i 4 0 5 6  
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Case 3 (linear, n odd): This case requires a tactic different than beginning with 
copies of the corresponding complete collection of n-chains and orienting links in 
a particular way. Here we begin with the following double cover of K,. 

0 1 ( n - l )  2 ( n - 2 )  3 . . .  n-12 n+22 

1 2 0 3 ( n - l )  4 ... " 2 1 + 1  " ~ 1 + 1  

2 3 1 4 0 5 ... " 2 1 + 2  ~ + 2  

. -1  1 .~ i  1 ( n - l )  0 ( n - 2 )  1 ( n - 3 )  2 ... ~ - - -  

The pattern is quite similar to the complete collection of linear n-chains when n is 
even, with some significant exceptions. Most notable among these is that the complete 
collection for n even consists of n/2 chains and each edge of K,  appears once, whereas 
this latest collection of linear n-chains for n odd consists of n chains and each edge of K,  
appears twice--  with its vertices listed in the same order. To verify this fact, observe that 
each row is generated from its first entry by adding 1 (mod n) to obtain the second entry, 
then subtracting 2 (mod n) to obtain the third entry, then adding 3 (mod n), then 
subtracting 4 (rood n), and so forth until the last entry is obtained from the previous one 
by subtracting n - 1 (mod n) which is, of course, the same as adding 1 (mod n). Note also 
that the columns are generated from the top down by adding 1 (mod n) as before. Since 
there are n rows, each column contains all elements of Z.. Thus, since the first two 
entries in the first row are 0 and 1, the first pair of columns contains all edges of 
K,  which join vertices labeled with consecutive elements of Z.  and all such edges appear 
with the smaller vertex listed first. But this is also true of the last pair of columns. Since 
two is subtracted from the second entry of each row to obtain the third entry, this pair of 
columns contains all edges joining vertices whose labels differ by two and all these edges 
appear with the larger vertex listed first. This is also true of the (n - 3)rd and (n - 2)nd 
columns where the transition rule requires adding n -  2 or equivalently subtracting 
2 (mod n). The pattern continues from both sides until we see that each edge of length 
(n - 1)/2 appears twice once immediately to the left of the ((n + 1)/2)th or middle 
column and once immediately to the right. This symmetry about the middle column will 
be used in assigning orientations to the links. 

To construct the complete collection of linear n-proposition chains in this case, 
begin with two copies of the chain collections given in the table above (i.e., the 
collection representing the double covering of the edges of K,) and orient the entries as 
follows: In the first copy, all links to the left of the middle column are positively 
oriented and the ones to the right of the middle alternate in orientation, beginning 
with the middle column entries being positively oriented. The orientation of each 
entry in the second copy is the opposite of the corresponding entry in the first copy. 

Since this collection contains the prescribed number of n-proposition chains, 2n, it 
remains to verify that this collection is complete. Given two links El and {j, these 
appear as adjacent links twice in each half of the col lec t ion-- in  the same order, say (i 
(j. Left of the middle column in the first half of the collection both links are positively 
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oriented and in the corresponding position in the second half they are both negatively 

oriented. In their other two occurrences as adjacent links they are alternately oriented 

in both ways (pos i t ive- -nega t ive  once and nega t ive - -pos i t ive  once). 

Fo rexample ,  w i t h n = 7 w e h a v e t h e ~ l l o w i n g ;  

0 1 6 2 5 3 4  0 1 6 2 5 3 4  

1 2 0 3 6 4 5  1 2 0 3 6 4 5  

2 3 1 4 0 5 6  2 3 1 4 0 3 6  

3 4 2 5 1 6 0  3 4 2 5 1 6 0  

4 5 3 6  ~ 0 T 4 5 3 6 2 0 1  

5 6 4 0 3 1 2  5 6 4 0 3 5 2  

6 0 5 1 4 2 3  6 0 5 1 4 2 3  

Case4(cyc l ic ,  neven): This complete collection is constructed from the one in case 

3 (for n - 1 odd, since n is even in this case) by inserting the positively oriented 

( , -  1 between the first and last links in all of  the proposi t ion chains in the collection. 

As in case 2, we need only verify that all Couples involving link ( , _  1 are formed (since 

the previous case demonstrates  the formation of all others). For  i = 0, 1, . , . ,  n - 1, 

row i + 1 (rood n) begins (n - 1) 1 . . . .  row n + i + 1 (mod n) begins (n - 1) [ . . . .  and 

rows i +  1 + ( ( n - 1 ) / 2 )  (rood n) and n + i + l + ( ( n - 1 ) / 2 )  (rood n) end in 

... i (n - 1) and .., [ (n  - 1) in an order  determined by whether n = 1 (mod 4) or  

n - 3 (mod 4). Thus all Couples involving {,_ 1 are formed in the collection. 

For  example, with n = 8 we have the following; 

7 0  l 6 2 5 3 4 7  7 0 1 6 2 5 3 4 7  

7 1 2 0 3 6 4 5 7  7 1 2 0 3 6 4 5 7  

7 2 3 1 4 0 5 6 7  7 2 3 1 4 0 5 6 7  

7 3 4 2 5  T 6 0 7  7 3 4 2 5 1 6 0 7  

7 4 5 3 6 2 0 1 7  7 4 5 3 6 2 0 1 7  

7 5 6 4 0 3 1 2 7  7 5 6 4 0 3  i 2 7  

7 6 0 5 1 4 2 3 7  7 6 0 5 1 4 2 3 7  

The proof  is completed. [ ]  

With the complet ion of this proof, we are ready to prove Theorem 1. 

5. Theorem 1 and related results 

Theorem 1. I f  m and n are positive integers and H is any 9raph o f  order 2n, then 

(i) 7(K2,, + H) = (m - 1)(n - 1), provided m >~ 2(n - 1), and 

(ii) 7'(mK2 + H) -- (m - 1)(n - 1), provided m ~> 2n. 
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Proof. As was mentioned earlier, it suffices to show that this theorem is true for 
H = K2.. This follows from the simple fact that ifGx ~ G2 - G3 and ifT(G~) = ~(G3) 

then 7(G1) = 7(G2) = 7(G3). In part (i) G 3 is K2m + K2n , in part (ii) Gs is mK2 + K2., 
and in both parts G1 is K2m, 2 n. 

Since K2m.2. is a subgraph of both K2m + K2. and mK2 +K2.,  7(K2m,2n) 

= ( m - 1 ) ( n -  1) is a lower bound for 7(K2m + K2.) and 7(inK2 + K2.). That 
(m - 1)(n - 1) is also an upper bound for the genera of these two graphs will be 
established by imbedding them in the surface S(K.,,.) whose genus is (m - 1) (n - 1). 
Denote the partite sets of the graph Kra,n (which underlies the surface) by 
U = {Uo, Ul,U2, ... ,u~- l}  and V = {Vo, Vl, v2, ... ,Vn- 1}. 

For part (i), imbed the vertices of K2,, as the poles of the spheres S(uo), 
S(ul), . . . ,S(u,,-1) and imbed the vertices of Kzn as the poles of the spheres 
S(vo), S(vl), . . . ,  S(v,-1). Choose a one-to-one correspondence between the spheres 
S(uo), S(uO . . . . .  S(u2,-z) and the proposition chains in the complete collection 
of cyclic n-proposition chains constructed in the proof of Lemma 7. Now imbed 
the edges of Kzm,2 n as in the proof of Lemma 2, ordering and orienting the tubes 
incident with these 2 n -  2 spheres according to the proposition chain to which 
it corresponds. (The order of attachment around the equators of all other spheres 
as well as the orientations of all other tubes are irrelevant and can be chosen 
at random.) Each Couple formed in the collection of proposition chains corres- 
ponds to the long diagonal of a region of the imbedding. Because the collection 
of proposition chains is complete, the long diagonals of all regions centered on 
the spheres S(uo), S(uO, S(uz), . . . ,  S(U2n-2) are precisely the edges of Kz,. Imbedding 

these edges as diagonals through these regions completes the imbedding of K2,. + K2, 
in S(K,.,.) and thus completes the proof of part (i). 

The proof of part (ii) is obtained by making a few minor changes to the proof of 
part (i). Instead of assigning the members of a complete collection of cyclic n- 
proposition chains to the spheres S(uo), S(ul), S(u2) . . . . .  S(u2,-2), assign the members 
of a complete collection of linear n-proposition chains to the spheres S(uo), S(Ul), 
S(u2) . . . . .  S(u2,). Imbedding long diagonals corresponding to all Couples formed 

by this collection of proposition chains results in an imbedding of K2,. + K2, 
in S(K,,,,). For each of the spheres S(uo),S(Ul),S(u2), ...,S(u2.) there is a re- 
gion centered on this sphere in which a diagonal has not been imbedded. (This is 
the region between the tubes which correspond to the end links of the proposi- 
tion chain.) Imbed a short diagonal in each of these regions. Also, for each of the 
spheres S(u2,+1), S ( ~ 1 2 n + 2 ) , S ( u z n + 3 ) ,  . . .  ,S(/2m-1) choose a region centered on this 
sphere and imbed a short diagonal in it. These short diagonals are the edges of mK2. 
This completes the imbedding of inK2 + K2, in S(Km,,) and the proof of the 
theorem. [] 

The first corollary of this theorem is offered as an example of its application. 
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Corollary 1. I f  a, b, and c are positive integers with b + c even and a >~ b + c - 2 then 

) ' (K2a,b . , .  ) = l ( a  - -  1)(b + c -- 2). 

Proof. Observe that K2a,b ,c  = K2.  + Kb,c and apply part (i) of Theorem 1. [] 

The next corollary points to the fact that Theorem 1 gives an upper bound for an 
even order graph which has a large independent set of vertices, where 'large' is 
interpreted as containing approximately two-thirds of all vertices in the graph. 

Corollary 2. l f  G is a graph o f  positive even order 2n having independence number ~ and 

ifL~/ZJ >1 2n/3 then 7(O) <~ ( L ~ / z j  - 1 ) (n  - L ~ / 2 / -  1). 

Proof. This follows immediately, via Theorem 1, from the observation that the graph 

G, as described, is a subgraph of K2L~,,2j + K2 ,_  2b,2j, in which the order of the empty 
factor is at least twice that of the complete factor. [] 

In proving Theorem 1, the join of an empty graph with a complete graph was shown 
to have the same genus as the complete bipartite spanning subgraph provided the 
empty graph has roughly twice as many vertices as the complete graph. We will now 
show that this lower bound on the order of the empty graph can be reduced by 
restricting the second factor. In particular, we will show that if the second factor is 
a regular bipartite graph or any spanning subgraph of such a graph, the empty factor 
in the join need only have the same or larger order. Collections of proposition chains 
will be constructed to suit this purpose. 

If each edge of the complete graph K, is replaced by two oppositely directed arcs (or 
directed edges), the result is the complete symmetric digraph of order n which is 
denoted K*. Let us briefly consider the problem of decomposing K* into spanning 
directed paths and cycles as was done in the undirected case. When n is even, the 
decomposition of K, into spanning paths can be used to decompose K* into spanning 
directed paths. Simply create the obvious pair of directed paths from each undirected 
path. Similarly, the decomposition of K. into spanning cycles can be used to decom- 
pose K* into spanning directed cycles by creating two directed cycles from each 
undirected cycle. The remaining two cases were almost completed by Tillson [10] 
with the following result. 

Lemma 8. For 2n >~ 8, 
(i) K*,  can be decomposed into 2n - 1 directed spanning cycles and 

(ii) K*,_ 1 can be decomposed into 2n - 1 directed spanning paths. 

Bermond and Faber [2] then completed the task (from our perspective) by showing 
that (i) and (ii) of this lemma are false when 2n = 4 or 6. Thus our latest decomposition 
problem has the following solution. 
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Lemma 9. For n >~ 2, K* can be decomposed into 

(i) n - 1 directed spanning cycles, except when n = 4 or 6, and 

(ii) n directed spannin 9 paths, except when n = 3 or 5. 

Each of these decompositions corresponds to a collection of n-chains in which each 

couple appears exactly tw ice - -once  with each possible order. What do these repres- 
ent if interpreted as n-proposition chains with all links positively oriented? If the two 
links are fi = (ai, b3 and f j  = (at, b j), then the Couples formed by ... f i f j  ... and 
• .. f j  fi ... are biaj and bjai respectively. If we call the coordinates of a link its poles, 

then these collections of proposition chains form all opposite-pole Couples (i.e., a~bj 

and b~aj) and no same-pole Couples (i.e., neither a~aj nor b~b~). If we replace the 
complete collections of n-proposition chains in the proof of Theorem 2 with the ones 
just constructed, we will have proved the following. (Note, the partite sets of H are the 
set of north poles and the set of south poles of the cluster of spheres that hold the 
vertices of H.) 

Corollary 3. I f  m and n are positive integers and H is any spanning subgraph of  
K,, , ,  then 

(i) 7(K2m + H) = (m - 1 ) ( n -  1), provided m >1 n - 1 and n # 4,6 and 

(ii) y(mK2 + H) = (m - 1)(n - 1), provided m >>. n and n # 3,5. 

By setting m = n, in part (ii) of Corollary 3, and assigning the same collection of 
proposition chains to the spheres holding the vertices of mK2, and imbedding long 
diagonals in all remaining regions (centered on these spheres), we have a result first 
proved by Jungerman [6] using current graphs. 

Corollary 4. I f  n is a positive integer, with n # 3, 5, and G and H are spanning subgraphs 

of  K, , ,  then 7(G + H) = (n - 1) 2. In particular, ?(K ....... ) = (n - 1)2for n # 3,5. 

(Jungerman also proved that 'Y(K3,3,3,3) /> 5 and that 7(K5,5.5.5) = 16. White [13] 
used a voltage graph to complete the proof that '~(K3.3,3 ,3)  = 5.) 

Although the argument given prior to the statement of Corollary 4 is sufficient 
proof, a few comments are in order. This last result on the genus of joins is the only 
one in which the first factor has been allowed to be interesting. In the construction, 
envision the surface as two clusters of spheres joined together by a bundle of tubes. We 
use the fact that the order of attachment of these tubes to the spheres in one cluster is 
independent of the order of attachment to the spheres of the other cluster. Just as 
important in imbeddings which include long diagonals in regions centered in both 
clusters is the issue of consistent tube orientations. When accomplishing adjacencies 
among the poles within one cluster of spheres, not only must the order of attachment 
to the spheres of the other cluster be specified, the orientation of the tubes must also be 
specified. To accomplish adjacencies among the poles of the other cluster, we are free 
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to specify the order of tube attachment to spheres in the first cluster but the 
orientations of the tubes have already been fixed. What made the proof of Corollary 
4 go through was the fact that all tubes were positively oriented. Unfortunately, this 
will not be the case in Theorem 2. Thus, we are left with the task of first studying the 
pattern of orientations within tube bundles and how modifications of our collections 
of proposition chains affect these patterns. 

6. Theorem 2 and related results 

Theorem 2. I f  G is a nontrivial, connected (p, q)-graph with minimum degree at least 2, 
and H is a graph of positive even order 2n, then 7(G[H]) ~< nZq - n p  + l, with equality if 
G is triangle-free. 

Proof. The first step toward proving this result was taken with Lemma 4, in which 

G [K2,] was shown to have a quadrilateral imbedding in the surface S(G [K.] )  which, 
by Lemma 1, has genus n2q - np + 1. By specifying attachment orders and orienta- 
tions of tubes, similar to what was done in proving Theorem 1, we will be able to 
imbed diagonals in some of the quadrilateral regions to obtain an imbedding of the 

graph G[K2. ] in the same surface. Since G[Kzn] ~- G[H] ~_ GEK2J we will, by so 
doing, have shown that n2q - np + 1 is an upper bound for y(G[H]). Furthermore, if 

G is triangle-free, so is G [Kzn ]. This implies that 7(G [-Kzn]) = nZq -- np + 1 which, in 
turn, implies that 7(G[H]) = nZq - n p  + 1. Thus, the only bit of work remaining is to 

imbed G[Kzn ] in S(G [K,]) beginning with the quadrilateral imbedding of G EKzn] in 
this surface. 

Visualize the surface S(G [K,])  as being constructed from G by replacing each of its 
p vertices with a cluster of n spheres and each edge uv with a bundle of tubes joining 
each sphere in the u-cluster to every sphere in the v-cluster. In particular, in forming 

G[K,] from G, each vertex u~ V(G) is replaced with n vertices denoted 
U0, l /1 ,  U2 . . . .  , u,_ 1. The u-cluster refers to the spheres S(uo), S(Ul), S(u2) . . . . .  S(u,_ 1). 
For each edge uv ~ E(G), the uv-bundle refers to the set of tubes {T(ulvj): i,j ~ Z.). Each 
of these tubes carries the four edges which join the poles of one of its end spheres to the 

poles of the other. This is the quadrilateral imbedding of G[K2.].  Now, for each 
cluster, we must construct an imbedding which contains a collection of regions in 
which to imbed all edges (as diagonals of these regions) necessary to join all poles 
within the cluster to each other. Furthermore, this must be done so as not to interfere 
with the same process taking place for all other clusters. 

The first step is to separate tube bundles. For each vertex u ~ V(G) carry out the 
following procedure. Let degG u = d and recall that, by virtue of the minimum degree 
requirement on G, d ~> 2. Attached around the equator of each sphere S(ul) in the 
u-cluster are the tubes of d incident bundles. Partition each such equator into 
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d connected sections and assign the incident bundles to these sections; i.e., the tubes in 
a particular bundle are all attached to S(u~) within the same section and tubes in 
different bundles are attached to S(u~) within different sections of its equator. 

As a beginning to the process of imbedding the necessary additional edges, choose 
any point on the equator of S(ul) which separates two sections and imbed a short 
diagonal through the region (centered on S(ui)) which contains this point. Note that 
we will not need to imbed a long diagonal through this region as such a diagonal 
would join poles of spheres in different clusters. It remains to imbed edges which join 
poles of different spheres within the u-cluster. These must be long diagonals of regions 
centered on spheres within clusters adjacent to the u-cluster. 

Choose two vertices v,w ~ V(G) which are adjacent to u. Together, the v- and 
w-clusters contain 2n spheres. If we were allowed to ignore the part of the surface 
other than these three sphere clusters and the portion of the composition graph 
imbedded thereon, our problem would be one that has already been solved. That is, 
order and orient the tubes in the uv and uw-bundles by assigning each of the spheres in 
the v- and w-clusters an element of a complete collection of linear n-proposition 
chains. The result would be the imbedding of K4n + KZn , constructed in part (ii) of 
Theorem 1, with the vertices of the complete factor residing at the poles of the 
u-cluster and the vertices of the empty factor residing at the poles of the v- and 
w-clusters. Unfortunately, the tube orientations so assigned may not be those we 
might wish to assign these same tubes in attempting to imbed the edges joining the 
poles of the v-cluster to one another or those of the w-cluster to one another. This is 
the problem of conflicting orientation patterns mentioned above. In order to over- 
come this obstacle, we will reexamine our complete collections of linear n-proposition 
chains and modify them, if necessary, to meet the following criteria: that all bundles 
have the same orientation pattern and that this pattern be symmetric as defined below. 

In the surface S(G [-K,]), in which the graph G[Kzn ] has been imbedded, each tube is 
oriented by edges of the imbedded graph. Observe that each sphere cluster can be seen 
to represent Z,  under the natural correspondence. For example, in the u-cluster this 
correspondence is i +-~ S(ui). For each edge uv ~ V(G), the negatively oriented edges of 
the uv-bundle can be used to define two relations R,,v and Rvu on the set Z,. Namely, 
(i,j) ~ R,v if and only if the tube T(u~, vj) is negatively oriented. Similarly define R~,,. 
We will say the uv-bundle has a symmetric orientation pattern, or that it is symmetric if 
and only if the relation R,,, is symmetric. Thus, to say that the uv-bundle is symmetric 
is to say that R,~ = R~,. 

Before launching into a reconfiguration of collections of proportion chains, let us 
spend a little more time discussing relations. A relation on Z, can be given by 
(vertically) listing all elements of Z,, with each of these followed by a (horizontal) list of 
all elements of Z, related to it. Also, such a relation can be diagrammed using 
a bipartite graph with the partite sets representing the domain and codomain of the 
relation and the edges representing the related elements. Such a diagram is very much 
a picture of the orientation pattern of the corresponding tube bundle. Fig. 5 shows an 
example of a symmetric relation on Z6: 
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0~ 

l : l  

2 :2 ,4  

3 :3 ,4 ,5  

4 :2 ,3  

5 :3  

O 0  O 0  

3 3 

4 4 

5 5 

Fig. 5. 

If R is a relation on Z,, and i 6 Z , ,  define the neighborhood of i by Ni = 
{j: (i,j)~ R}. For instance, in the example just given, N2 = {2, 4}. It should be clear 
that reassigning the six neighborhoods to the elements of Z6 will result in an entirely 
different relation on Z6 which may not be symmetric. 

We are now in a position to complete the proof. Recall that our goal is to find, for 
each positive integer n, a complete collection of linear n-proposition chains together 
with an assignment of these to the spheres in the v- and w-clusters, so that the uv- and 
uw-bundles have identical symmetric orientation patterns. 

Case 1 (n odd): Refer to the collection of proposition chains constructed in case 3 of 
the proof of Lemma 7. Recall that we began with a double cover of K., oriented the 
links of each of the n elements of this double cover by positively orienting the first half 
of the links in each chain and alternating orientations of the remaining links, and 
finally created another set of n proposition chains from this first set by changing the 
orientations of all links. An alternate approach would have been to create the second 
set from the first, not by changing all orientations, but by reversing the order of links 
in all the proposition chains. That the second collection is complete, i.e., that the two 
collections are equivalent, can be verified by observing that the first n proposition 
chains of these collections are identical and that the second n are contrapositives. We 
will use this alternate collection by assigning the first n proposition chains to the 
spheres in the v-cluster so that the resulting orientation pattern for the uv-bundle is 
symmetric. Then the second set of proposition chains, whose links have exactly the 
same orientations as their counterparts, can be assigned to the corresponding spheres 
in the w-cluster to result in the uw-bundle having the same symmetric orientation 
pattern. Thus, we need only be concerned with making the uv-bundle symmetric. 

For each proposition chain, the list of negatively oriented links will be the neighbor- 
hood of the sphere (i.e., the corresponding element of Z,) to which it is assigned. 
Therefore the first n proposition chains in the complete collection supply us with 
n neighborhoods which will result in a symmetric relation when properly assigned to 
the elements of Z,. In the first proposition chain of the collection, the negative links 
are [-(n - 1)/4 7 consecutive elements of Z,. Since the remaining members of the 
collection are obtained by repeatedly adding 1 (mod n), n -  1 times, the set of 
neighborhoods from which our relation will be built consists of all possible sets of 
[ (n - 1)/4 7 consecutive elements of Z,. If [ (n - 1)/4 7 is odd (i.e., if n -- 3 or 5 (mod 8)) 
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10,0, 1 
0,1,2 
1,2,3 
2,3,4 
3,4,0 
4,5,6 

assign each of these neighborhoods to the element of Z,  which is the center of the 
neighborhood. 

For example, the relation for n = 11 would be 

0: 6 :5 ,6 ,7  
1: 7 :6 ,7 ,8  
2: 8 :7 ,8 ,9  
3: 9: 8,9, 10 
4: 10: 9, 10, 0 
5: 

0 :3 ,4  
1:4,5 
2 :5 ,6  
3 :6 ,0  

If, on the other hand [-(n - 1)/4-] is even (i.e., if n - 1 or 7 (mod 8)) assign each of 
these neighborhoods to the element of Z,  which is the center of the complement of the 
neighborhood. 

For example, the relation for n = 7 would be 

4:0,1 
5 :1 ,2  
6 :2 ,3  

If i,j ~ Z,  and d <~ n/2, then any relation R defined on Z,  by '(i,j) e R if and only if 
[i - j[ < d' is clearly symmetric. The relation given for n = 3 or 5 (mod 8) has this form 
and the one for n --- 1 or 7 (mod 8) is the complement of such a relation. Thus both are 
symmetric. 

Fig. 6 shows a diagram of the uv- and uw-bundles when n = 7. The three columns of 
vertices represent, from left to right, the v-, u-, and w-clusters of spheres. In each 
cluster, the spheres are numbered 0, 1, 2 . . . . .  6 from the top down. The assignments of 
proposition chains to the spheres in the v- and w-clusters are given to the far left and 
right, respectively. The edges represent the negatively oriented tubes. The missing 
edges are the positively oriented tubes. 

Case 2 (n even): Although case 1 in the proof of Lemma 7 was the easiest of the four 
cases, the complete collection constructed there cannot be used here since no amount 
of rearranging the corresponding neighborhoods will result in a symmetric relation. 
However, a few modifications will suffice. 

Recall that we began with a decomposition of K,  into n/2 spanning paths corres- 
ponding to n/2 linear n-chains. For each of these, the links were oriented in four 
different ways yielding four linear n-proposition chains. These orientations were (i) all 
positive, (ii) all negative, (iii) alternating with odd terms positive and even terms 
negative, and (iv) alternating with even terms positive and odd terms negative. (Also 
recall, in (iii) and (iv), even and odd refer to the position of the link in the chain.) As our 
first modification, replace all proposition chains having type (ii) and (iv) orientations 
with their contrapositives. Call these replacement orientations (ii') and (iv') and 
observe that, unlike the original four types, these involve a change in order from the 
initial collection of chains. A type (ii') proposition chain can be obtained from a type (i) 



D.L. Craft~Discrete Mathematics 178 (1998) 25 50 47 

6 0 5 1 4 2 3  3 2  4 1 5 0 6  

0 1 6 2 5 3 4  4 3 5 2 6 1 0  

1 2 0 3 6 4 5  5 4 6 3 0 2 1  

2 3 1 4 0 5 6  6 5 0 4 1 3 2  

3 4 2 5 i 6 0  0 6 1 5 2 4 3  

4 5 3 6 2 0 i  i 0 2 6 3 5 4  

5 6 4 0 3 1 2  2 1 3 0 4 6 5  

Fig. 6. 

proposition chain by writing the oriented links in the opposite order. The same 
relationship holds for type (iii) and (iv') proposition chains. Thus the collection of all 
type (i) proposition chains together with all type (iii) proposition chains represents the 
same set of (relation) neighborhoods as does the collection of all proposition chains 
with the modified orientations. We now concentrate on further modifying the 6) & (iii) 
collection with a view toward rendering the corresponding relation symmetric. Suc- 
cess in this endeavor will also render the relation corresponding to the (ii') & (iv') 
collection symmetric as well, under analogous modifications. 

The following is an example of the various types of proposition chains derived from 
the 6-chain 015243 :  

6) 0 1 5 2 4 3  (ii) 0 1 5 2 4 3  (ii') 3 4 2 5 1 0  

(iii) 0 i 5 2 4 3 (iv) 0 1 5 2 4 3 (iv') 3 4 2 5 1 0 

Consider the type (i) and (iii) proposition chains in the preceding example. The 
associated neighborhoods are o and { 1, 2, 3}. Notice that the set of Couples formed by 
these two proposition chains can be formed by any two proposition chains with the 
same underlying chain provided the links 0, 5, and 4 are positively oriented in both 
and the links 1, 2, and 3 are oppositely oriented in the two proposition chains. For 
example, 0 1 5 2 4 3 and 0 i 5 2 4 3 form the same Couples as do 0 1 5 2 4 3 and 0 1 5 2 4 3. 
Thus, in modifying the (i) & (iii) collection in constructing a symmetric relation, the 
neighborhood N from a type (iii) proposition chain and the empty neighborhood from 
the corresponding type (i) proposition chain can be replaced by any pair of disjoint 
sets whose union is N. 

In general, the neighborhoods corresponding to the type (iii) proposition chains are 
Mi = {i,i  + 1, ... , k  + i - 1} for i = 1,2 . . . . .  k where k = n/2. By splitting each of 
these into two pieces and assigning them to the elements of Zn, we have the following 
relation R(k), defined in terms of its neighborhoods. 

No = 0, N 1 = {1}, 

N i = { i } w { k + l , k + 2  . . . . .  k + i - 1 }  for i = 2,3, ... ,k, 

N i = { i - k + l , i - k + 2 , . . . , k }  f o r i = k + l , k + 2  . . . .  , n - 1 .  
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Observe that N o w N  k = M k ,  and N I U N k +  i = Mi for i = 1,2 . . . .  ,k - 1. Thus, we 
have demonstrated that we can construct a complete collection of linear n-proposition 
chains and divide it into two equal parts so that each part corresponds to the relation 
R(k) just defined. We proceed by induction to show that R(k) is symmetric for all 
positive integers k. First note that R(1) = {(1, 1)} which is clearly symmetric. The 
reader can visually verify symmetry in the smallest three cases in Fig. 7. 

Now let n = 2k and assume that R(k - 1) is symmetric for some fixed k/> 2. Define 
a relation q ) R ( k - 1 )  on Z,  as the image of R ( k - 1 )  under the mapping 
~O:Zn- 1 x Z n _  1 -.--4ZnXZ n defined by q~:(i,j) ~-, (i + 1,j + 1). Note that symmetry is 
preserved under this mapping. A careful comparison of q~R(k - 1) and R(k) reveals 
that q~R(k - 1) _~ R(k) with R(k) - q~R(k - 1) consisting of (1, 1) and the symmetric 
pairs (i, k + i - 1) and (k + i - i, i) for i = 2, 3 . . . . .  k. Thus R(k), as the disjoint union 
of symmetric relations, must also be symmetric. 

As an example, Fig. 8 shows the uv- and uw-bundles when n - 6. The three columns 
of vertices represent, from left to right, the v-, u-, and w-clusters of spheres. In each 
cluster, the spheres are numbered 0, 1, 2, . . . ,  5 from the top down. The assignments of 
proposition chains to the spheres in the v- and w-clusters are given to the far left and 
right. The edges represent the negatively oriented tubes. The missing edges are the 
positively oriented tubes. 

This completes case 2 and the proof of Theorem 2. [] 

A straightforward application of the famous theorem by Battle et al. [1] gives the 
following generalization of Theorem 2. 

Corollary 5. Let  G be a (t9, q)-graph containin9 no vertices o f  degree 1 and let H be 

a 9raph o f  positive even order 2n. I f  G contains rn isolated vertices and has k nontrivial 
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connected components then 7(G[H]) ~< mT(H) + n2q - n(p - m) + k with equality if 

G is triangle-free. 

The following three corollaries are offered as examples of the utility of Theorem 2. 

Corollary 6. For integers m >1 4 and n >1 3, 

7(Cm['C2n]) = n2m -- n m +  1. 

Corollary 7. For positive integers m and n, 

)'(Q,~[Q,]) = m '2  m+2"-3 - 2 m+"-I + 1. 

Corollary 8. For integers m, n, a, and b with m, n >~ 2 and a + b = 2k, 

7(K,~,,I-K~.bI) = mnk 2 - 2(m + n)k + 1. 

The next result follows from Theorem 2 in much the same way that Corollary 
3 followed from Theorem 1, replacing the complete collection of proposition chains 
with the one used in part (ii) of Corollary 3-- resul t ing  in all positive tubes. The 
elimination of the minimum degree requirement (compared to Theorem 2) is due to 
the smaller order of H as well as the uniformity of tube orientations. It is presented 
without further proof. 

Corollary 9. l f  G is a nontrivial, connected (p, q)-graph, and H is any spanning subgraph 

of  K, , ,  then ?(G[H]) ~ n2q - n p  + 1, with equality if G is triangle-free. 

Our last result is simply a particular application of Corollary 9. 

Corollary 10. I f  T is a nontrivial tree o f  order p and n is any positive integer, then 

7 (T[K, . , ] )  = nZ(p - 1) - np + 1. 
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