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Improved cubature formulae of high degrees of exactness
for the square
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Abstract

The method of constructing minimal cubature rules with high algebraic degrees of exactness is developed by
adapting a powerful algorithm for solving the system of nonlinear equations. As a result, new cubature formulae
of degrees 15, 17, 19, 21, and 23 are derived for the square. They lead to lower numbers of knots and/or to better
quality with respect to those known previously. The formulae obtained should be considered as the most efficient
for the calculation of two-dimensional integrals with a high precision.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The necessity of performing two-dimensional integration appears in many mathematical and physical
applications. Only in rare cases this integration allows an analytical representation. The approximation
of integrals is one of the corner stones of numerical analysis. It is also an important step in methods on
solutions of integral equations. Despite intensive previous studies [2–4,10,11,17–19], the construction of
high-quality integration rules still remains a current problem.

Functions are usually approximated by weighted sums of simpler functions, such as monomials or
splines. Similarly, an integral is typically approximated by a weighted sum of integrand evaluations. In
the case of one dimension this approximation is called a quadrature formula. The most notorious example
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is the famous Gaussian quadratures [1,20]. The Gaussian approach is the basic tool to carry out one-
variable integration with a high precision and minimal computational costs. In two or more dimensions
we come to so-called cubature formulae.

There exists no unique best criterion for the choice of weights and points in the integral approximation.
The generally accepted rule is that this choice should provide the exact integration for a class of integrands
in the form of polynomials of a certain algebraic degree. In particular, the NG-point Gaussian quadrature
is exact for all one-dimensional polynomials of degree at most P = 2NG − 1. Analogously, in the case
of two variables it is necessary to construct an N -point cubature scheme which would be perfect for all
two-dimensional polynomials with the maximal total degree P . In order that cubature rule is efficient,
the number N of points should be as small as possible for each given value P .

Up to now, the lowest possible number Nmin of points (knots) is unknown, in general. For example,
for orders P > 11, there is a gap between the highest known lower theoretical bound Nmin and the
lowest number N of knots in known cubature formulae [4,12]. Moreover, only for low orders P < 11,
the positions of knots at N ∼ Nmin can be presented analytically or expressed in terms of common
zeros for sets of orthogonal polynomials in two dimensions [17,19]. This is in a sharp contrast to the
one-dimensional case, where the nodes of the Gaussian quadrature can be associated for any P with
zeros of orthogonal Legendre polynomials [1,20]. In two dimensions, the nonlinear equations, which
appear when constructing the cubature rule of a high degree, become too complicated to be analyzed
theoretically, and the only way is to solve them numerically using one or the other algorithm.

Note that the straightforward scheme, based on the product of two Gaussian quadratures to yield a
cubature formula, is very inefficient for large P as the resulting number N2

G = (P + 1)2/4 of knots
will significantly exceed the minimal value Nmin. Among other theoretical approaches it is necessary
to mention the method of reproducing kernel [24]. This method gives a relatively simple presentation of
knots in terms of zeros of polynomials for, in principle, arbitrary values of P . However, only for small
degrees P�9 the number of nodes will be close to the lower bound. With increasing P this number
quickly tends to the Gaussian product limit N2

G.
It should be emphasized that the knots of a cubature formula must lie inside the domain (which always

can be reduced to a square) of the integration in order to be useful in practical applications. Unfortunately,
beginning from relatively small degree P = 15, all the known cubature rules over the square with the
lowest numberN of knots do not meet this requirement [5,6]. Moreover, for P �15 there is a considerable
gap between N and Nmin.

The main aim of the present investigation is to remedy such a situation. Developing a powerful algorithm
for solving the nonlinear equations allows us to obtain new efficient cubature formulae of high algebraic
degrees of exactness. These formulae contain smaller numbers of knots and lead to a better precision in
comparison with those known earlier.

2. Theory

According to the cubature formalism, the integral of a function is approximated by the sum of its
functional values at a set of points, multiplied by weighting coefficients. In the case of two dimensions,
the region of integration can always be reduced by an appropriate replacement of variables to the square
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with boundaries −1 and 1. Then the N -point cubature formula reads

∫ 1

−1

∫ 1

−1
f (x, y) dx dy =

N∑
i=1

wif (xi, yi) + RN , (1)

where wi and (xi, yi) are the weights and positions of knots, respectively. In general, the truncation errors
RN cannot be reduced to zero at any finite numbers N . Because of this, it is quite natural to choose the
knots and weights in such a way to make the cubature formula (1) exact (RN =0) for a class of integrands
composed of all algebraic monomials xkyl with degrees k + l�P . This is justified by the fact that an
arbitrary differentiable function of two variables can be expanded in these monomials as

f (x, y) =
k+l �P∑
k,l=0

aklx
kyl + RP , (2)

where akl =(1/k!l!)�k�lf/�xk�yl|(0,0) are the constants, and the remainder RP decreases with increasing
the order P of the polynomial.

Therefore, we are concerned with cubature formulae that are exact for a vector space of all two-
dimensional algebraic polynomials with the total degree at most P . This leads to the necessity of numer-
ically solving the following system of nonlinear equations:

N∑
i=1

wix
k
i yl

i = gkl, k + l�P , (3)

where

gkl =
∫ 1

−1

∫ 1

−1
xkyldxdy =

{ 2

k + 1

2

l + 1
, for even k and l,

0, otherwise.

For each given order P , there exists some minimal value Nmin beginning from which (N �Nmin) the
system (3) can have (real) solutions. Despite intensive studies, the lowest possible number Nmin of knots
is still unknown, in general. For example, for orders P > 11, there is a gap between the highest known
[4,12] lower theoretical boundNmin=(P +1)(P +3)/8+[(P +1)/4] (where [ ] denotes the integer part)
and the lowest number N of knots in known cubature formulae (see below, Table 1). Another difficulty
is that the total number L = P(P + 3)/2 + 1 of equations in (3) increases too rapidly with raising P

and the system can be actually solved only at relatively small orders P�11. Note that the solution of the
system of nonlinear equations presents a very complicated task. When the number of equations becomes
too large we come to unresolvable numerical problems.

A way to reduce the number of equations consists in imposing a symmetry on the knot positions (xi, yi).
This should reflect the symmetry of basic equations (3) following from the properties gkl=glk and gkl=0 if
k or l or both are odd.Although, the fully symmetric schemes (with eight knots (±xi, ±yi) and (±yi, ±xi)

for each i) will correspond to the smallest system of equations, they cannot be recommended (at least
for orders P�23) because the total number N of knots appears to be considerably larger than Nmin. It is
worth emphasizing that we are interested in constructing the most efficient formulae of high degrees P

with the lowest possible value of N . In this respect, the rotational symmetry approach [9] seems to be
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Table 1
Properties of cubature rules for orders up to 23

P L L∗ L̂∗ Nmin N2
G N Type M∗ O∗ N∗

1 3 1 0 1 1 1 (PI) [19] I 0 1 1
3 10 2 1 4 4 4 (PI) [19] II 1 0 4
5 21 5 3 7 9 7 (PI) [19] II 2 0 8
7 36 8 5 12 16 12 (PI) [19] II 3 0 12
9 55 13 8 17 25 17 (PI) [17] I 4 1 17

11 78 18 12 24 36 24 (PI) [8,23] III 6 0 24
13 105 25 16 31 49 33 (PI) [8] I 8 1 33
15 136 32 21 40 64 44 (NO) [19] II 11 0 44
17 171 41 27 49 81 57 (NO) [7] II 14 0 56
19 210 50 33 60 100 68 (NO) [21,22] II 17 0 68
21 253 61 40 71 121 85 (NO) [16] I 20 1 81
23 300 72 48 84 144 112 (NI) [21] III 24 0 96

optimal among others (full, central, and axes symmetries, etc.). It involves four knots (xi, yi), (−yi, xi),
(−xi, −yi) and (yi, −xi) for each i with the same weight wi . Then

N∑
i=1

wif (xi, yi) ≡
M∑
i=1

wi[f (xi, yi) + f (−yi, xi) + f (−xi, −yi) + f (yi, −xi)] (4)

where (0�xi �1, 0�yi �1) are the generators, and N = 4M . The knots of the rotationally invariant
cubature formula (4) lie, in fact, in N vertices of M different squares rotated with respect to the basic
square region of integration.As a result, a significant part of equations in (3) will be satisfied automatically.
In particular, the symmetrized expression (4) tends to zero when f (x, y) is an arbitrary monomial xkyl

of odd order p = k + l. For this reason, the degree of rotationally invariant cubature formulae can accept
only odd numbers. It is necessary to point out that no cubature formulae of even degree have been found
for P > 9 within any symmetry. Moreover, the minimal number of knots Nmin =12, 17 and 24 for orders
P = 7, 9 and 11, respectively, can be reproduced [8,17,19,23] within the rotationally invariant scheme.

In view of the rotational symmetry, system (3) of nonlinear equations transforms to the form

2
M∑
i=1

wi(x
k
i yl

i + (−1)kyk
i xl

i ) = gkl, k + l�P − 1, (5)

where P should be odd, k + l should be even and k� l (excluding the case k = l for odd k). These
restrictions reduce the number of equations significantly, namely, more than 4 times (for P > 1), from L
to L∗�L/4 (see Table 1). Theoretical studies of system (5) at N ∼ Nmin is possible only for low orders
P �9. In particular, for P = 1, 3, and 5, the solutions can be presented analytically. For P �9 the nodes
(xi, yi) can be expressed in terms of common zeros for sets of orthogonal polynomials in two dimensions
[17,19]. No analytical results are known at N ∼ Nmin for P > 9. Here, the nonlinear equations become
too complicated and the only way is to solve them with the help of a numerical algorithm.
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Our investigations have shown that the minimal number N∗ of knots related to system (5) can be
achieved if the number of unknowns Q∗ is equal to the number of equations L∗. The number of unknowns
is equal to Q∗ = 3M if, in general, xi �= yi �= 0 for all square generators i = 1, 2, . . . , M . Then L∗ = 3M

and such solutions will be referred to as type III. For L∗ = 3M − 1, we should decrease the number of
unknowns on one. This can be done by letting either xM �= yM = 0 (type IIA), or xM = yM �= 0 (type
IIB). The number of knots corresponding to types IIA, IIB, and III is equal to N∗ = 4M ≡ 4M∗. Finally,
when L∗ = 3M − 2, we should put xM = yM = 0 (type I). Here, all the four rotational symmetry knots
collapse in the central point (0,0), and the corresponding four terms in the right-hand side of Eq. (4) at
i = M can be cast simply as 4wMf (0, 0) ≡ w0f (0, 0). So the total number of nodes will be actually
equal to N∗ = 4M∗ + O∗ with M∗ = M − O∗ and O∗ = 1. The numbers L∗, N∗, and M∗ as well as the
central point indicator O∗ are collected together with L, Nmin, and N2

G in Table 1 up to order Pmax = 23.
The best results for the lowest number N of knots in previously known cubature formulae and the

corresponding references are also shown in the table. The quality of these formulae is presented too using
an abbreviated notation with two letters. The first letter indicates that either all the weight coefficients are
positive (P) or at least one of them is negative (N). The second letter points out that either all the knots are
located inside (I) the integration region or at least one knot is outside (O) of that region. In this context, it
should be emphasized that cubature formulae with outside knots are, rigorously speaking, unacceptable,
because the function f (x, y) can be undetermined outside the region of integration. Another disadvantage
is that such formulae lead to a very poor precision in actual applications. Indeed, in view of Eqs. (1)–(3),
the error of integral approximations within the cubature approach is

EP =
∞∑

k+l=P+1

akl

(
N∑

i=1

wix
k
i yl

i − gkl

)
. (6)

When |xi | > 1 or |yi | > 1, this error may be very large (or even the sum in Eq. (6) over k and l be
divergent at all) because then limk→∞|xi |k = liml→∞|yi |l = ∞, whereas limk,l→∞gkl = 0. The outside
schemes can thus be used only for sufficiently “flat” integrands for which the partial derivatives akl =
(1/k!l!)�k�lf/�xk�yl|(0,0) tend to zero rapidly with increasing p = k + l. On the other hand, the inside
(|xi | < 1 and |yi | < 1) cubature formulae are free of this restriction since then limk→∞xk

i = liml→∞yl
i =0

like limk,l→∞gkl = 0. They lead to a much more precise integration with a negligible small remainder
EP . Further, the cubature rules with all positive coefficients are more accurate with respect to those where
some weights are negative. The negativeness usually indicates that the cubature formula is overloaded,
i.e., its number of knots exceeds the possible minimum. From the aforesaid, the NO and PO schemes
should be treated as the worst, the NI as acceptable, and the PI formulae as the best.

As can be seen from Table 1, beginning from a relatively small order P = 15, all the known cubature
rules with the lowest number N of knots do not meet the high (PI) quality standard. Most of them
(P = 15, 17, 19, 21) are of the worst (NO) quality. The NI scheme with P = 23 is unsatisfactory as well
in view of the too high value N= 112 which exceeds considerably the lowest possible number N∗ = 96
of knots corresponding to the rotational symmetry approach. For orders P = 17 and P = 21 there is also
a gap between N and N∗. Therefore, significant improvements in the two-dimensional integration may
be achieved by finding actual (inside) solutions to Eq. (5).
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3. Algorithm

As has been demonstrated above, up to now there are no satisfactory cubature formulae for degrees
P > 13. Moreover, in spite of the fact that the speed of computers has increased in several orders, no
new achievements on the cubature rules for the square have been reported during the last 10 years. Our
previous intensive attack on the system of polynomial equations using standard methods (see below)
also resulted in no improvements. We then came to a conclusion that the development of more efficient
algorithms plays a much more important role in solving the problem considered than the growing speed
of modern computers.

Many algorithms and computational strategies have been used over the years to handle nonlinear
equations. Almost all of them are reduced to the application of conjugate-gradient type schemes and
the well-known Newton method. The latter method exhibits a fast convergence of the iterations, but
requires a very good initial approximation to the solution. With increasing the number of equations and
their nonlinearity, the region of convergence decreases dramatically. The conjugate-gradient schemes are
more stable, but the convergence of the iterations becomes very slow when the number of equations
increases. Moreover, both approaches require the knowledge of derivatives of the equations with respect
to unknowns.

Quite recently, a method of modified direct inversion in the iterative subspace (MDIIS) has been
proposed [14] to solve complicated systems of nonlinear constraints appearing in the integral equation
theory of liquids. It has been shown that the convergence of the iterations can be accelerated drastically
with respect to other known algorithms. This convergence was observed almost for arbitrary initial guesses
and was not so sensitive to increasing the number of equations. For this reason, it is very enticing to try
to develop the MDIIS method in the context of the cubature theory.

The first step consists in reducing the system (5) of L∗ polynomial equations to an equivalent system
with the smallest possible number L̂∗ of nonlinear constraints. This indeed can be realized, because
the weights wi (i = 1, 2, . . . , M∗ + O∗) enter into the polynomial equations (5) linearly. Then the first
M∗ + O∗ equations can be treated as a linear system with the knots (xi, yi)|i=1,...,M ≡ si |i=1,...,2M∗+O∗
being at the moment as parameters of that system. Whenever it is necessary, this system can readily be
solved with respect to wi using a linear solver, for instance, the well-recognized Gaussian elimination
(that gives exact solutions in of order (M∗ +O∗)3 elementary steps without applying any iterations). The
obtained values of wi are further substituted into the rest polynomial equations. As a result, we come to
the system

R�(s1, s2, . . . sL̂∗) = 0, � = 1, 2, . . . , L̂∗ (7)

of L̂∗ = L∗ − M∗ − O∗ ≡ 2M∗ + O∗ nonlinear equations with the same number of unknowns si
(i = 1, 2, . . . , L̂∗).

Let s
(�)
i be an approximation to the solution si obtained after the �th iteration in the course of the

iterative process. The MDIIS approach claims that a much better approximation can be achieved by using
the linear combination

ŝ
(�)
i =

m∑
�=1

c�s
(�−�+1)
i (8)
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of vectors s
(�−�+1)
i corresponding to the m last iterations (�=1, 2, . . . , m). The coefficients c� are defined

by requiring the corresponding linear combination of the residuals,

R̂(�)
� =

m∑
�=1

c�R�

(
s
(�−�+1)
1 , . . . , s

(�−�+1)

L̂∗

)

≡
m∑

�=1

c�R
(�−�+1)
� , (9)

provides a (local) minimum for the vector norm

� = min

√√√√√ L̂∗∑
�=1

(R̂
(�)
� )2 (10)

and are subject to the additional constraint
∑m

�=1c� =1. This leads to the system of m+1 linear equations
for the expansion coefficients,⎛

⎜⎜⎝
S11 . . . S1m −1
...

...
...

...

Sm1 . . . Smm −1
−1 . . . −1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c1
...

cm

�2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
...

0
−1

⎞
⎟⎟⎠ , (11)

where

S�� =
∑

�

R(�−�+1)
� R(�−�+1)

� (12)

is a scalar product of the residual vectors, and �2 is a Lagrangian multiplier yielding the squared norm of
the minimized residual components (9). The next idea is based on the fact that the extrapolated residual
vector R̂� is perpendicular to the (m − 1)-dimensional plane passing through the points specifying the
basic residuals R�. Thus this vector can be a reasonable approximation of the direction to the global (zero)

minimum (
∑L̂∗

�=1R
2
� = 0), i.e., to the L̂∗-dimensional point (s1, . . . , sL̂∗) of solution to system (7). Then

the next MDIIS iteration will read

s
�+1
i = ŝ

�
i + �R̂(�)

� , (13)

where � �= 0 is the relaxation parameter to be adjusted for the best convergence. The iterative procedure
starts with one set of the residuals, sequentially incrementing the MDIIS matrix size up to m × m, and
thereafter discarding the earlier predictions.

The quantity m should be of order of the number L̂∗ of equations to properly generate the direction
to the global minimum. For instance, in the case of L̂∗ pure linear equations, the MDIIS procedure
exactly converges to the solution in L̂∗ + 1 iterations independently of � �= 0, provided m = L̂∗ + 1.
For smaller m < L̂∗ + 1, the number of iterations will increase. In the case of a large number L̂∗?1
of nonlinear equations, the situation is different. On the initial stage of the iteration process, where the
current approximations are far from the solution, we should decrease m to ∼ L̂∗/2 to extend the region of
convergence. Here the precision of determining the current direction to a minimum is not so important,
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but the computational time per iteration will decrease significantly (note that this time is proportional to
m3 due to the inversion of matrix S�� needed to evaluate the expansion coefficients c�). On approaching
the solution (where the nonlinear equations allow more and more linearization), the value m can be
consecutively increased first to 2/3L̂∗, say, and further up to L̂∗ in order to minimize the number of
iterations.

From the mathematical point of view, the relaxation parameter � should be chosen in a way to minimize

the one-variable function �(�+1)(�)=∑L̂∗
�=1R

2
�(ŝ

�
1 +�R̂

(�)
� , . . . , ŝ

�

L̂∗ +�R̂
(�)
� ). This requires, however, sig-

nificant extra computational costs at each iteration. Moreover, the location of a minimum of �(�+1)(�) may
have nothing to do with the point of solution if the current approximation is far from it. A similar situation
arises in conjugate-gradient-type schemes. In this respect, the MDIIS method is close to them but should
be considered as more preferable because of the acceleration of iterations by the additional minimization
of the linearized construction of the residuals. Moreover, unlike the gradient and Newton approaches, the
MDIIS method does not require the calculation of derivatives. This reduces the computational efforts.

In practice, the optimal value of � is determined for a given system by a particular ratio between the
scales of the residual functions R� and their arguments si . To better linearize the residuals in the region
of the next (� + 1)th iteration, it is desirable to provide the updating term �R̂

(�)
� in Eq. (13) such that the

corresponding change R
(�+1)
� − R̂

(�)
� is close in magnitude to the minimized residual R̂

(�)
� . In the region of

quadratic convergence (when the iterated predictions are close to the solution and the nonlinearity allows
a linearization) the effect of varying � vanishes like in the pure linear case. In the case of nonlinear system
(7) it has been established that the above criterion is reached when � ∼ 1 for any L̂∗. We used the value
� = 1 in all our calculations.

It should be stressed that outside a quadratic region of the convergence, the root mean square value of
the current residual

R
(�) =

√√√√√ 1

L̂∗

L̂∗∑
�=1

(R
(�)
� )2 (14)

does not necessarily decrease monotonically with iterations. The residual at the new prediction, which
is even somewhat larger than the previous one, updates and improves the representation of the residual
functions by the MDIIS vectors. Such a rise is usually followed by a substantial drop of the residual
magnitude at the next steps. However, if the root mean square residual calculated at the next point appears
to be essentially larger (three orders of magnitude, say) than the smallest value of those for the last m

MDIIS vectors, i.e., R
(�+1)

> KR min(R
(�)

, R
(�−1)

, . . . , R
(�−m+1)

) with KR ∼ 103, it is worthwhile
to restart the MDIIS procedure from the point of the smallest residual because the old MDIIS vectors
no longer model the behavior of the residual function properly. The procedure should also be restarted
if the MDIIS predictions do converge to the solution to within a given precision after a significantly
large number of iterations. This usually means that initial guesses where chosen outside the region of
convergence and they should be regenerated.

In our case, the initial guesses for si were generated at random within the interval [−1, 1] in each of
the L̂∗ dimensions. In such a way, after several days of continuous attacking the system of nonlinear
equations (7) (for each given degree P ) on a Silicon Graphics Origin 3800 workstation, the desired
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solutions have been found. We have used a high-speed Intel Fortran compiler within the double precision
(sixteen significant digits) and limited the initial accuracy of the calculations to R�10−12.A few additional
Newton’s iterations have been performed in each case to reduce the residual to a negligible small level of
R�10−200. For this we have employed the Maple 9 package with up to 200 digits for internal computations,
taking the solutions obtained already in Fortran as initial guesses. All the numerical results will be shown
with 32 significant digits.

4. Results

We have successfully reproduced the known rotation invariant cubature rules for degrees P = 1, 3, 5,
7, 9, 11, and 13. Such rules can be found in Refs. [6,8,17,19,23] (see also Table 1) and they will not be
shown in this paper to save space. Only new cubature formulae of higher degrees P = 15, 17, 19, 21,
and 23 will be presented and compared with previous schemes. For some values of P , the system (5)
of nonlinear equations can have two or more solutions. In particular, the cubature rule related to type II
(see Table 1) can provide us with solutions of subtypes IIA and IIB (they will be marked below simply
as A and B). We will try to mention about all possible ones (PI, NI, PO, and NO). In such a situation, the
preference will be given to an optimal (PI) cubature formula which leads to the smallest norm

EP =

√√√√√k+l=P+1∑
k,l

(
N∑

i=1

wix
k
i yl

i − gkl

)2

(15)

of the main term of uncertainty (6) (the quantity EP presents in fact the norm of residuals corresponding
to the next degree P + 1). The total number of PI solutions found will be indicated as well.

Due to the rotational symmetry (4) of cubature formulae derived, we will present only basic coordinates
0�xi �1 and 0�yi �1 of each knot square i in the order of increasing its weight wi . The rest three
coordinate pairs can readily be generated as (−yi, xi), (−xi, −yi), and (yi, −xi). So that writing the
solution in the form (wi; xi, yi) we will have in mind all the four coordinate pairs for each i with the same
weight wi . From the symmetrical properties it follows that if (wi; xi, yi) is a solution to the nonlinear
system (5), then (wi; yi, xi) (where xi and yi are interchanged for all i) is also a solution to that system.
In other words, each rotationally symmetric cubature formula may have its symmetrical counterpart.
The number of counterparts can increase from one to three for solutions of type A, where xi∗ �= 0 and
yi∗ = 0 for some number i∗. This follows from the fact that replacing (wi∗; xi∗, 0) by (wi∗; 0, xi∗) and
do not changing all the rest (i �= i∗) knot square generators (wi; xi, yi) also lead to a solution, because
the system of nonlinear equations (5) is invariant to the above transformation. All the counterparts are
completely equivalent and thus indistinguishable within the cubature formalism.

A. Order P = 15

For P = 15 the best cubature rule known before our investigations was the PI formula with 48 points
[19] (the NO formulae with 44 points [19] should be ignored because of outside solutions).
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Table 2
New formula of degree 15 with 44 points

wi xi yi

0.20881470204497523521771058289754E–1 0.98798456650771809034922121236542 0.77126821223875533899886933446485
0.25545901574497276542640153395248E–1 0.90815949600657000212015099547736 0.95703183434690690872237176442598
0.31203866624933300871149690867662E–1 0.67928365833453304991325391003325 0.88260197593087253601344445274335
0.38010761595074827467645518285610E–1 0.50911373411758353514778637359508 0.97120312974183699854692313856226
0.41449061852426148002787373214871E–1 0.97675332466910190352385200798077 0.83559862608781647288448365846813E–1
0.79320407004083334044710201039891E–1 0.75619936719149244012005066365912 0.75619936719149244012005066365912
0.88901265758751523303980720079987E–1 0.89778569328633877480008574782677 0.46676265923796434848237353795400
0.12016982158206027507823569713056 0.20599307074252141729418963873618 0.84079448454078540426562160968883
0.16882043410639799754153511014621 0.45144312511299139017533875886564 0.56245686233219940637540066298377
0.16987162497336185160489786440053 0.66683824538360873834071399129626 0.19046630243571720761679616635243
0.21582538472391594202064661314968 0.74295704755765822553432311307323E–1 0.32397702249753019818251854432752

Table 3
New formula of degree 17 with 56 points

wi xi yi

0.10693483986974526468925667171638E–1 0.83395914422050762595707520328329 0.99690134998258294114169765276688
0.16771622989325482379964908559201E–1 0.96701240760377864958940778776159 0.92101565015369642619085740576658
0.21520834803173017585623196363995E–1 0.98651441086033068583570701960810 0.56251780244667252352153081833715
0.24893201532665059892584476318209E–1 0.17035060808995408160378979789427E–1 0.98204914256843033449712481990261
0.42463258472030940473501779894230E–1 0.42523896522453030941022314252505 0.95796453236865195741899809390262
0.53711265037645010830029221647514E–1 0.88194109089215356624316729768736 0.74117688569732509081061208741447
0.54579479693382460849318673206721E–1 0.69978907719058600912388980227382 0.88728024293255774907349992409998
0.67375653622461385504403959336007E–1 0.90858412958838344797723547617253 0.25843122151820770173022364732347
0.98025282885102299426881768287454E–1 0.73933759205292015806620475085721 0.47295583257297618882242532468520
0.98325651584666601742691443856667E–1 0.21246155837885419289305793553062 0
0.10576898319665727200249259468733 0.15644172095846342514322716437912 0.81259212523912311994061744159953
0.10593453574575401283483020818374 0.50398563819427997044830482422504 0.68201093297792530795370853308359
0.14990405484916921950315250394890 0.58243895074467257078462336257058 0.11846544560647891209927499369579
0.15003269160099271050559959853839 0.28970323065541272212557470108155 0.40876985953794338411643329876836

Instead, we have found 5 PI solutions of type A and 11 PI solutions of type B with 44 points each (it
seems that no other PI solutions exist). Some NI, PO, and NO have also been identified. The optimal PI
solution, that minimizes the error norm EP , appears to be of type B. It has the form as shown in Table 2.

The CPU time spent per solution was t = 40 s.
The new formula reduces the number of knots within the inside solutions from 48 to 44 and improves

the quality from the worst NO to the best PI within 44 knots.

B. Order P = 17

For P = 17 the best cubature rules known earlier were the PI formula with 60 points [13] and the NO
formula with 57 points [7] (the latter should be ignored because of outside solutions).

Instead, we have found 4 PI solutions of type A and 5 PI solutions of type B (some NI, PO, and NO
have also been identified). The optimal PI cubature that minimizes the error norm EP appears to be of
type A. It is presented in Table 3.

The CPU time spent per solution was t = 15 min.
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The new formula reduces the number of knots within the inside solutions from 60 to 56, improves the
quality from the worst NO at 57 points to the best PI with 56 knots, and updates the lower boundary limit
to N = 56.

Note that beginning from this order, one cannot guarantee that all possible solutions have been recog-
nized. This is because of the rapid increase in the CPU time, t , (up to t = 15 min for P = 17) spent to
figure out at least one solution. However, on attacking the system on a computer during significantly long
time (T = 7 days in our case), one can say with a great probability (because T?t) that we have found
almost all solutions and chosen among them the nearly optimal set.

C. Order P = 19

For P = 19 the best cubature rules known previously were the NO and PO formulae with 68 [21,22]
and 72 [13] points, respectively. However, they both contain outside knots and should be considered as
unapplicable.

Instead, we have found the PI solution with 68 points (Table 4).
This solution has been obtained in t =5 hours (and no others were found during the whole run of T =7

days).
The new formula improves the quality from the worst NO to the best PI within 68 points.

D. Order P = 21

For P = 21 the best previous cubature rules were the NO [16] and PO [13] formulae with 85 and 88
points, respectively. Again, they contain outside knots and should be considered as useless.

Instead, we have found the PI solution with 81 points (Table 5).
This solution has been obtained in t = 5 days.

Table 4
New formula of degree 19 with 68 points

wi xi yi

0.42157189312457273371400997162954E–2 0.93790944060174636724164305692148 0.99998546072852907260205380652647
0.99237601014741223600089798896376E–2 0.59787966519157168521483636741590 0.98732847941781540087026300838966
0.15078678879581549295330034135223E–1 0.96865781747798834472115427804246 0.89837495163532572964949889543009
0.15121496864822956266676863866018E–1 0.98871713276447330663578670732177 0.62259634389530287767136776393609
0.23821621047339582724750103846036E–1 0.98398534132338386681313796251589 0.81109463487824943619725131193050E–1
0.28746437252189671047629194361029E–1 0.36585775934555586089438861852973 0.96462400422891970516096923553526
0.31348715503861464721826917341708E–1 0.78392149176096602345110934186655 0.93756444544378175318295617860873
0.49762852666717116332578404045926E–1 0.86937144898957875204792277623522 0.74380866034597101765279618918913
0.55534775159604041101829554407116E–1 0.91889377777573801032232199904313 0.38410875822737883260638757649426
0.65013710432173970207381031565964E–1 0.14078396804456848628363687508206 0.87987957307981017658529064786666
0.73819068900731731823980126564345E–1 0.56379666815446526573028097449771 0.81879210607636015929368719928237
0.90385825968150641564727715959435E–1 0.76200274293070327698230061865243 0.15749920122732269808023356410127
0.91881833336425013923433485117405E–1 0.69745388342191267884442122044750 0.54657527460177776847334916572487
0.94967142638856099564605740671378E–1 0.52310392339404494392757182766006 0
0.10498174724102843457467466433826 0.30566836903929191370033838487568 0.65017670270687960549278395428873
0.11871336850928058424347422704556 0.44898642628288082765338494532756 0.34240465380680230945939322837053
0.12668324656651729290995285712867 0.98253418759835132805054567507033E–1 0.23509621629115532325303789785547
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Table 5
New formula of degree 21 with 81 points

wi xi yi

0.59245289910274777823163684444026E–2 0.99742844318071465788852153329446 0.52349333540342268677302187698119
0.63181879993530976749052313712955E–2 0.90092205722857715090631770295789 0.99213624611198765984022577926158
0.77654356771885822575525989789117E–2 0.98137581661152322617866583081353 0.93577766500519228442627576803182
0.13313236524649387539261801099149E–1 0.47562398846061921636952360049609 0.98806503981406364167006543205075
0.18028023632000303112294832251383E–1 0.68396217875524370909034162562144E–1 0.98289142121346795894575007552095
0.20759211084811453614957408545828E–1 0.96445171170290974019893928634261 0.73079564192792033198229729840349
0.24345594686962939048122829629801E–1 0.96789534067760540982739074113386 0.28416943704022564251542547384397
0.27291829813157459363923440908365E–1 0.71204626183902144323409345553631 0.95001737577395264422880843244573
0.31313724489320677669626239379042E–1 0.86686503563504933746419509606443 0.85754514904426211818642071770359
0.43028684463625497581941353350492E–1 0.29388895765490255861532312924984 0.91478375374420147743639913929870
0.47435107497760585342967184111271E–1 0.88245289720509646533706783064117 0.78310571319347967606817150072422E–1
0.49535232791099913534195616930148E–1 0.88356465549777630296872390851348 0.50650027819745540446699219481203
0.59086609737522776429493659734483E–1 0.53714330328796591598235477256257 0.82111662321535962574448188332070
0.61598898755573131953283218720393E–1 0.73297737278688849035966507531475 0.67811474157990352881988795983159
0.68662882737105569078247834904061E–1 0.74340815897994389367005251095709 0.25891212405917942502949658613377
0.77511025760449779132628565445376E–1 0.14352379867257862891820869134808 0.73714284444878233387764988974016
0.77655900861398148704502327066780E–1 0.57716374806487034338151001622839 0.42605137832252378501649531823938
0.84165159143253389201574044182295E–1 0.38010653105519745774291045326124 0.59190980196005469388929534014808
0.11664395742356559711226466539621 0.49380304750704567296572150088764 0.46968438389915362845722235027390E–1
0.12587077966701428595400393561138 0.23300694276964919884562248755586 0.27854054992870057594151995625227
0.13498395305263979164774737575571 0 0

The new formula improves the quality from the NO/PO to PI, and shifts the lower boundary limit from
85 to N = 81 points.

E. Order P = 23

For P = 23 the best cubature rule known previously was the NI formula with 112 points [21]. Instead,
we have found the NI solution with 100 points (see Table 6 below). The new formula shifts significantly
the lower boundary limit up to 12 points, namely, from 112 to N = 100.

Note that according to Table 1, we should obtain a solution at P =23 with even less number N∗ =96 of
knots. However, hard attacking the corresponding system of nonlinear equations during T = 10 days did
not lead to any result. In such a case we were enforced to increase the number of points from N∗ = 96 to
100 by adding one extra knot square of type A. This results in two extra unknowns, so that two additional
nonlinear equations have been appended to the system to make the solution to be unique (otherwise we
obtain the infinite number of solutions continuously covering a plane in the multidimensional space). We
have attached the two equations corresponding to taking into account the higher order (P =24) monomials
x15y9 and x22y2.

Another trick consists in changing the strategy of generating initial guesses during the MDIIS iterative
process. This is caused by the fact that within the usual strategy the CPU time t spent to find at least one
solution increases approximately in a factor of 20 with rising P to P + 2. This follows from the previous
values of t corresponding to the lower degrees P = 21, 19, 17 and 15 (see above). Extrapolating these
values to degree P = 23 yields t = 3 months, i.e., the calculations become exclusively expensive. The
change of the strategy at extremely high degrees P�23 is possible since then with rising P to P + 2 the
incrementation �P =2>P . Therefore, we should expect a slight modification in the positions of existing
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Table 6
New formula of degree 23 with 100 points

wi xi yi

–0.22499144590180737573666435988313E–1 0.22475776435269587875683347524503 0.29562926123440075779470457695520
0.56757797279709720956600059513997E–2 0.87420793087689680287386901266229 0.99164484170232374329954582252223
0.61294541632385752564605990154598E–2 0.97602267261364022197431910391898 0.96038644389988149213812916422733
0.77307399716921584473393426863691E–2 0.98901025758028347071424940975698 0.79476170695439095037125111357424
0.79851030689059360294239183531451E–2 0.99326920924031633712313940841625 0.45269906826670511998507618989211
0.10747724909071103372536638574027E–1 0.56499592316621278816917834165965 0.98963443963546680882582623594845
0.14073722901914630236333688287280E–1 0.12479933234667809522764885071235 0.98891634511573107523317221688555
0.22950166656215871772211451659864E–1 0.90240439932034384398117518141661 0.86681747165850322502643568236158
0.23104503668552704581666880144042E–1 0.96603416099961004557874518675109 0.22128837983587450545659391256077
0.24886583460620943481070103801115E–1 0.74327403381257379390317209035852 0.93739279789140167477396439558006
0.25495608710781325077549951029551E–1 0.94397158234337348119479988763974 0.62734373811214363563025812471848
0.35148791457392415926700843453924E–1 0.36473593323821554671165638117641 0.93654053553190687038241524198386
0.39967612471275640012053163262252E–1 0.90025309287443275420616285586643 0.25070990341427951813078348104539E–1
0.42210906199290840139296408236284E–1 0.48034665839500246850252725186282E–1 0.65304687691990057591624038872149
0.45629308917602135087674549832202E–1 0.54919116214309328871373834754894 0
0.47184931543983842485535616621711E–1 0.86487537690899969927500100353866 0.42021700731140387645536924573814
0.48004360511784007777329600464972E–1 0.78769621309348012773202186731599 0.71486137179637184939863361570348
0.51407132281965816724265717022986E–1 0.57671028420945643394316234476328 0.82649643106250383189783444260321
0.54210495031621259406088939636629E–1 0.20013408262762044788586320030931 0.80824267349292209367541999626505
0.63980226470850872129000560206633E–1 0.74602728783032388650354427676695 0.20581981165646397971556679713472
0.71999854713967554049756153858067E–1 0.64177280458672645848207064078009 0.51516637687706181290564290685967
0.74130368424485001536304396403399E–1 0.40236411309752397363192555539035 0.64890781819854093908140818020446
0.87075597857073455631778823034765E–1 0.46993983120051570507268178090848 0.27714799151429808758023024246803
0.10080008323810791275764368651352 0.22491749438123049571812018957130 0.40375503517268762210602535023913
0.11197008823181576355998539793872 0.22831753386455276245209947736815 0.56116790982355323182358196190726E–1

knots during the transform from P to P +2, whereas the extra knots should appear at smaller and smaller
(with further increasing P ) weights. In our case, the 81 knots of the cubature formula of degree P = 21
were chosen as initial approximations to the solution of the cubature formula of degree P = 23 with 100
points. The coordinates of the rest 19 knots were generated at random within the [−1, 1] interval. In such
a way, our cubature formula of degree 23 with 100 points has been obtained in t = 10 days.

5. Conclusion

During the last decade, a stagnation of progress has been observed in the area of building cubature
formulas exact for polynomials. In particular, for the case of two-dimensional integration over the square,
almost no new theoretical results were obtained, and no new cubature formulas were constructed. This
is despite the fact that beginning already from relatively small degree P = 15, all the earlier known
cubature rules with the lowest number of knots are useless in practical applications. The reason is that
they either produce nodes lying outside the region of integration or/and have the number of knots N

exceeding considerably the minimal theoretical limit Nmin. Even for integrands determined outside of
the integration domain, using the outside cubature rules leads to a very poor precision of the calculations.

In the present study we have developed the method of construction of minimal cubature rules with high
degrees of exactness and adapted a powerful algorithm for solving the corresponding system of nonlinear
polynomial equations. This has allowed us to reach the obvious achievements in two-dimensional inte-
gration. Namely, the whole set of new inside cubature formulae of degrees P = 15, 17, 19, 21, and 23
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Table 7
Achievements in two-dimensional cubature integration

Previous results Our new results

P N Quality References Year P N Quality References Year

15 44 NO [19] 1971 15 44 PI (16)a this work 2003b

48 PI [19] 1971
NI [15] 1989

17 57 NO [7] 1985 17 56 PI (9)a this work 2003c

60 PI [13] 1985
19 68 NO [21,22] 1991 19 68 PI this work 2003

72 PO [13] 1985
21 85 NO [16] 1978 21 81 PI this work 2003

88 PO [13] 1985
23 112 NI [21] 1993 23 100 NI this work 2003

aIf more than one solution is found, the total number is pointed out in parentheses.
bSome PI solutions for P = 15 have been found by us in earlier 1988 and 2001. The whole set as well as the optimal solution

have been obtained in 2004.
cThe whole set of solutions has been obtained in 2004.

has been introduced. The new formulae exhibit the best quality and appear to be the most efficient for
the evaluation of two-variable integrals with a high precision. In addition, for degrees P = 17, 21, and
23, we have improved the previous results (57, 85, and 112, respectively) for the lower known boundary
limit N. The new lower boundaries now read, correspondingly, N= 56, 81, and 100. It seems that in the
feature it will be impossible to shift the obtained values of N to lower levels at least for orders P = 15,
17, 19, and 21. The fact that these values are still greater than the highest known lower theoretical bounds
Nmin indicates most likely that the existing theory underestimates Nmin at P �13 (see Table 1). Our new
achievements are summarized in Table 7.

The proposed approach can readily be extended to derive efficient cubature formulae for higher dimen-
sions, orders, and other regions of integration. It can also be used for constructing cubature rules exact for
a class of integrands in the form of polynomials multiplied on some known functions (the last ones being
chosen to analytically remove possible integrable singularities from some integrals). These and related
questions will be addressed in further investigations.
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