
Journal of Biomedical Informatics 55 (2015) 143–152
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Automatic generation of computable implementation guides from
clinical information models
http://dx.doi.org/10.1016/j.jbi.2015.04.002
1532-0464/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Instituto ITACA, Universitat Politècnica de València,
Camino de vera s/n, Edificio 8G, Spain. Tel.: +34 963870000x75277.

E-mail address: diebosto@upv.es (D. Boscá).
Diego Boscá a,⇑, José Alberto Maldonado a,b, David Moner a, Montserrat Robles a

a Instituto Universitario de Aplicaciones de las Tecnologías de la Información y Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
b VeraTech for Health SL, Valencia, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 November 2014
Revised 3 February 2015
Accepted 7 April 2015
Available online 21 April 2015

Keywords:
Archetype
Natural Rule Language
Implementation guide
Data validation
Clinical information model
Clinical information models are increasingly used to describe the contents of Electronic Health Records.
Implementation guides are a common specification mechanism used to define such models. They contain,
among other reference materials, all the constraints and rules that clinical information must obey.
However, these implementation guides typically are oriented to human-readability, and thus cannot
be processed by computers. As a consequence, they must be reinterpreted and transformed manually into
an executable language such as Schematron or Object Constraint Language (OCL). This task can be diffi-
cult and error prone due to the big gap between both representations. The challenge is to develop a
methodology for the specification of implementation guides in such a way that humans can read and
understand easily and at the same time can be processed by computers. In this paper, we propose and
describe a novel methodology that uses archetypes as basis for generation of implementation guides.
We use archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other refer-
ence materials usually included in implementation guides such as sample XML instances. We also gen-
erate Schematron rules from NRL rules to be used for the validation of data instances. We have
implemented these methods in LinkEHR, an archetype editing platform, and exemplify our approach
by generating NRL rules and implementation guides from EN ISO 13606, openEHR, and HL7 CDA
archetypes.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Capturing requirements in the clinical domain is a difficult task
[1]. Traditional requirements capture methodologies fail due to the
continuous evolution of clinical knowledge, the different vocabu-
laries of clinicians and implementers, and the implicit definition
of domain concepts [2]. Typically clinicians rely on non-formal
approaches (such as spreadsheet or word processor files) to docu-
ment their domain requirements. This kind of approach is not suit-
able for cooperative and long term use as it is prone to errors and
version control problems. In order to solve these problems several
methodologies have been proposed.

Templates are the mechanism used by HL7 CDA [3] for the spec-
ification of clinical information models. In spite of not being com-
putable, CDA Implementation guides are the most common way
for the specification of such templates in an understandable way.
They usually include an introductory section describing purpose,
scope, intended audience, conventions used in the guide, and sep-
arated sections for each kind of CDA components (mainly docu-
ment, section, and clinical statement templates). Each one of
these sections contains all the relevant templates for a given clin-
ical model. For each template, a template identifier, a description, a
set of constraints over the attributes of a given CDA component,
and an XML example are provided. The implementation guide is
usually completed with terminological value sets and bibliographic
references. Implementation guides play a central role in HL7 world.
As an example, they have been adopted for the definition of the
Consolidated CDA (C-CDA) Templates [4], which are being used
to help providers to meet the applicable Meaningful Use objectives
[5]. However, the interpretation of the constraints in an implemen-
tation guide may differ from person to person [6], therefore limit-
ing semantic interoperability.

Another type of resource for the specification of clinical infor-
mation models are archetypes. Archetypes are a key part of the
dual model approach on which the EN ISO 13606 norm [7] and
the openEHR specification [8] are based. The dual model approach
is a recent paradigm for the specification of EHR Architectures

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2015.04.002&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2015.04.002
mailto:diebosto@upv.es
http://dx.doi.org/10.1016/j.jbi.2015.04.002
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin


144 D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152
(EHRA). It distinguishes two models: the Reference Model (RM)
and Archetype Model. In a broad sense, a RM is an abstract repre-
sentation of the generic and stable entities and relationships of a
given domain. It is designed to provide a basis for the development
of more concrete models and implementations. In the domain of
Electronic Health Records (EHR), a RM defines the framework for
describing all EHR entries or clinical statements, the way how they
are aggregated, and the context information needed to meet ethi-
cal, legal and provenance requirements. The generality of the RM
is completed by the particularity of archetypes. Archetypes are
detailed and domain-specific definitions of clinical concepts in
the form of structured and constrained combinations of the entities
of the reference model. Archetypes may logically include other
archetypes, and can be specialized to better fit the specific require-
ments of each use case. They can be bound to clinical terminologies
and ontologies to semantically describe the elements of informa-
tion. What is important here is that for each domain concept, a def-
inition can be developed in terms of constraints on the RM entities.
Each domain concept is also given an archetype node identifier
(following the ‘atNNNN’ pattern where N stands for a digit) and a
textual label. ADL (Archetype Definition Language) [9] is a formal
language developed by openEHR for expressing archetypes that
has been adopted by EN ISO 13606 standard. Even if archetypes
are based on a formal language (ADL) understandable by comput-
ers, users still need specific tools and knowledge of the underlying
reference model to define and understand the clinical models
completely.

To allow users unfamiliar with the archetype methodology or a
particular reference model to understand clinical models without
using specific tools, a formal document similar to the implementa-
tion guides is required. What we need is a formal document that
has at least the same expressiveness than an archetype and at
the same time is easily understandable even by non-technical
users.

Our proposal, as described in Fig. 1, aims to achieve the auto-
matic generation of computable implementation guides from
archetypes. Our objectives are twofold:
Defines/Reuses

Gene

Archety

Understood by

Health 
professionals

Modeling team

Implement
Natural

Rules
Language

Mindmaps

Value Sets

Fig. 1. Proposed architecture for the generation
(1) To generate implementation guides that can be used in the
development of computer systems by IT technical staff. For
this purpose, we use archetype texts, descriptions, and ter-
minology bindings. We also include other automatically
generated materials such as sample XML instances and
validators.

(2) To document archetypes or templates in order to ease their
understanding by health professionals without the need of
specific tools. For this purpose, we transform the potentially
complex archetype constraints into English-like rules. This is
achieved by the use of Natural Rules Language (NRL) [10].
We also include additional reference materials in the imple-
mentation guide, such as a mindmaps, value sets and bibli-
ographic references.

Our solution will improve the current implementation guides
generation process in two different ways: Firstly, our implementa-
tion guides are based on a formal natural language that allows the
direct application to end EHR systems and data, and secondly,
implementation guides are generated automatically from the orga-
nization’s information models, in our case archetypes.

We will exemplify our approach by generating implementation
guides from an EN ISO 13606 archetype, openEHR archetypes from
the Clinical Knowledge Manager (CKM) [11] and HL7 CDA arche-
types from the Genetic Testing Report.

We will evaluate the correctness of our methodology from three
different perspectives. First, we demonstrate formally that the gen-
erated data instances are valid with respect to the underlying
information model. Second, we test if generated rules can correctly
validate data instances. Third, we evaluate the quality of imple-
mentation guides and their usefulness for the development of
EHR systems.

2. Background and related work

There exists a wide range of formal rule languages for the defi-
nition of constraints on data. One of the most known is the Object
Based on

Validates

rate

pes

Used by

Data
Instances

Technical Staff

a�on Guide

Schematron

XML
Instances

Archetypes

of implementation guides from archetypes.



D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152 145
Constraint Language (OCL) [12], an OMG [13] standard for the def-
inition of rules over UML models [14]. There are also languages for
defining Horn-like rules for the Ontology Web Language (OWL)
[15], such as Semantic Web Rule Language (SWRL) [16] or
RuleML [17]. The widespread use of rules, formal or not, has caused
the creation of proposals, like the W3C Rule Interchange Format
(RIF) [18], for the exchange of rules between different rules lan-
guages. The main disadvantage with most rule languages is that
rules are not easily understood by non-technical staff. To solve this
problem, some rule languages with natural language-like syntax
have been proposed. Two main examples are Natural Rule
Language [10] and Attempto Controlled English [19]. Each one of
them addresses the problem of natural language rules representa-
tion from a different perspective.

Natural Rule Language (NRL) is a formal language for specifying
constraints and rules in a human readable way. The main feature of
this language is the capacity of defining constraints in a way that
facilitates their understanding by non-technical people.
Moreover, NRL also defines an extension to deal with actions, such
as the creation or deletion of objects, or setting values when cer-
tain conditions are met. Although we will not use this extension,
it could be used to complete the rules with actions, for instance
to calculate derived values. To the authors’ knowledge there is only
one prior use of NRL in the clinical domain, concretely for the rep-
resentation of clinical practice guidelines and its evaluation in a
real world case [20]. Rules drawn from a hypertension guideline
were translated into NRL in order to be validated by clinicians
and subsequently they were transformed into OCL and finally used
in the system. The NRL rules were generated by hand which can be
a time-consuming task.

Attempto Controlled English (ACE) [19] is a controlled natural
language, which means that it is a subset of Standard English with
a restricted syntax. ACE can be translated into other languages,
such as RuleML, OWL, or SWRL. The meaning of words in ACE is
not predefined and must be defined in an existing ontology or in
additional ACE sentences. Although ACE has been in use for more
than ten years, to the authors’ knowledge it only has been used
once applied to the clinical domain [21], specifically for clinical
guidelines readability. In this work, rules from a pediatric clinical
guideline were expressed in ACE, although they were not applied
to real data.

There also exist formal languages for the validation of XML doc-
uments such as Schematron, DTD or XML Schema. Schematron [22]
is a rule-based validation language for making assertions about
patterns in XML trees that is an ISO norm since 2006. Since it is
a path based validation language, Schematron can express con-
straints that neither XML Schema nor DTD can express. Each rule
can be associated with a descriptive text of the type of error or
warning encountered. Schematron plays a key role on current
CDA implementations as Schematron rules are typically attached
to implementation guides alongside sample XML instances. It has
been proved that Schematron rules can be directly generated from
NRL rules [23] as well as from archetypes [24]. Advanced features
of archetype methodology, such as reuse of internal or external
types can be also reproduced with Schematron.

Another successful approach for the automatic generation of
systems and reference artifacts is Model-Driven Development
(MDD). Model-Driven software development tries to improve cor-
rectness and productivity in software creation by producing code
from abstract, human-elaborated modeling diagrams. Model-dri-
ven architecture (MDA) [25,26] is the OMG proposal to support
Model-driven engineering. In MDA business processes and applica-
tions are specified using platform-independent models (PIM),
which define system functionality. Standard mapping techniques
transform PIMs into platform-specific models (PSM) and into final
implementations. In MDA there is also a layer to bridge the gap
between domain experts and information technologists called
Computation Independent Model (CIM). CIM requirements should
be traceable to the PIM and PSM constructs that implement them.

MDA development has been successfully applied to healthcare
domain in several use cases [27–31]. This is a good solution to
the problem of continuously evolving clinical knowledge.
However, if not done right, the system should be continuously
regenerated as the clinical knowledge evolves. Dual model
approach [2] tries to solve this problem by leaving the specification
of clinical knowledge out of the information model. This approach
proposes a simple information model to give support to the clinical
information models. Even if clinical knowledge changes, the infor-
mation model does not need to change. Furthermore, in a dual
model architecture clinicians are in charge of defining the require-
ments, contents, and structure of the clinical information models.
Using dual model architecture allows the reuse of quality publicly
available archetypes available in different international reposito-
ries, which guarantees the quality of source models in our
methodology.

When compared with Model-Driven development, dual model
approach is similar in the way that both put models as key parts
of systems. In fact, archetypes can be considered as MDA CIMs
[32] and have been used already as such in several projects
[33,34]. Archetypes have been used in MDA projects for the trans-
formation between information models [35], but not for the gener-
ation of derived reference materials such as instances, rules, or
implementation guides.

The generation of reference materials from formal model defini-
tions is also one of the goals of other initiatives such as Open
Health Tools (OHT) Model-Driven Health Tools (MDHT) Project
[36]. MDHT is an open source effort for the promotion of shared
artifacts between related standards and the creation of modeling
tools for their seamless integration. The project is supported by
the US Veteran’s Health Administration (VHA), IBM, and the US
Office of the National Coordinator (ONC). Their original focus was
to develop HL7v3 specifications via UML, but they later moved to
work in the specification of HL7 CDA Implementation Guides.
They have provided models and reference implementations for
several HL7 C-CDA Implementation Guides. They are planning to
support other standards besides HL7 CDA, for instance by using
UML for the specification of archetypes. A UML profile
(Archetype Modeling Language, AML) has been proposed to OMG
to deal with the specific requirements of the archetype modeling.
MDHT is also working in the generation of Schematron for XML
instance validation.

The quality of implementation guides and reference materials
highly depends on the quality of source information models.
Several metrics and requirements have been proposed to deal with
clinical information model quality [37,38]. If clinical information
models follow this metrics and requirements, we can ensure the
quality of end systems [39]. Clinical information models quality
assessment is an important topic, as demonstrated by the develop-
ment of ISO/DTS 18864 norm of quality metrics for Detailed
Clinical Models [40].
3. Material and methods

3.1. LinkEHR platform

LinkEHR� [41] is a software tool for the integration and normal-
ization of health data [42]. LinkEHR employs archetypes for both
the semantic description of the clinical concepts to be shared and
the transformation of existing clinical information into standard-
ized EHR extracts. It comprises two main modules that allow (i)
the editing of archetypes based on different RMs (several RMs have



146 D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152
been tested successfully: EN ISO 13606, openEHR, HL7 CDA, CDISC
ODM and ASTM CCR); and (ii) the specification of declarative map-
pings between archetypes and data sources, and from these map-
pings the automatic generation of XQuery scripts which translate
source data into archetype compliant XML documents. In our sce-
nario, a crucial tool is the LinkEHR archetype editor. During arche-
type editing, the tool provides support to ensure that the archetype
being edited is valid with respect to the reference model (and par-
ent archetype, if any), e.g. by showing the valid elements at any
point. When the user wishes to add a new entity to an archetype
the editor displays the valid entities and the user must select one
of them. All the functionalities described in this paper have been
added to LinkEHR archetype editor.

3.2. Generation of implementation guides from archetypes

In order to generate a complete implementation guide we pro-
duce five different reference materials from archetypes: Natural
language rules, mindmap, XML instances, Schematron rules, and
value set tables. Although typical implementation guides are
designed to be printed, they can be improved with interactive ele-
ments such as sample data entry forms or mindmaps that can be
rendered on a computer screen. Reference materials used for the
creation of the implementation guide depend on its final purpose
and use, e.g. the inclusion of mindmaps may be very useful in an
interactive implementation guide, but it may be not as useful in
a printed one.

As stated before, an implementation guide contains an intro-
ductory section, separated sections for document classes, section
classes, and clinical statements templates, and a final section with
the value sets used in the guide. All these sections are generated by
combining the archetype definitions with the generated reference
materials.

Introductory section is generated from the archetype metadata,
which includes the purpose, keywords, intended use, references,
etc. In archetypes, the entities of the clinical model can be attached
with a text label, a description, and a terminology binding. All this
information is organized into their own subsection of the imple-
mentation guide. The text label of each entity becomes the tem-
plate name of that entity and the description and terminology
binding become the template description. Archetype entities also
include information about their occurrences, cardinality and exis-
tence that are used to control what will be generated. For instance,
a mandatory entity must appear in XML instances and must be
checked to exist with a specific rule in Schematron, but could be
hided in a mindmap or form if it is not considered interesting to
the final user. The last section of implementation guides are value
set tables. These tables specify a set of codes drawn from one or
more code systems. As archetypes already contain this kind of
information in the constraint binding part of the ontology section,
we generate all the tables directly from there. This table is built by
querying a terminology server to obtain all codes from a given sub-
set and all the codes descriptions. Finally, we also generate a
Table of Contents to easily navigate the implementation guide.

3.2.1. Generation of NRL rules
In the archetype methodology, archetype entities are created by

constraining a reference model type [2], concretely by constraining
the values, structure, and/or terminology bindings. New entities
include implicitly all the constraints imposed by the reference
model type that have not been explicitly narrowed in the arche-
type. This supposition is consistent with the object-oriented para-
digm, where attributes and methods of a superclass are
automatically inherited by all its subclasses. If we were to create
rules directly over the reference model types, they would not be
easily understandable because rules would refer to a given type
and a node identifier (e.g. ‘‘at least one ENTRY where archetype_i-
d=’at0000’ exists’’). This is the reason why we create variables in
NRL using the textual labels attached to the archetype entities as
variable names. When no label is defined (e.g. a data type) a label
is derived from their parent entity. If there is a label clash, the
entity identifier is also used for the generation of the readable
name. The expression that defines the variable is built using enti-
ties identifiers, i.e. the archetype node identifier if we are using
an archetype-based standard or the templateId if using HL7 CDA
as reference model. As an example, the above rule is rewritten as
‘‘at least one BloodPressure exists’’ which uses ‘‘BloodPressure’’
variable defined as ‘‘BloodPressure is the ENTRY where archety-
pe_id=’at0000’’’. We exemplify this approach with the generation
of NRL rules from a blood pressure EN ISO 13606 archetype shown
in Fig. 2. In Fig. 3 we show how variables for each one of the refer-
ence model types are declared and reused in other rules. The read-
able label is used as a variable that will be applied when a node
identifier is found in data.

Once we have created a variable for each archetype entity we are
ready to create rules for the archetype constraints. We create rules for
each one of the constraints defined on the archetype, such as entity
occurrences (as shown in Fig. 4), attributes existence and cardinality
(shown in Fig. 5), and on data values (shown in Fig. 6). Each rule
has a readable name to identify it. We can also generate comments
to help even more with the understanding of the rules. Comments
are generated from entity constraints. Any part of a rule line starting
by ‘–’ is considered a comment. For instance, in Fig. 5 the rule
‘‘Cardinality of ‘parts’ attribute from BloodPressureMeasurement’’
has an additional comment stating the cardinality with an array nota-
tion, which can be easier to understand for people used to work with
archetypes.

The set of automatically generated rules can be extended with
additional user-defined natural language rules, for instance to
express constraints that are not supported by ADL, e.g. constraints
such as ‘‘Mean blood pressure is calculated by adding to the systolic
pressure two times the diastolic pressure and dividing the result by
three’’ that involves more than one entity from the archetype.

3.2.2. XML instances generation
For the generation of XML instances we use LinkEHR mapping

capabilities in order to generate valid XML sample instances com-
pliant with the archetype and the underlying reference model. As
stated before, only entities (classes and attributes) of the RM which
are actually constrained need to appear in the archetype definition.
It is supposed that the constraints defined in the underlying RM are
implicit constraints for the derived archetypes. As a consequence,
it is necessary to complete (‘‘merge’’) the archetype with the con-
straints defined in the underlying RM in order to generate com-
plete XML data instances. A constant mapping, i.e. a mapping
function that assigns a constant value, is automatically generated
for each leaf node of this ‘‘merged’’ archetype. Using this constant
mapping, we generate a XQuery transformation program on the fly
whose output will be an XML instance compliant with the original
archetype and the underlying RM. This process is fully described in
[42]. The instance generation process can be tuned by several
parameters, such as the inclusion of optional attributes, selection
of alternatives, or the contents and ranges of primitive types. The
aforementioned parameters can be set in LinkEHR Editor as shown
in Fig. 7.

3.2.3. Schematron generation
As stated before, NRL rules can be translated to Schematron for

the validation of XML instances with respect to archetypes and ref-
erence models. Schematron rules are based on path conditions that
specify where the assertion must be tested. The process traverses
the entities in the archetype recursively and generates a rule for



Fig. 2. Blood pressure EN ISO 13606 sample archetype.

Fig. 3. Declaration of variables in NRL to allow the generation of readable rules.

Fig. 4. Sample rule for occurrences constraint using the readable variables
described in Fig. 3.

Fig. 5. Sample rules for checking cardinality and existence of an attribute.

Fig. 6. Sample rules for checking different kinds of data value constraints.

D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152 147
each entity with an assertion for each one of the tests (namely tests
for occurrences, cardinality, existence, and values). In Fig. 8 we
show the equivalent Schematron rule to the NRL rule described
in Fig. 4. As it can be observed, Schematron rules are by far less
understandable than NRL rules.



Fig. 7. Options for XML instance generation in LinkEHR.

Fig. 8. Schematron rule for blood pressure measurement occurrences.

148 D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152
In addition to the Schematron rules generated from the explicit
archetype constraints, we also generate optional Schematron rules
for checking the implicit constraints, i.e. the constraints coming
from the RM. This is necessary for instance to assure that an arche-
type type does not contain attributes that are not allowed by the
reference model or that the type of an unconstrained entity is
one of the types allowed by the RM.

3.2.4. Generation of additional reference materials
In addition to the aforementioned reference materials, we gen-

erate other materials that have not been traditionally included in
implementation guides such as mindmaps or sample input forms.
These artefacts are interactive, and thus they lose part of their
potential usefulness in printed implementation guides. However
they can be really useful when the implementation guide is dis-
played on a computer screen. Mindmaps mimic the archetype
structure but omit non-clinical parts to make it easier for clinicians
to understand the clinical meaning. Forms are generated in a sim-
ilar way, but their transformation from archetypes is reference
model dependent. Currently we are only able to generate sample
forms for EN ISO 13606 and openEHR archetypes.
4. Results

We have implemented our solution in several software modules
in Java, each one producing a different type of reference material
from an archetype expressed in ADL. Both mindmap and
Schematron outputs are XML representations that are generated
from the archetype definition. NRL rules are also generated from
the archetype following the process described above. Sample
instances are produced by generating a constant mapping and cre-
ating from it an XQuery whose output is the data instance. Finally,
Sample forms are created by applying an XSLT transformation to
the XML representation of archetypes and are displayed in a web
browser.

In addition to the previous modules, another module was
implemented to combine all the output into a complete implemen-
tation guide expressed in HTML. Mindmap interactive visualization
is included in the HTML page using an Adobe Flash plugin. We have
defined different CSS style sheets to render on-screen and print
views. Printed views can also be generated as PDF files to ease their
distribution. Regarding terminology bindings, we employed
Indizen IT Server [43] to retrieve the concept text descriptions
and get all codes in a terminology subsets.

The load and generation time, i.e. the time to read and parse the
archetype and the time to generate the implementation guide
respectively, closely reflects the archetype size in terms of number
of constraints as would be expected. On simple archetype, the gen-
eration time is almost negligible while for large archetypes it can
take as much as several seconds. In any case, the time is negligible
when compared with the time required to generate an implemen-
tation guide manually.

All the developed modules have been included in the LinkEHR
platform in order to provide different export formats for arche-
types. Each module uses both a set of configuration parameters
and documentation about the reference model being to control
the generation process and output appearance of the correspond-
ing material (XML instances, Schematron rules, NRL rules, mind-
maps, or sample input forms). In the case of implementation
guides, this set of parameters is predefined in such a way that
the output resembles a real implementation guide.

To exemplify the generation of implementation guides, we
show two different examples. In the first one we automatically
generated implementation guides from a subset of CKM archetypes
created in [44] with improved terminology bindings. In the second
example, we generated an implementation guide from an HL7 CDA
archetype [45]. The complete examples can be found in the
Supplementary material.

The first example exemplifies all the generated subsections
included into a section of the implementation guide: Description,
terminology binding (looking up the terminology code in an exter-
nal terminology), a set of readable rules, an XML sample instance,
and the Schematron validation for this specific entity. Fig. 9 shows
an excerpt the output implementation guide subsection for Heart
rate entity from the Apgar score archetype. This contains the
archetype entity text as section header, a description of the entity,
their terminology binding (along with the text obtained from the
terminology server), entity constraints stated as NRL rules, an
XML example section, and a Schematron section.

In the second example we employed an archetype [45] created
from the Genetic Testing Report (GTR) HL7 implementation guide
[46]. The HL7 CDA archetype contains all the data constraints
defined by the GTR implementation guide. Fig. 10 shows and
excerpt of the original implementation guide, whereas Fig. 11
shows the same excerpt represented in the automatically gener-
ated guide.

The generated rules express exactly the same constraints as the
original implementation guide, but they can be executed directly
over data instances. We can express rules following two alterna-
tives, grouping the rules by context to ease their understanding,
or generating an individual rule for each kind of constraint (occur-
rences, existence, cardinality, etc.) to know exactly which con-
straint fails. In Fig. 11 we have followed the first approach.



Fig. 9. Excerpt of an automatically generated implementation guide from an Apgar score openEHR archetype.

Fig. 10. Cells Karyotyped Count from the original Genetic Testing Report
Implementation Guide.

D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152 149
4.1. Evaluation

We evaluate our methodology from three different perspec-
tives: That generated instances are correct instances of a given
model, that generated rules can correctly validate data instances,
and that generated implementation guides have good quality and
are useful for the development of EHR systems.
Fig. 11. Executable rules from Cells Karyotyped Count automatically
4.1.1. Generated instances are correct instances of a given model
The instance generation process is as follows: A constant arche-

type with the same structure as the source archetype is generated.
This constant archetype defines a fixed single value for all atomic
attributes. A constant archetype can be seen as a singleton arche-
type (i.e. an archetype that only defines one instance). This special-
ization relationship is formalized by means of a subsumption
relation [47]. We say that an archetype A specializes a class B if
B subsumes A. Based on this, a validation process exists for this
subsumption relationship. We generated 10 constant archetypes
for the each one of the Spanish Ministry of Health EHR project
(Historia Clínica Digital del Sistema Nacional de Salud, HCDSNS)
[48]. All the constant archetypes were validated with their corre-
sponding archetype. All constant archetypes were found to be sub-
sumptions of the source archetypes and thus are correct. For a deep
generated from the HL7 CDA Genetic Testing Report archetype.



150 D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152
discussion of the subsumption relationship and the existing imple-
mentation in LinkEHR we refer the reader to [42].
4.1.2. Generated rules can correctly validate data instances
We tested the Schematron rules source as we can execute them

directly and they are equivalent to NLR rules [23]. To validate the
rules we generated a set of random instances from one of the
COMPOSITION archetypes of the Spanish Ministry of Health EHR
project. These instances are demonstrated to be correct from the
above validation process. These instances were modified to intro-
duce common errors found in implementations [49] and the kind
of errors detected by the meaningful use interoperability evalua-
tion [6]. Introduced errors include incorrect data, incorrect struc-
ture, and terminology misuse. Data heterogeneity is also pointed
as problematic in the meaningful use interoperability evaluation.
This kind of problem is harder to validate as heterogeneous data
does not imply that data is incorrect.

Incorrect data errors include wrong occurrences of elements,
wrong existence of attributes, wrong values (values out of range,
values outside a list of valid values, and values that do not follow
a pattern), missing values, wrong element types, and wrong attri-
butes for a given type. All these errors were detected by the gener-
ated rules.

Errors related to terminology misuse provide interesting exam-
ples. While missing or incorrect codes or code system are easily
detected, discrepancies between codes and displayed names (e.g.
the display name for RxNorm code 2670 is ‘codeine’, but the dis-
play name shows ‘penicillin’) are harder to detect. Our current
solution does not support this. However, as archetypes allow the
binding of terminology subsets to given values paths this could
be tested if a terminology server is available.

Data heterogeneity is caused mostly for the loose constraints of
the clinical information models. One advantage of using a formal
definition to represent the clinical information models is that this
heterogeneity can be reduced as desired (e.g. if the administration
of a medication is ‘every day’ each implementer can choose to use
either ’24 hours’ or ‘1 day’. This heterogeneity can be easily
avoided by fixing the clinical information model to either hours
or days, which would then be checked by the corresponding rules).
Archetypes work as formal interfaces for data exchange to solve
data heterogeneity problems.
4.1.3. Generated implementation guides have good quality and are
useful for the development of EHR systems

Generated implementation guides were evaluated by clinical
advisors of the Madrid region shared EHR project. They were con-
sidered as a useful resource and were provided as materials that
have allowed the involvement of clinicians in the project. From a
technical point of view the processable additional materials have
speed up the development of some modules, concretely the valida-
tion of incoming data to the EHR repository and in the load test of
such repository. Regarding the compliance of Detailed Clinical
Models (DCM) quality metrics [40] by the generated implementa-
tion guides themselves, the metrics that can be measured are
mostly the same as the ones that can be measured in archetypes.
Our current generation process passes (complies with) metadata
related metrics (such as DCM version, purpose, description, and
authors), structure and value related metrics (valid atomic values,
ranges, cardinalities, identification of data elements, etc.), and ter-
minology related metrics (terminology binding, use of standard
units, use of international standard terminology, translations,
etc.). In addition to all the aforementioned metrics our generation
process also complies with the ‘multiple outputs’ metric, as our
methodology is able to generate multiple different artifacts with
the same meaning.
Generated implementation guides are useful for the develop-
ment of EHR systems as they share the structure with HL7 imple-
mentation guides. This ensures that the IT technical staff that
currently uses implementation guides will be able to use them
without further training. Each part of the generated implementa-
tion guides can be reused directly on end systems for testing and
validation purposes.
5. Discussion

In this paper, we emphasize on the usefulness of archetypes for
the generation of implementation guides and reference materials.
The generated reference materials include human readable defini-
tion of clinical models for clinicians or computable artifacts for
technical staff. For instance, NRL rules facilitate the involvement
of clinicians in the definition of clinical models, ensuring that the
systems to be developed satisfy their requirements. At the same
time, and since NRL is a formal language, the rules can be used
to support the implementation of EHR systems, for instance for
data validation purposes.

Generated implementation guides have the same structure and
contents as hand-made implementation guides have. However, as
generated implementation guides are based on a formal language,
any section of it can be extracted for its direct use on information
systems. Another critical point is the time and effort needed for the
generation of the implementation guides. Hand-made implemen-
tation guides can potentially be really big (e.g. CCDA implementa-
tion guide [4] contains 500 pages) and its maintenance and
correctness can be a difficult and time consuming task. Our
methodology alleviates much of this creation, maintenance and
validation tasks thus saving time and money.

If we compare our approach to other initiatives dealing with the
generation of derived artifacts such as MDHT, the main difference
is we employ archetypes instead of UML as the formal approach to
model clinical data structures. MDHT Project also generates imple-
mentation guides with alternative content structure depending on
the target audience, e.g. by generating ballot documents or imple-
menter views of an UML diagram. Our proposal aims to deal with
both target audiences by creating formal, computable human-
readable implementation guides. Another important feature of
our approach is it can deal with any reference model or EHR stan-
dard. Since it is based on archetypes it is possible to generate
implementation guides for a wide range of EHR standards. The only
requirement is to be able to define archetypes based on the infor-
mation model defined by the standard. This not only includes stan-
dards that are ‘‘archetype native’’ such as openEHR, EN ISO 13606,
or CIMI reference model, but also non-archetype based standards
such as HL7 CDA, HL7 FHIR, CDISC ODM, openCDS VMR,
Intermountain CEML, ASTM CCR, or MedXML MML, all of them
already supported by LinkEHR archetype editor. In the case of
CDA, CDA archetypes are equivalent to a template fully compliant
with the HL7 Reference Information Model (RIM). Using archetypes
as a basis for implementation guides generation may seem unfit-
ting for the HL7 world. However, using archetypes over HL7 CDA
model has already been proved useful in real life projects [45,50].
This approach also solves common HL7 CDA problems [49] such
as extensions of the CDA standard, namespaces changes and ele-
ment sequencing.

It is important to notice that archetypes are multilingual, which
means that the target Implementation Guide can be automatically
generated in any language supported by the archetype. This is also
true for the archetype terminological bindings, as long as a trans-
lation of the terminology to the target language exists. Due the fact
that NRL is a controlled grammar, it is also feasible to translate the
rules to different languages, and render them in the language of the



D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152 151
user. We used NRL over ACE because one of our objectives was data
validation. Formal rule validation languages, such as OCL or
Schematron, are easily derived from NRL rules. The fact that NRL
can be directly transformed to OCL means that we can automati-
cally generate implementation guides with OCL rules instead of
NRL rules to mimic current implementation guides. We used NRL
instead of OCL in order to make these implementation guides read-
able to non-technical staff. ACE rules could still be used for
expressing the constraints if we give priority to OWL and SWRL
transformations or we want to use some kind of ontology reason-
ing, as ACE terms are defined in OWL. For this use case, every word
in an ACE rule should be mapped to an ontology concept, which
needs to be done, or at least supervised, by a domain expert. This
turns the automatic rule generation process into a semiautomatic
one, which is not feasible for our objective.

NRL rules can also be used alongside archetypes, as archetypes
can accommodate rules to define further constraints. NRL may be
used as the rules language for the Archetype Definition Language
(ADL). For instance, advanced constraints like the ones provided
by the upcoming ADL 2.0 (such as grouping or sorting) could be
expressed with NRL rules in order to increase the expressivity of
ADL 1.4 to match up to ADL 2.0. NRL also includes an action gram-
mar, which can be used not only to set values in the clinical model,
but also for the creation of rules for data transformation.

One of the main disadvantages of using NRL rules is that the
vocabulary in current HL7 CDA implementation guides differs from
the one used by NRL grammar. HL7 CDA implementation guides
use specific reserved words for the definition of constraints such
as ‘‘SHALL’’, ‘‘SHOULD’’, and ‘‘MAY’’. If needed, NRL rules could be
transformed to generate rules using this particular vocabulary.
Furthermore, taking a generic approach means that there will be
some misalignments between an HL7 implementation guide and
an automatically generated implementation guide.
Misalignments are caused by the explicit generation of constraints
from the archetype. It can be argued if it is preferable to check
parts of the template (e.g. the templateId or the entity type) with
explicit rules to ensure correct data instances, even if they are nor-
mally assumed for a given data instance (e.g. in Fig. 10, both the
‘‘Observation’’ type and the templateId are not explicitly defined
with a ‘‘SHALL’’ rule).

Regarding data validation, usually XML instances are validated
against a schema (XML Schema, DTD, or RelaxNG) or
Schematron. XML Schema and DTD are widely used in healthcare
for the validation of clinical documents [51]. Archetype XML
instances cannot be validated with older versions of XML Schema
due to the problem of Unique Particle Attribution [52]. Regarding
Schematron, our generation process is similar to the one described
in [24], but we are able to generate Schematron for any EHR stan-
dard and not only for CDA. Also, our generated Schematron solu-
tion can distinguish if a rule should be applied over XML
elements or attributes. The final advantage of our solution is that
we also provide a set of optional rules to check the implicit con-
straints coming from the reference model. This allows us to define
different validation scenarios for the same archetype, such as val-
idating only archetype constraints, or archetype and reference
model constraints all together.

Finally, we can extend this methodology to generate implemen-
tation guides from Clinical Practice Guidelines. There are several
examples of representation of Clinical Practice Guidelines with
archetypes and formal rules [53–59]. Usually the information
required by the clinical guide is modeled as archetypes, and rules
and pathways are normally modeled in languages such as CLIPS,
Drools, or PROforma. These rules are not human-readable, but as
demonstrated in [20], they can be also expressed in NRL.
Archetypes created by these methods can be transformed into
implementation guides using our methodology, and rules and
pathways transformed into NRL and then included in the resulting
implementation guide. This transformation will make clinical prac-
tice guidelines suitable to be used directly in data validation and
eases its understanding by computers and clinical staff alike.
6. Conclusion

Implementation guides are one of the most common documents
for the provision of clinical specifications for a particular domain.
In this paper we have shown how it is possible to generate auto-
matically from archetypes all the parts and reference materials
that are usually included in implementation guides. In addition
to that, other interesting materials that are not usually included
such as Schematron rules, mindmaps or sample forms can also
be generated for their distribution alongside implementation
guides. The quality of the output implementation guide and
derived reference materials is directly related to the quality and
completeness of the source archetype. Missing or incomplete sec-
tions of the archetype (e.g. poor or no metadata defined, or missing
terminology bindings) will cause the generation of empty or
incomplete sections in the implementation guide. The quality of
the resulting implementation guide provides a measurement of
the quality of the source archetype. Existing quality metrics can
be applied in order to measure both the source clinical information
model or the generated implementation guide.

The proposed methodology promotes the involvement of clini-
cal staff in the modeling and validation process. Any possible mis-
interpretation is avoided as constraints and rules definitions can be
automatically translated into formal validation rule languages that
can be applied directly in the final system.

Reuse is one of the core principles of archetype methodology.
When the same archetype is included in other archetypes we can
reuse this generated implementation guides. This not only eases
their generation, but also provides coherence between the differ-
ent implementation guides that reuse the same clinical models.

As [6] demonstrates, current use implementation guides do not
guarantee that each implementer generates outputs that are com-
pletely compatible. The use of archetypes as formal basis for the
generation of implementation guides and reference artifacts allows
implementers to directly test the systems and technical outputs by
using the validated clinical models. The need for the involvement
of the clinicians in the definition of clinical documentation prac-
tices in their organization is recognized by clinicians themselves
[60]. A methodology like the one we proposed is needed to ensure
that all clinicians can be involved in this process regardless of their
IT expertise level.

The presented methodology puts the emphasis on the genera-
tion of implementation guides that humans can read and under-
stand easily and at the same time can be processed by
computers. This approach may promote the adoption of clinical
information models in the development of EHR systems, thus
increasing the quality of clinical data and its semantic
interoperability.
Conflict of interest

The authors declared that there is no conflict of interest.
Acknowledgements

We want to thank Pablo Serrano, planning director of Hospital
Universitario 12 de Octubre for his comments and insights on the
clinical aspects of our generated implementation guides.



152 D. Boscá et al. / Journal of Biomedical Informatics 55 (2015) 143–152
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbi.2015.04.002.

References

[1] M. Reddy, W. Pratt, P. Dourish, et al., Sociotechnical requirements analysis for
clinical systems, Methods Inf. Med. 42 (2003) 437–444, http://dx.doi.org/
10.1267/METH03040437.

[2] T. Beale, Archetypes Constraint-based Domain Models for Futureproof
Information Systems, 2000.

[3] R.H. Dolin, L. Alschuler, S. Boyer, et al., HL7 clinical document architecture,
release 2, J. Am. Med. Inform. Assoc. – JAMIA 13 (2006) 30–39, http://
dx.doi.org/10.1197/jamia.M1888.

[4] HL7 Implementation Guide for CDA� Release 2: IHE Health Story
Consolidation, Release 1.1 – US Realm.

[5] Medicare and Medicaid Programs; Electronic Health Record Incentive Program
– Stage 2, 2012.

[6] J.D. D’Amore, J.C. Mandel, D.A. Kreda, et al., Are meaningful use stage 2 certified
EHRs ready for interoperability? Findings from the SMART C-CDA
collaborative, J. Am. Med. Inform. Assoc.

[7] ISO 13606 Health Informatics – Electronic Health Record Communication –
Part 1: Reference Model and Part 2: Archetype Interchange Specification.

[8] The openEHR Foundation. <http://www.openehr.org> (accessed 23.10.14).
[9] Archetype Definition Language 1.4 (ADL). <http://www.openehr.org/releases/

1.0.2/architecture/am/adl.pdf> (accessed 23.10.14).
[10] Natural Rule Language (NRL) Specification 1.4.0. <http://nrl.sourceforge.net/

spec/> (accessed 23.10.14).
[11] S. Garde, R. Chen, H. Leslie, et al., Archetype-based knowledge management for

semantic interoperability of electronic health records, Stud. Health Technol.
Inform. 150 (2009) 1007–1011.

[12] Object Constraint Language (OCL) Specification. <http://www.omg.org/spec/
OCL/2.4/> (accessed 23.10.14).

[13] Object Management Group (OMG). <http://www.omg.org/> (accessed
23.10.14).

[14] Unified Modeling Language (UML). <http://www.omg.org/spec/UML/>
(accessed 23.10.14).

[15] Web Ontology Language (OWL). <http://www.w3.org/TR/owl-ref/> (accessed
23.10.14).

[16] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. <http://
www.w3.org/Submission/SWRL/> (accessed 23.10.14).

[17] Rule Markup Language (RuleML). <http://www.ruleml.org/> (accessed
18.07.14).

[18] World Wide Web (W3C) Rule Interchange Format. <http://www.w3.org/TR/
rif-overview/> (accessed 23.10.14).

[19] Project Attempto. <http://attempto.ifi.uzh.ch> (accessed 23.10.14).
[20] A. Farkash, J.T.E. Timm, Z. Waks, A model-driven approach to clinical practice

guidelines representation and evaluation using standards, Stud. Health
Technol. Inform. 192 (2013) 200–204.

[21] N.E. Fuchs, U. Schwertel, R. Schwitter, Attempto controlled English—not just
another logic specification language, in: P. Flener (Ed.), Logic-based Program
Synthesis and Transformation, Springer, Berlin, Heidelberg, 1999, pp. 1–20.
<http://link.springer.com/chapter/10.1007/3-540-48958-4_1> (accessed
23.10.14).

[22] ISO/IEC 19757-3:2006 Information Technology – Document Schema Definition
Language (DSDL) – Part 3: Rule-based Validation – Schematron.
<http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html>
(accessed 23.10.14).

[23] A. Alexandru, NRL to Schematron Generation Tutorial. <http://nrl.sourceforge.
net/tutorials/schematron/tutorial.html> (accessed 23.10.14).

[24] K. Pfeiffer, G. Duftschmid, C. Rinner, Validating EHR documents: automatic
Schematron generation using archetypes, Stud. Health Technol. Inform. 198
(2014) 101–107.

[25] Model Driven Architecture (MDA) Specifications. <http://www.omg.org/mda/
specs.htm> (accessed 12.01.15).

[26] F. Truyen, The fast guide to model driven architecture – the basics of model
driven architecture. Enero (2006). <http://www.omg.org/mda/mda_files/
Cephas_MDA_Fast_Guide.pdf> (accessed 12.01.15).

[27] W.G. Michael van der Zel, Bridging the gap between software developers and
healthcare professionals. Model driven application development, Hosp. Inf.
Technol. Eur. 3 (2010) 20–22.

[28] J. Davies, J. Gibbons, S. Harris, et al., The CancerGrid experience: metadata-
based model-driven engineering for clinical trials, Sci. Comput. Program. 89
(Part B) (2014) 126–143, http://dx.doi.org/10.1016/j.scico.2013.02.010.

[29] W. Raghupathi, A. Umar, Exploring a model-driven architecture (MDA)
approach to health care information systems development, Int. J. Med. Inf.
77 (2008) 305–314, http://dx.doi.org/10.1016/j.ijmedinf.2007.04.009.

[30] V. Jones, A. Rensink, E. Brinksma, Modelling mobile health systems: an
application of augmented MDA for the extended healthcare enterprise, in:
2005 Ninth IEEE International EDOC Enterprise Computing Conference, 2005,
pp. 58–69. http://dx.doi.org/10.1109/EDOC.2005.22.

[31] E. Domínguez, J. Lloret, B. Pérez, et al., Model-driven development based
transformation of stereotyped class diagrams to XML schemas in a healthcare
context, in: J.-L. Hainaut, E.A. Rundensteiner, M. Kirchberg, et al. (Eds.),
Advances in Conceptual Modeling – Foundations and Applications, Springer,
Berlin, Heidelberg, 2007, pp. 44–53. <http://link.springer.com/chapter/10.
1007/978-3-540-76292-8_6> (accessed 16.01.15).

[32] Marcos Menárguez Tortosa, Modelos de representación de arquetipos en
sistemas de información sanitarios. <http://www.tdx.cat/bitstream/handle/
10803/117386/TMMT.pdf?sequence=1>.

[33] J. Tepandi et al., Archetypes based development from the perspective of
domain engineering research topics, (2012) 686–691.

[34] K. Atalag, H.Y. Yang, E. Tempero, et al., Model driven development of clinical
information systems using openEHR, Stud. Health Technol. Inform. 169 (2011)
849–853.

[35] C. Martínez-Costa, M. Menárguez-Tortosa, J.T. Fernández-Breis, An approach
for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes, J.
Biomed. Inform. 43 (2010) 736–746, http://dx.doi.org/10.1016/j.jbi.2010.05.013.

[36] Model-Driven Health Tools (MDHT). <https://www.projects.openhealthtools.
org/sf/projects/mdht/> (accessed 23.10.14).

[37] D. Kalra, A. Tapuria, T. Austin, et al., Quality requirements for EHR archetypes,
Stud. Health Technol. Inform. 180 (2012) 48–52.

[38] S. Ahn, S.M. Huff, Y. Kim, et al., Quality metrics for detailed clinical models, Int.
J. Med. Inf. 82 (2013) 408–417, http://dx.doi.org/10.1016/
j.ijmedinf.2012.09.006.

[39] F. Boterenbrood, I. Krediet, W. Goossen, Building a high quality medical data
architecture for multiple uses in an integrated health care environment, J.
Hosp. Adm. (2014) 3, http://dx.doi.org/10.5430/jha.v3n5p55.

[40] ISO 18864 Health Informatics – Quality Metrics for Detailed Clinical Models.
[41] LinkEHR Platform. <http://www.linkehr.com> (accessed 23.10.14).
[42] J.A. Maldonado, D. Moner, D. Boscá, et al., LinkEHR-Ed: a multi-reference

model archetype editor based on formal semantics, Int. J. Med. Inf. 78 (2009)
559–570, http://dx.doi.org/10.1016/j.ijmedinf.2009.03.006.

[43] Indizen ITServer. <http://www.itserver.es> (accessed 23.10.14).
[44] J.L. Allones, M. Taboada, D. Martinez, et al., SNOMED CT module-driven clinical

archetype management, J. Biomed. Inform. 46 (2013) 388–400, http://
dx.doi.org/10.1016/j.jbi.2013.01.003.

[45] D. Bosca, L. Marco, V. Burriel, et al., Genetic testing information
standardization in HL7 CDA and ISO13606, Stud. Health Technol. Inform.
192 (2013) 338–342.

[46] CDA Implementation Guide for Genetic Testing Report (GTR) (September 2011
Draft).

[47] G.M. Kuper, J. Siméon, Subsumption for XML types, in: J.V. den Bussche, V.
Vianu (Eds.), Database Theory—ICDT 2001, Springer, Berlin, Heidelberg, 2001,
pp. 331–345. <http://link.springer.com/chapter/10.1007/3-540-44503-X_21>
(accessed 15.01.15).

[48] Recursos de Modelado Clínico (arquetipos). <https://www.msssi.gob.es/
profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm>
(accessed 16.01.15).

[49] Rene Spronk, Grahame Grieve, Common Issues Found in Implementations of
the HL7 Clinical Document Architecture (CDA). <http://www.
ringholm.com/docs/03020_en_HL7_CDA_common_issues_error.htm>
(accessed 23.10.14).

[50] D. Moner, A. Moreno, J.A. Maldonado, et al., Using archetypes for defining CDA
templates, Stud. Health Technol. Inform. 180 (2012) 53–57.

[51] K.W. Boone, Validating the Content of a CDA™ Document. http://dx.doi.org/10.
1007/978-0-85729-336-7_20.

[52] Z. Tun, L.J. Bird, A. Goodchild, Validating Electronic Health Records Using
Archetypes and XML, 2002.

[53] R. Chen, P. Georgii-Hemming, H. Ahlfeldt, Representing a chemotherapy
guideline using openEHR and rules, Stud. Health Technol. Inform. 150 (2009)
653–657.

[54] N. Anani, R. Chen, T.P. Moreira, et al., Retrospective checking of compliance
with practice guidelines for acute stroke care: a novel experiment using
openEHR’s Guideline Definition Language, BMC Med. Inform. Decis. Mak. 14
(2014) 39, http://dx.doi.org/10.1186/1472-6947-14-39.

[55] G.M. Bacelar-Silva, R. Chen, R.J. Cruz-Correia, From clinical guideline to
openEHR: converting JNC7 into archetypes and template, in: Anais do XIII
Congresso Brasileiro de Informática em Saúde, Curitiba, Brazil, 2012. ISSN:
2178-2857.

[56] S.A. Barretto, J. Warren, A. Goodchild, et al., Linking guidelines to electronic
health record design for improved chronic disease management, AMIA Annu.
Symp. Proc. 2003 (2003) 66–70.

[57] M. Marcos, J.A. Maldonado, B. Martínez-Salvador, et al., Interoperability of
clinical decision-support systems and electronic health records using
archetypes: a case study in clinical trial eligibility, J. Biomed. Inform. 46
(2013) 676–689, http://dx.doi.org/10.1016/j.jbi.2013.05.004.

[58] A. González-Ferrer, M. Peleg, B. Verhees, et al. Data integration for clinical
decision support based on openEHR archetypes and HL7 virtual medical record,
in: Proceedings of the 2012 International Conference on Process Support and
Knowledge Representation in Health Care, Springer-Verlag, Berlin, Heidelberg,
2013, pp. 71–84. http://dx.doi.org/10.1007/978-3-642-36438-9_5.

[59] D. Garcia, C.M.C. Moro, P.E. Cicogna, et al., Method to integrate clinical
guidelines into the electronic health record (EHR) by applying the archetypes
approach, Stud. Health Technol. Inform. 192 (2013) 871–875.

[60] T. Kuhn, P. Basch, M. Barr, et al., Clinical documentation in the 21st century:
executive summary of a policy position paper from the American College of
Physicians. Clinical documentation in the 21st century, Ann. Int. Med. (2015),
http://dx.doi.org/10.7326/M14-2128.

http://dx.doi.org/10.1016/j.jbi.2015.04.002
http://dx.doi.org/10.1267/METH03040437
http://dx.doi.org/10.1267/METH03040437
http://dx.doi.org/10.1197/jamia.M1888
http://dx.doi.org/10.1197/jamia.M1888
http://www.openehr.org
http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf
http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf
http://nrl.sourceforge.net/spec/
http://nrl.sourceforge.net/spec/
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0055
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0055
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0055
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/
http://www.omg.org/spec/UML/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.ruleml.org/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/rif-overview/
http://attempto.ifi.uzh.ch
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0100
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0100
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0100
http://link.springer.com/chapter/10.1007/3-540-48958-4_1
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://nrl.sourceforge.net/tutorials/schematron/tutorial.html
http://nrl.sourceforge.net/tutorials/schematron/tutorial.html
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0120
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0120
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0120
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0135
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0135
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0135
http://dx.doi.org/10.1016/j.scico.2013.02.010
http://dx.doi.org/10.1016/j.ijmedinf.2007.04.009
http://dx.doi.org/10.1109/EDOC.2005.22
http://link.springer.com/chapter/10.1007/978-3-540-76292-8_6
http://link.springer.com/chapter/10.1007/978-3-540-76292-8_6
http://www.tdx.cat/bitstream/handle/10803/117386/TMMT.pdf?sequence=1
http://www.tdx.cat/bitstream/handle/10803/117386/TMMT.pdf?sequence=1
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0170
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0170
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0170
http://dx.doi.org/10.1016/j.jbi.2010.05.013
https://www.projects.openhealthtools.org/sf/projects/mdht/
https://www.projects.openhealthtools.org/sf/projects/mdht/
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0185
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0185
http://dx.doi.org/10.1016/j.ijmedinf.2012.09.006
http://dx.doi.org/10.1016/j.ijmedinf.2012.09.006
http://dx.doi.org/10.5430/jha.v3n5p55
http://www.linkehr.com
http://dx.doi.org/10.1016/j.ijmedinf.2009.03.006
http://www.itserver.es
http://dx.doi.org/10.1016/j.jbi.2013.01.003
http://dx.doi.org/10.1016/j.jbi.2013.01.003
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0225
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0225
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0225
http://link.springer.com/chapter/10.1007/3-540-44503-X_21
https://www.msssi.gob.es/profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm
https://www.msssi.gob.es/profesionales/hcdsns/areaRecursosSem/Rec_mod_clinico_arquetipos.htm
http://www.ringholm.com/docs/03020_en_HL7_CDA_common_issues_error.htm
http://www.ringholm.com/docs/03020_en_HL7_CDA_common_issues_error.htm
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0250
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0250
http://dx.doi.org/10.1007/978-0-85729-336-7_20
http://dx.doi.org/10.1007/978-0-85729-336-7_20
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0265
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0265
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0265
http://dx.doi.org/10.1186/1472-6947-14-39
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0280
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0280
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0280
http://dx.doi.org/10.1016/j.jbi.2013.05.004
http://dx.doi.org/10.1007/978-3-642-36438-9_5
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0295
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0295
http://refhub.elsevier.com/S1532-0464(15)00069-6/h0295
http://dx.doi.org/10.7326/M14-2128

	Automatic generation of computable implementation guides from clinical information models
	1 Introduction
	2 Background and related work
	3 Material and methods
	3.1 LinkEHR platform
	3.2 Generation of implementation guides from archetypes
	3.2.1 Generation of NRL rules
	3.2.2 XML instances generation
	3.2.3 Schematron generation
	3.2.4 Generation of additional reference materials


	4 Results
	4.1 Evaluation
	4.1.1 Generated instances are correct instances of a given model
	4.1.2 Generated rules can correctly validate data instances
	4.1.3 Generated implementation guides have good quality and are useful for the development of EHR systems


	5 Discussion
	6 Conclusion
	Conflict of interest
	Acknowledgements
	Appendix A Supplementary material
	References


