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a b s t r a c t

In this paper, we propose an iterative scheme for finding a common element of the set
of solutions of an equilibrium problem and the set of fixed points of a strict pseudo-
contraction mapping in the setting of real Hilbert spaces. We establish some weak and
strong convergence theorems of the sequences generated by our proposed scheme. Our
results combine the ideas of Marino and Xu’s result [G. Marino, H.K. Xu, Weak and strong
convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl.
329 (2007) 336–346], and Takahashi and Takahashi’s result [S. Takahashi, W. Takahashi,
Viscosity approximation methods for equilibrium problems and fixed point problems in
Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515]. In particular, necessary and
sufficient conditions for strong convergence of our iterative scheme are obtained.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of H and
Φ : C × C → R be a bifunction, where R is the set of real numbers. The equilibrium problem (for short, EP) is to find x ∈ C
such that

Φ(x, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(Φ). Given a mapping T : C → H, let Φ(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then,
x ∈ EP(Φ) if and only if x ∈ K is a solution of the variational inequality 〈Tx, y − x〉 ≥ 0 for all y ∈ C. In addition, there
are several other problems, for example, the complementarity problem, fixed point problem and optimization problem,
which can also be written in the form of an EP. In other words, the EP is an unifying model for several problems arising
in physics, engineering, science, optimization, economics, etc. In the last two decades, many papers have appeared in the
literature on the existence of solutions of EP; see, for example [1,6,8,9] and references therein. Some solution methods have
been proposed to solve the EP; see, for example, [3–5,14,15] and references therein. Motivated by the work in [4,12,14],
Takahashi and Takahashi [15] introduced an iterative scheme by the viscosity approximation method for finding a common
element of the set of solutions of the EP (1.1) and the set of fixed points of a nonexpansive mapping in the setting of Hilbert
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spaces. They also studied the strong convergence of the sequences generated by their algorithm for a solution of the EP
which is also a fixed point of a nonexpansive mapping defined on a closed convex subset of a Hilbert space.

Recall, a mapping T with domain D(T) and range R(T) in H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ D(T).

We denote by F(T) the set of all fixed points of T, that is, F(T) = {x ∈ D(T) : Tx = x}. If C ⊂ H is nonempty, bounded, closed
and convex and T is a nonexpansive self-mapping of C, then F(T) is nonempty; see, for example, [7].

The mapping T is said to be a strict pseudo-contraction if there exists a constant 0 ≤ κ < 1 such that

‖Tx− Ty‖2
≤ ‖x− y‖2

+ κ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ D(T).

If

‖Tx− Ty‖2
≤ κ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ D(T),

then T is called a κ-strict pseudo-contraction mapping.
Note that the class of strict pseudo-contraction mappings strictly includes the class of nonexpansive mappings. Clearly, T

is nonexpansive if and only if T is a 0-strict pseudo-contraction. Construction of fixed points of nonexpansive mappings via
Mann’s algorithm [10] has extensively been investigated in the literature; See, for example [2,10,13,16–19] and references
therein. If T is a nonexpansive self-mapping of C, then Mann’s algorithm generates, initializing with an arbitrary x1 ∈ C, a
sequence according to the recursive manner

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 1,

where {αn}
∞

n=1 is a real control sequence in the interval (0, 1).
If T : C → C is a nonexpansive mapping with a fixed point and if the control sequence {αn}

∞

n=1 is chosen so that∑
∞

n=1 αn(1 − αn) = ∞, then the sequence {xn} generated by Mann’s algorithm converges weakly to a fixed point of T.
Reich [13] showed that the conclusion also holds good in the setting of uniformly convex Banach spaces with a Fréchet
differentiable norm. It is well known that Reich’s result is one of the fundamental convergence results. Very recently, Marino
and Xu [11] extended Reich’s result [13] to strict pseudo-contraction mappings in the setting of Hilbert spaces.

Motivated and inspired by the research work of Marino and Xu [11] and Takahashi and Takahashi [15], in this paper,
we propose a new implicit iterative scheme for finding a common element of the set of solutions of EP (1.1) and the set of
fixed points of a strict pseudo-contraction mapping defined in the setting of real Hilbert spaces. We establish some weak
and strong convergence theorems for our iterative scheme. These results are connected with Marino and Xu’s result [11],
and Takahashi and Takahashi’s result [15]. In particular, necessary and sufficient conditions for strong convergence of our
iterative scheme are obtained. Since our iterative scheme involves strict pseudo-contraction mappings, the proofs of our
results are very different from Takahashi and Takahashi’s one [15]. Moreover, our requirements on the iterative parameters
are much weaker than those in [15].

2. Preliminaries

Throughout the paper, unless otherwise specified, we consider H is a real Hilbert space with inner product 〈., .〉 and norm
‖ · ‖, C is a nonempty closed convex subset of H and we use the following notations:

(i) When {xn} is a sequence in H, then xn → x (respectively, xn ⇀ x) denotes strong (respectively, weak) convergence of the
sequence {xn} to x;

(ii) For a given sequence {xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of {xn}, that is,

ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {nj} of {n}}.

We assume that the bifunction Φ : C × C→ R satisfies the following conditions:

(A1) Φ(x, x) = 0, ∀x ∈ C;
(A2) Φ is monotone, that is, Φ(x, y)+ Φ(y, x) ≤ 0, ∀x, y ∈ C;
(A3) For all x, y, z ∈ C,

lim
t↓0

Φ(tz+ (1− t)x, y) ≤ Φ(x, y);

(A4) For each fixed x ∈ C, the function y 7→ Φ(x, y) is convex and lower semicontinuous.

Definition 2.1 ([7]). Let K be a nonempty closed subset of a Banach space E. A mapping T : K → K is said to be semicompact
if for any bounded sequence {xn} in K such that ‖xn− Txn‖ → 0 (as n→∞), there exists a subsequence {xni } ⊂ {xn} such that
xni → x∗ ∈ K (as i→∞).
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Let us recall the following definitions and results which will be used in the sequel.

Lemma 2.1 ([11], Lemma 1.1). For a real Hilbert space H, the following identities hold:

(i) ‖x− y‖2
= ‖x‖2

− ‖y‖2
− 2〈x− y, y〉,∀x, y ∈ H;

(ii) ‖tx+ (1− t)y‖2
= t‖x‖2

+ (1− t)‖y‖2
− t(1− t)‖x− y‖2,∀t ∈ [0, 1],∀x, y ∈ H;

(iii) If {xn} is a sequence in H weakly convergent to z, then

lim sup
n→∞

‖xn − y‖2
= lim sup

n→∞
‖xn − z‖2

+ ‖z− y‖2, ∀y ∈ H.

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists a unique nearest point in C, denoted by
PCx such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

Such a PC is called the metric projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.2 ([11], Lemma 1.3). Let C be a nonempty closed convex subset of a real Hilbert space H. Given x ∈ H and z ∈ C. Then
z = PCx if and only if

〈x− z, y− z〉 ≤ 0, ∀y ∈ C.

Lemma 2.3 ([11], Proposition 2.1). Let C be a nonempty closed convex subset of a real Hilbert space H and S : C → C be a
self-mapping of C.

(i) If S is a κ-strict pseudo-contraction mapping, then S satisfies the Lipschitz condition

‖Sx− Sy‖ ≤
1+ κ
1− κ

‖x− y‖, ∀x, y ∈ C.

(ii) If S is a κ-strict pseudo-contraction mapping, then the mapping I− S is demiclosed at 0, that is, if {xn} is a sequence in C such
that xn ⇀ x̃ and (I − S)xn → 0, then (I − S)x̃ = 0.

(iii) If S is a κ-(quasi-)strict pseudo-contraction, then the fixed point set F(S) of S is closed and convex so that the projection PF(S)
is well defined.

The following lemma appeared implicitly in [1].

Lemma 2.4 (See also [4,15]). Let C be a nonempty closed convex subset of H and let Φ : C × C → R be a bifunction
satisfying (A1)–(A4) . Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F(z, y)+
1
r
〈y− z, z− x〉 ≥ 0 for all y ∈ C.

The following lemma is established in [4].

Lemma 2.5 ([4]). Assume that Φ : C× C→ R satisfies (A1)–(A4) . For r > 0 and x ∈ H, define a mapping Tr : H→ C as follows:

Tr(x) = {z ∈ C : Φ(z, y)+
1
r
〈y− z, z− x〉 ≥ 0,∀y ∈ C}, ∀x ∈ H.

Then,

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, that is, ∀x, y ∈ H,

‖Trx− Try‖
2
≤ 〈Trx− Try, x− y〉 ;

(3) F(Tr) = EP(Φ);
(4) EP(Φ) is nonempty, closed and convex.

3. Iterative scheme and convergence results

We propose an iterative scheme for finding a common element of the set of solutions of EP (1.1) and the set of fixed points
of a strict pseudo-contraction mapping in the setting of real Hilbert spaces. We also prove the strong and weak convergences
of the sequences generated by our iterative scheme.
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Theorem 3.1. Let C be a nonempty closed convex subset of H, Φ : C×C→ R be a bifunction satisfying (A1)–(A4) and S : C→ C
be a κ-strict pseudo-contraction mapping for some 0 ≤ κ < 1 such that F(S)∩EP(Φ) 6= ∅. Let {xn} and {un} be sequences generated
initially by an arbitrary element x1 ∈ H and then byΦ(un, y)+

1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ≥ 1,

where {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α,β] for some α,β ∈ (κ, 1);
(ii) {rn} ⊂ (0,∞) and lim infn rn > 0.

Then, the sequences {xn} and {un} converge weakly to an element of F(S) ∩ EP(Φ).

Proof. We divide the proof into four steps.
Step 1. We claim that the following statements hold:

(i) limn ‖xn − q‖ exists for each q ∈ F(S) ∩ EP(Φ);
(ii) limn ‖un − Sun‖ = 0;

(iii) limn ‖xn − Sxn‖ = 0.

Indeed, let q be an arbitrary element of F(S)∩ EP(Φ). Then from the definition of Tr in Lemma 2.5, we have un = Trnxn, and
therefore

‖un − q‖ = ‖Trnxn − Trnq‖ ≤ ‖xn − q‖, ∀n ≥ 1.

Since S is a κ-strict pseudo-contraction, we have

‖xn+1 − q‖2
= ‖αnun + (1− αn)Sun − q‖2

= αn‖un − q‖2
+ (1− αn)‖Sun − q‖2

− αn(1− αn)‖un − Sun‖
2

≤ αn‖un − q‖2
+ (1− αn)

(
‖un − q‖2

+ κ‖un − Sun‖
2
)
− αn(1− αn)‖un − Sun‖

2

= ‖un − q‖2
− (αn − κ)(1− αn)‖un − Sun‖

2

≤ ‖xn − q‖2
− (αn − κ)(1− αn)‖un − Sun‖

2. (3.1)

Since κ < α ≤ αn ≤ β < 1 for all n ≥ 1, we get ‖xn+1 − q‖ ≤ ‖xn − q‖, that is, the sequence {‖xn − q‖} is decreasing. Thus,
limn ‖xn − q‖ exists and hence {xn} is bounded. Also, from (3.1) it follows that

(α− κ)(1− β)‖un − Sun‖
2
≤ (αn − κ)(1− αn)‖un − Sun‖

2

≤ ‖xn − q‖2
− ‖xn+1 − q‖2. (3.2)

This implies that

lim
n→∞
‖un − Sun‖ = 0. (3.3)

Note that

un − xn+1 = (1− αn)(un − Sun).

Now, we compute

‖xn+1 − Sxn+1‖
2
= ‖αn(un − Sxn+1)+ (1− αn)(Sun − Sxn+1)‖

2

= αn‖un − Sxn+1‖
2
+ (1− αn)‖Sun − Sxn+1‖

2
− αn(1− αn)‖un − Sun‖

2

≤ αn‖(un − xn+1)+ (xn+1 − Sxn+1)‖
2
− αn(1− αn)‖un − Sun‖

2

+ (1− αn)
[
‖un − xn+1‖

2
+ κ‖(un − Sun)− (xn+1 − Sxn+1)‖

2
]

= αn(‖un − xn+1‖
2
+ ‖xn+1 − Sxn+1‖

2

+ 2〈un − xn+1, xn+1 − Sxn+1〉)− αn(1− αn)‖un − Sun‖
2
+ (1− αn)[‖un − xn+1‖

2

+ κ(‖un − Sun‖
2
+ ‖xn+1 − Sxn+1‖

2
− 2〈un − Sun, xn+1 − Sxn+1〉)]

= ‖un − xn+1‖
2
+ αn‖xn+1 − Sxn+1‖

2

+ 2αn〈un − xn+1, xn+1 − Sxn+1〉 − αn(1− αn)‖un − Sun‖
2

+ κ(1− αn)(‖un − Sun‖
2
+ ‖xn+1 − Sxn+1‖

2
− 2〈un − Sun, xn+1 − Sxn+1〉)

= (1− αn)
2
‖un − Sun‖

2
+ αn‖xn+1 − Sxn+1‖

2

+ 2αn(1− αn)〈un − Sun, xn+1 − Sxn+1〉 − αn(1− αn)‖un − Sun‖
2
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+ κ(1− αn)(‖un − Sun‖
2
+ ‖xn+1 − Sxn+1‖

2
− 2〈un − Sun, xn+1 − Sxn+1〉)

= [αn + κ(1− αn)]‖xn+1 − Sxn+1‖
2

+ (1− αn)(1+ κ− 2αn)‖un − Sun‖
2
+ 2(αn − κ)(1− αn)〈un − Sun, xn+1 − Sxn+1〉

≤ [αn + κ(1− αn)]‖xn+1 − Sxn+1‖
2

+ (1− αn)(1+ κ− 2αn)‖un − Sun‖
2
+ 2(αn − κ)(1− αn)‖un − Sun‖‖xn+1 − Sxn+1‖.

Putting an = ‖xn+1 − Sxn+1‖ and bn = ‖un − Sun‖ for each n ≥ 1, we obtain that

(1− αn)(1− κ)a2
n ≤ (1− αn)(1+ κ− 2αn)b

2
n + 2(1− αn)(αn − κ)anbn.

Since 1 − αn > 0 and since we may assume bn > 0, we can divide the last inequality by (1 − αn)b2
n and also set γn = an/bn

to get the quadratic inequality for γn,

(1− κ)γ2
n − 2(αn − κ)γn − (1+ κ− 2αn) ≤ 0.

Solving this inequality, we obtain

γn ≤
αn − κ+

√
(αn − κ)2 + (1− κ)(1+ κ− 2αn)

1− κ
= 1.

Therefore, an ≤ bn and hence ‖xn+1 − Sxn+1‖ ≤ ‖un − Sun‖. Since limn ‖un − Sun‖ = 0, by (3.3) we find

lim
n→∞
‖xn − Sxn‖ = 0. (3.4)

Step 2. We claim that limn ‖xn − un‖ = 0.
Indeed, let q be an arbitrary element of F(S) ∩ EP(Φ). Then as above un = Trnxn and we have

‖un − q‖2
= ‖Trnxn − Trnq‖

2

≤
〈
Trnxn − Trnq, xn − q

〉
= 〈un − q, xn − q〉

=
1
2

(
‖un − q‖2

+ ‖xn − q‖2
− ‖xn − un‖

2
)

and hence

‖un − q‖2
≤ ‖xn − q‖2

− ‖xn − un‖
2.

Therefore, from (3.1), we have

‖xn+1 − q‖2
= ‖αn(un − q)+ (1− αn)(Sun − q)‖2

≤ ‖un − q‖2
− (αn − κ)(1− αn)‖un − Sun‖

2

≤ ‖un − q‖2

≤ ‖xn − q‖2
− ‖xn − un‖

2

and hence

‖xn − un‖
2
≤ ‖xn − q‖2

− ‖xn+1 − q‖2.

So, from the existence of limn ‖xn − q‖, we have

lim
n→∞
‖xn − un‖ = 0. (3.5)

Step 3. We claim that ωw(xn) ⊂ F(S) ∩ EP(Φ), where

ωw(xn) = {x ∈ H : xni ⇀ x for some subsequence {ni} of {n}}.

Indeed, since {xn} is bounded and H is reflexive, ωw(xn) is nonempty. Let w ∈ ωw(xn) be an arbitrary element. Then there
exists a subsequence xni of {xn} converges weakly to w. Hence, from (3.5) we know that uni ⇀ w. As ‖Sun − un‖ → 0, we
obtain that Suni ⇀ w. Let us show w ∈ EP(Φ). Since un = Trnxn, we have

Φ(un, y)+
1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1
rn
〈y− un, un − xn〉 ≥ Φ(y, un)
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and hence〈
y− uni ,

uni − xni
rni

〉
≥ Φ

(
y, uni

)
.

Since uni−xni
rni
→ 0 and uni ⇀ w, from (A4) we have

0 ≥ Φ(y,w), ∀y ∈ C.

For t ∈ (0, 1] and y ∈ C, let yt = ty+ (1− t)w. Since y ∈ C and w ∈ C, we have yt ∈ C and hence Φ(yt,w) ≤ 0. So, from (A1)
and (A4) we have

0 = Φ(yt, yt) ≤ tΦ(yt, y)+ (1− t)Φ(yt,w) ≤ tΦ(yt, y)

and hence 0 ≤ Φ(yt, y). From (A3), we have

0 ≤ Φ(w, y), ∀y ∈ C

and hence w ∈ EP(Φ).
We show that w ∈ F(S). Since S is a κ-strict pseudo-contraction mapping, by Lemma 2.3 (ii) we know that the mapping I−S

is demiclosed at zero. Note that ‖un−Sun‖ → 0 and uni ⇀ w. Thus, w ∈ F(S). Consequently, we deduce that w ∈ F(S)∩EP(Φ).
Since w was an arbitrary element, we conclude that ωw(xn) ⊂ F(S) ∩ EP(Φ).
Step 4. We claim that {xn} and {un} converge weakly to an element of F(S) ∩ EP(Φ).

Indeed, to verify that the assertion is valid, it is sufficient to show thatωw(xn) is a single-point set. We takew1,w2 ∈ ωw(xn)
arbitrarily and let {xki } and {xmj } be subsequences of {xn} such that xki ⇀ w1 and xmj ⇀ w2, respectively. Since limn ‖xn − q‖
exists for each q ∈ F(S) ∩ EP(Φ) and since w1,w2 ∈ F(S) ∩ EP(Φ), by Lemma 2.1(iii), we obtain

lim
n→∞
‖xn − w1‖

2
= lim

j→∞
‖xmj − w1‖

2

= lim
j→∞
‖xmj − w2‖

2
+ ‖w2 − w1‖

2

= lim
i→∞
‖xki − w2‖

2
+ ‖w2 − w1‖

2

= lim
i→∞
‖xki − w1‖

2
+ 2‖w2 − w1‖

2

= lim
n→∞
‖xn − w1‖

2
+ 2‖w2 − w1‖

2.

Hence w1 = w2. This shows that ωw(xn) is a single-point set. This completes the proof. �

As direct consequences of Theorem 3.1, we derive the following results.

Corollary 3.1. Let C be a nonempty closed convex subset of H and S : C→ C be a κ-strict pseudo-contraction mapping for some
0 ≤ κ < 1 such that F(S) 6= ∅. Let {xn} be a sequence generated initially by an arbitrary element x1 ∈ H and then by

xn+1 = αnPCxn + (1− αn)SPCxn, ∀n ≥ 1,

where {αn} ⊂ [α,β] for some α,β ∈ (κ, 1). Then, {xn} converges weakly to an element of F(S).

Proof. Put Φ(x, y) = 0 ∀x, y ∈ C and rn = 1 for all n ≥ 1 in Theorem 3.1. Then, by Lemma 2.2 we have un = PCxn. So, from
Theorem 3.1, the sequence {xn} generated initially by x1 ∈ H and then by

xn+1 = αnPCxn + (1− αn)SPCxn, ∀n ≥ 1,

converges weakly to an element of F(S). �

Corollary 3.2. Let C be a nonempty closed convex subset of H. Let Φ : C × C → R be a bifunction satisfying (A1)–(A4) and
S : C → C be a nonexpansive mapping such that F(S) ∩ EP(Φ) 6= ∅. Let {xn} and {un} be sequences generated initially by an
arbitrary element x1 ∈ H and then byΦ(un, y)+

1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ≥ 1,

where {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α,β] for some α,β ∈ (0, 1);
(ii) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, {xn} and {un} converge weakly to an element of F(S) ∩ EP(Φ).
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Proof. Since each nonexpansive mapping is a κ-strict pseudo-contraction mapping with κ = 0, the conclusion follows
immediately from Theorem 3.1. �

Theorem 3.2. Let C be a nonempty closed convex subset of H. Let Φ : C × C → R be a bifunction satisfying (A1)–(A4) and
S : C → C be a κ-strict pseudo-contraction mapping for some 0 ≤ κ < 1 such that F(S) ∩ EP(Φ) 6= ∅. Let {xn} and {un} be
sequences generated initially by an arbitrary element x1 ∈ H and then byΦ(un, y)+

1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ≥ 1,

where {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α,β] for some α,β ∈ (κ, 1);
(ii) {rn} ⊂ (0,∞) and lim infn rn > 0.

Then, {xn} and {un} converge strongly to an element of F(S) ∩ EP(Φ) if and only if lim infn d (xn, F(S) ∩ EP(Φ)) = 0, where
d (xn, F(S) ∩ EP(Φ)) denotes the metric distance from the point xn to F(S) ∩ EP(Φ).

Proof. From the proof of Theorem 3.1, we know that limn→∞ ‖xn−q‖ exists for each q ∈ F(S)∩EP(Φ) and limn ‖un− xn‖ = 0.
Hence {xn} is bounded.

The necessity is apparent. We show the sufficiency. Suppose that

lim inf
n→∞

d (xn, F(S) ∩ EP(Φ)) = 0.

Since xn+1 = αnun + (1− αn)Sun, from (3.1) we have

‖xn+1 − q‖ ≤ ‖xn − q‖. (3.6)

Taking the infimum over all q ∈ F(S) ∩ EP(Φ), from (3.6) we obtain

d (xn+1, F(S) ∩ EP(Φ)) ≤ d (xn, F(S) ∩ EP(Φ))

and hence limn d (xn, F(S) ∩ EP(Φ)) exists. Thus, we have

lim
n→∞

d (xn, F(S) ∩ EP(Φ)) = lim inf
n→∞

d (xn, F(S) ∩ EP(Φ)) = 0.

Now, it follows from (3.6) that for all q ∈ F(S) ∩ EP(Φ)

‖xn+m − xn‖ ≤ ‖xn+m − q‖ + ‖xn − q‖ ≤ 2‖xn − q‖. (3.7)

Taking the infimum over all q ∈ F(S) ∩ EP(Φ), from (3.7) we obtain

‖xn+m − xn‖ ≤ 2d (xn, F(S) ∩ EP(Φ)) .

Thus {xn} is a Cauchy sequence. Suppose xn → x̂ ∈ H. Then

d
(
x̂, F(S) ∩ EP(Φ)

)
= lim

n→∞
d (xn, F(S) ∩ EP(Φ)) = 0.

As S is a κ-strict pseudo-contraction mapping, we know from Lemma 2.3(iii) that F(S) is closed and convex. Note that EP(Φ)
is closed according to Lemma 2.5. Thus F(S) ∩ EP(Φ) is closed. Consequently, x̂ ∈ F(S) ∩ EP(Φ). In view of ‖un − xn‖ → 0, we
conclude that both sequences {xn} and {un} converge strongly to an element x̂ of F(S) ∩ EP(Φ). �

Theorem 3.3. Let C be a nonempty closed convex subset of H. Let Φ : C × C → R be a bifunction satisfying (A1)–(A4) and
S : C → C be a semicompact κ-strict pseudo-contraction mapping for some 0 ≤ κ < 1 such that F(S) ∩ EP(Φ) 6= ∅. Let {xn} and
{un} be sequences generated initially by an arbitrary element x1 ∈ H and then byΦ(un, y)+

1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ≥ 1,

where {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α,β] for some α,β ∈ (κ, 1);
(ii) {rn} ⊂ (0,∞) and lim infn rn > 0.

Then, {xn} and {un} converge strongly to an element of F(S) ∩ EP(Φ).
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Proof. From the proof of Theorem 3.1, we know that limn ‖xn−q‖ exists for each q ∈ F(S)∩EP(Φ) and limn→∞ ‖xn−Sxn‖ = 0.
Thus {xn} is bounded. Then from the semicompactness of S, we conclude that there exists a subsequence {xni } of {xn} such
that

xni → p ∈ H as i→∞.

Hence, xni ⇀ p. Clearly, repeating the same argument as in the proof of Theorem 3.1, we must have p ∈ F(S) ∩ EP(Φ). This
implies that limn ‖xn − p‖ exists. Consequently, we have

lim
n→∞
‖xn − p‖ = lim

i→∞
‖xni − p‖ = 0.

Since ‖un − xn‖ → 0, we deduce that both the sequences {xn} and {un} converge strongly to a point p ∈ F(S) ∩ EP(Φ). �

Utilizing Theorems 3.2 and 3.3, we immediately deduce the following corollaries.

Corollary 3.3. Let C be a nonempty closed convex subset of H and S : C→ C be a κ-strict pseudo-contraction mapping for some
0 ≤ κ < 1 such that F(S) 6= ∅. Let {xn} be a sequence generated initially by an arbitrary element x1 ∈ H and then by

xn+1 = αnPCxn + (1− αn)SPCxn, ∀n ≥ 1,

where {αn} ⊂ [α,β] for someα,β ∈ (κ, 1). Then, {xn} converges strongly to an element of F(S) if and only if lim infn d (xn, F(S)) =
0, where d (xn, F(S)) denotes the metric distance from the point xn to F(S).

Corollary 3.4. Let C be a nonempty closed convex subset of H. Let Φ : C × C → R be a bifunction satisfying (A1)–(A4) and
S : C → C be a semicompact and nonexpansive mapping such that F(S) ∩ EP(Φ) 6= ∅. Let {xn} and {un} be sequences generated
initially by an arbitrary element x1 ∈ H and then byΦ(un, y)+

1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ≥ 1,

where {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α,β] for some α,β ∈ (0, 1);
(ii) {rn} ⊂ (0,∞) and lim infn rn > 0.

Then, {xn} and {un} converge strongly to an element of F(S) ∩ EP(Φ).
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