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Abstract

In this paper we obtain a new strong type of Steckin inequality for the linear combinations of
Bernstein–Kantorovich operators, which gives the optimal approximation rate. On the basis of this
inequality, we further obtain the lower estimate for these operators.
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1. Introduction

Many mathematicians have investigated the approximation behavior of Bernstein–Kantorovich
operators on L p

[0, 1], 1 ≤ p ≤ ∞ with L∞[0, 1] = C[0, 1], defined by

Kn( f, x) =
n∑

k=0

pn,k(x)(n + 1)
∫ k+1

n+1

k
n+1

f (t)dt, pn,k(x) =
(n

k

)
xk(1− x)n−k .

However, they are found not to be applicable to approximating functions with higher
approximation degree. Butzer (see [1]) introduced the linear combinations of these operators that
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have higher approximation degree. To generalize Butzer’s approach one introduces the following
linear combinations (see [2, p. 116]):

Kn,r ( f, x) =
r−1∑
i=0

ci (n)Kni−1( f, x),

where ni and ci (n) satisfy

(a) n = n0 < · · · < nr−1 ≤ K n; (b)
r−1∑
i=0

|ci (n)| ≤ C;

(c)
r−1∑
i=0

ci (n) = 1; (d)
r−1∑
i=0

ci (n)n
−ρ
i = 0, ρ = 1, 2, . . . , r − 1.

It was shown in [2] that for 1 ≤ p <∞

‖Kn,r ( f )− f ‖p ≤ C

(
ω2r
ϕ

(
f, n−1/2

)
p
+ n−r

‖ f ‖p

)
, (1.1)

and for 1 ≤ p ≤ ∞ and 0 < α < 2r

‖Kn,r ( f )− f ‖p = O(n−α/2)⇔ ω2r
ϕ ( f, t)p = O(tα),

whereω2r
ϕ ( f, t)p is the modulus of smoothness with the step-weight function ϕ(x) =

√
x(1− x)

and ‖ f ‖p = ‖ f ‖L p[0,1](see [2, p. 117]).

In [2,3,6,7,9] one may find some results concerning the approximation rate and the saturation
for these operators with r ≥ 1. However, the saturation problem for all r ≥ 1 was first solved
in [5]. Some notations are necessary to be mentioned. For k = 1, 2, . . . let

a j,k = ja j,k−1 + (k − 1)a j−1,k−2 (1.2)

with

a0,k = 0, a1,k = 1, ak,2k = (2k − 1)!!,

where 1 < j < [k/2] if k is even and 1 < j ≤ [k/2] otherwise. The differential operators needed
are given by

Pr (D) =
1

(r + 1)!
a1,r+1(1− 2x)δr Dr

+

r∑
j=1

(
1

(r + j)!
a j,r+ j

+
j + 1

(r + j + 1)!
δ j,r+ j a j+1,r+ j+1

)
(x(1− x)) j (1− 2x)δr+ j Dr+ j ,

where δ j = 0 if j is even and δ j = 1 otherwise, and δ j,r+ j = 1 for 1 ≤ j ≤ r − 1 and δr,2r = 0.
We use these differential operators to define the K -functional, namely,

K ( f, r, t)p = inf
g

{
‖ f − g‖p + t2r

‖Pr (D)g‖p + t2r+1
‖ϕ2r+1g(2r+1)

‖p

}
,
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where, as usual, ϕ(x) =
√

x(1− x), g(2r)
∈ A.C .loc and 1 ≤ p ≤ ∞. Let further

σ(x) =
1

(r + 1)!
a1,r+1 +

r∑
j=1

(
1

(r + 1)!
a j,r+ j +

j + 1
(r + j + 1)!

δ j,r+ j a j+1,r+ j+1

)
× x(x − 1) · · · (x − j + 1).

We proved in [5] the following

Theorem 1.1. Let 1 ≤ p ≤ ∞ and r ≥ 1. If −1/p 6∈ {Re x : σ(x) = 0}, then there holds for
f ∈ L p

[0, 1]

‖Kn,r ( f )− f ‖p = O(n−r )⇐⇒ K ( f, r, t)p = O(t2r ).

In [5] we studied also the problem that one can replace K ( f, r, t)p = O(t2r ) by ω2r
ϕ ( f, t)p =

O(t2r ). We have (see [5]).

Theorem 1.2. Let 1 ≤ p < ∞ and r ≥ 1. If −1/p 6∈ {Re x : σ(x) = 0}, then there holds for
f ∈ L p

[0, 1]

K ( f, r, t)p = O(t2r )⇐⇒ ω2r
ϕ ( f, t)p = O(t2r ).

Furthermore, the restriction 1 ≤ p < ∞ in Theorem 1.2 cannot be replaced by 1 ≤ p ≤ ∞.
In fact, calculation shows that for p = ∞ and f (x) = x ln x , one has ω2

ϕ( f, t)∞ = O
(
t2
)

but
K ( f, 1, t)∞ 6= O

(
t2
)
.

Let Πn be a set of algebraic polynomials with degree n, and

En( f )p = inf
P∈Πn
‖ f − P‖p.

In this paper we will prove a strong type of Steckin inequality for Kn,r , i.e.,

Theorem 1.3. For 1 ≤ p ≤ ∞ and r ≥ 1, there is a constant C > 0 such that for f ∈ L p
[0, 1]

and n = 1, 2, . . .

‖Kn,r ( f )− f ‖p ≤ C
(

K ( f, r, n−1/2)p + n−r Er ( f )p

)
(1.3)

and

K ( f, r, n−1/2)p ≤ C

(
n−r−1/2

n∑
k=1

kr−1/2
‖Kk,r ( f )− f ‖p + n−r Er ( f )p

)
. (1.4)

We know that the classic Steckin inequality for operators does not give an optimal approximation
rate, while (1.3) and (1.4) imply the result of Theorem 1.1. The following result improves
Theorem 1.2.

Theorem 1.4. Let 1 ≤ p < ∞ and r ≥ 1. If −1/p 6∈ {Re x : σ(x) = 0}, then there holds for
f ∈ L p

[0, 1]

max
k≥n
‖Kk,r ( f )− f ‖p + n−r Er ( f )p � ω

2r
ϕ ( f, n−1/2)p + n−r Er ( f )p,

where the symbol X � Y means that there exists a positive constant M independent of n and f
such that M−1Y ≤ X ≤ MY.
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In Section 2, we will present some needed lemmas. The proofs of Theorems 1.3 and 1.4 will
be given in Section 3. Throughout this paper, C denotes a positive constant independent of n and
x , whose value may be different in different places.

2. Lemma

We will need the following lemmas.

Lemma 2.1. For Pn ∈ Πn satisfying ‖Pn − f ‖p ≤ C En( f )p, we have

‖ f − Pn‖p + n−2r
‖Pr (D)Pn‖p + n−2r−1

‖ϕ2r+1 P(2r+1)
n ‖p � K ( f, r, n−1)p. (2.1)

Proof. Clearly, we need only to verify the following three inequalities:

‖ f − Pn‖p ≤ M K ( f, r, n−1)p, ‖ϕ2r+1 P(2r+1)
n ‖p ≤ Mn2r+1 K ( f, r, n−1)p

and

‖Pr (D)Pn‖p ≤ Mn2r K ( f, r, n−1)p. (2.2)

The first two are evident as

ω2r+1
ϕ ( f, t)p ≤ C K ( f, r, t)p, En( f )p ≤ Cω2r+1

ϕ ( f, n−1)p

and

‖ϕ2r+1 P(2r+1)
n ‖p ≤ Cn2r+1ω2r+1

ϕ ( f, n−1)p,

which can be deduced immediately from the definition of K ( f, r, t)p, (7.2.2) and (7.3.1) in [2].
To prove (2.2) we choose g(2r)

∈ A.C .loc, such that

‖ f − g‖p + n−2r
‖Pr (D)g‖p + n−2r−1

‖ϕ2r+1g(2r+1)
‖p ≤ 2K ( f, r, n−1)p. (2.3)

We may assume n = 2m, P2 j ∈ Π2 j , j = m + 1, . . ., and

‖P2 j − g‖p = E2 j (g)p, j = m + 1, . . . .

Thus we have

g − P2m =

∞∑
j=m

(P2 j+1 − P2 j ).

From Theorem 7.2.1 in [2] and (2.3), we conclude

‖P2 j+1 − P2 j ‖p ≤ C(2− j )2r+1
‖ϕ2r+1g(2r+1)

‖p

≤ C(2− j )2r+1(2m)2r+1 K ( f, r, 2−m)p, j = m + 1, . . . .

Obviously, this estimate holds also for j = m. Hence, by using the Bernstein inequality (see
e.g. [2]), we obtain finally

‖Pr (D)(g − P2m )‖p ≤ C
∞∑

j=m

22r j 2−2r j− j 22rm+m K ( f, r, 2−m)p

≤ C22rm K ( f, r, 2−m)p,

which obviously implies (2.2). �
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Denote En = [a/n, 1− a/n] for fixed a > 0. For the moments of the operator Kn,r , we have
shown in [5]:

Lemma 2.2. Let x ∈ En , C(n) =
∑r−1

i=0 ci (n)n
−r
i and a j,k given by (1.2). Then for some

εk ∈ Lip1 satisfying εk(0) = εk(1) = 0, ε2r−1(x) ≡ 0 and ε2r (x) ≡ 0, we have

Kn,r ((· − x)r , x) = C(n)(1− 2x)δr
1

r + 1
a1,r+1,

and for r + 1 ≤ k ≤ 2r

Kn,r ((· − x)k, x) = C(n)(x(1− x))k−r (1− 2x)δk

×

(
ak−r,k +

k − r + 1
k + 1

δk−r,kak−r+1,k+1 + εk(x)

)
+O

(
ϕ2(k−r−1)(x)

nr+1

)
,

where δk−r,k = 1 for r + 1 ≤ k ≤ 2r − 1 and δr,2r = 0.

Moreover, following the notations of Lemma 2.2, we have (see [5]).

Lemma 2.3. Let P ∈
∏

m with m ≤
√

n, then the following inequality is true for 1 ≤ p ≤ ∞:∥∥∥∥Kn,r (P, x)− P(x)− C(n)
a1,r+1

(r + 1)!
(1− 2x)δr P(r)(x)

−C(n)
r∑

i=1

(x(1− x))i

(r + i)!
(1− 2x)δr+i

×

(
ai,r+i +

i + 1
r + i + 1

δi,r+i ai+1,r+i+1 + εr+i (x)

)
P(r+i)(x)

∥∥∥∥
p

≤ C1n−r−1/2
(
‖ϕ2r+1 P(2r+1)(x)‖p + ‖P‖p

)
, (2.4)

where C1 is a positive constant independent of P and n.

Let q be a given algebraic polynomial, and q̄ = {Re x : q(x) = 0}.We need also some results
concerning the following differential operator. Let

P(D) =
l∑

i=0

αi (x)(x(1− x))i Dl+i ,

where αi ∈ Lip δ, i = 0, 1, . . . , l, for some 0 < δ ≤ 1 and αl(x) 6= 0 for x ∈ [0, 1]. Let further

σ0(x) = α0(0)+
l∑

i=1

αi (0)x(x − 1) · · · (x − i + 1)

and

σ1(x) = α0(1)+
l∑

i=1

(−1)iαi (1)x(x − 1) · · · (x − i + 1).

We have (see [4] or [8]).
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Lemma 2.4. Let 1 ≤ p ≤ ∞ and α ≥ 0. Then there is a constant A > 0 such that for P ∈ Πn
and n = 1, 2, . . ., there hold

‖ϕ2l+2α+1 P(2l+1)
‖p ≤ An(‖ϕ2αP(D)P‖p + ‖ϕ

2αP‖p),

and if −1/p − α 6∈ σ 0 ∪ σ 1,

‖ϕ2l+2αP(2l)
‖p ≤ A(‖ϕ2αP(D)P‖p + ‖ϕ

2αP‖p). (2.5)

3. Proofs of Theorems 1.3 and 1.4

With the help of the lemmas shown in Section 2, we are now ready to prove our results.

Proof of Theorem 1.3. Let Pm ∈ Πm with m = [
√

n] satisfy

‖Pm − f ‖p = Em( f )p.

By (7.2.2) and (7.3.1) in [2] we have

‖Pm − f ‖p ≤ Cω2r+1
ϕ ( f, n−1/2)p (3.1)

and

‖ϕ2r+1 P(2r+1)
m ‖p ≤ Cm2r+1ω2r+1

ϕ ( f, n−1/2)p. (3.2)

Recalling the definition of K ( f, r, t)p we have

ω2r+1
ϕ ( f, n−1/2)p ≤ C K ( f, r, n−1/2)p. (3.3)

Thus, from (3.1) and (3.3) we conclude

‖Kn,r ( f )− f ‖p ≤ 2‖ f − Pm‖p + ‖Kn,r (Pm)− Pm‖p

≤ C K ( f, r, n−1/2)p + ‖Kn,r (Pm)− Pm‖p. (3.4)

Using (2.4), (3.2) and (3.3), we obtain, for x ∈ [0, 1],

‖Kn,r (Pm, x)− Pm(x)‖p

≤ |C(n)|

∥∥∥∥∥ a1,r+1

(r + 1)!
(1− 2x)δr P(r)(x)+

r∑
i=1

ϕ2i (x)

(r + i)!
(1− 2x)δr+i

×

(
ai,r+i +

i + 1
r + i + 1

δi,r+i ai+1,r+i+1 + εr+i (x)

)
P(r+i)

m (x)

∥∥∥∥∥
p

+C
(

K ( f, r, n−1/2)p + n−r−1/2
‖Pm‖p

)
. (3.5)

We know that ε2r−1(x) ≡ ε2r (x) ≡ 0, and εr+i ∈ Lip1 with εr+i (0) = εr+i (1) = 0 for
i = 1, 2, . . . , r − 2. Thus, there is C > 0 such that |εr+i (x)| ≤ Cϕ2(x) for x ∈ [0, 1] and
i = 1, 2, . . . , r − 2. In what follows we should prove

‖ϕ2i+2 P(r+i)
m ‖p ≤ C

(
‖Pr (D)Pm‖p + ‖Pm‖p

)
for i = 1, 2, . . . , r − 2. (3.6)
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Indeed, we may assume m = 2k . The set σ 0 ∪ σ 1 for Pr (D) has only finite elements. We have
0 < α < 1/2 satisfying −1/p − α 6∈ σ 0 ∪ σ 1. Let P2 j ∈ Π2 j , j = 0, 1, . . . , k − 1, be the best
approximation of Pm with the weight ϕ2α . Then, we have from Theorem 8.2.1 in [2]

‖ϕ2α(Pm − P2 j )‖p ≤ C2−2 jr (‖ϕ2α+2r P(2r)
m ‖p + ‖Pm‖p), j = 0, 1, . . . , k − 1.

Consequently, we conclude from (8.1.4) and (8.1.3) in [2]

‖ϕ2i+2 P(r+i)
m ‖p ≤

k−1∑
j=0

‖ϕ2i+2(P2 j+1 − P2 j )
(r+i)
‖p

≤ C
k−1∑
j=0

2(2r−1) j
‖ϕ(P2 j+1 − P2 j )‖p

≤ C
k∑

j=0

2− j (‖ϕ2α+2r P(2r)
m ‖p + ‖Pm‖p)

≤ C(‖ϕ2α+2r P(2r)
m ‖p + ‖Pm‖p).

On the other hand, as −1/p − α 6∈ σ 0 ∪ σ 1 we obtain by (2.5) with l = r

‖ϕ2α+2r P(2r)
m ‖p + ‖Pm‖p ≤ A(‖Pr (D)Pm‖p + ‖Pm‖p).

Thus, (3.6) follows from the last two displays. From (3.6), we have∥∥∥∥∥ a1,r+1

(r + 1)!
(1− 2x)δr P(r)(x)+

r∑
i=1

ϕ2i (x)

(r + i)!
(1− 2x)δr+i

×

(
ai,r+i +

i + 1
r + i + 1

δi,r+i ai+1,r+i+1 + εr+i (x)

)
P(r+i)

m (x)

∥∥∥∥∥
p

≤ C(‖Pr (D)Pm‖p + ‖Pm‖p).

Therefore, as C(n) � n−r , we conclude from (3.5) and (2.1)

‖Kn,r (Pm)− Pm‖p ≤ Cn−r (‖Pr (D)Pm‖p + ‖Pm‖p)+ C K ( f, r, n−1/2)p

≤ C
(

K ( f, r, n−1/2)p + n−r
‖ f ‖p

)
.

Combining this with (3.4) we obtain finally

‖Kn,r ( f )− f ‖p ≤ C
(

K ( f, r, n−1/2)p + n−r
‖ f ‖p

)
.

This inequality implies (1.3), since for any P ∈ Πr

‖Kn,r ( f − P)− ( f − P)‖p = ‖Kn,r ( f )− f ‖p and

K ( f − P, r, n−1/2)p = K ( f, r, n−1/2)p.

To show (1.4) we define the following differential operators

P̃r (D) =
a1,r+1

(r + 1)!
(1− 2x)δr Dr

+

r∑
i=1

ϕ2i (x)

(r + i)!
(1− 2x)δr+i

(
ai,r+i

+
i + 1

r + i + 1
δi,r+i ai+1,r+i+1 + εr+i (x)

)
Dr+i ,
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then the set σ 0∪σ 1 for P̃r (D) is the same as for Pr (D). Consequently, (3.6) holds also for P̃r (D)
instead of Pr (D). Thus,∥∥∥∥∥ r∑

i=1

ϕ2i (x)

(r + i)!
(1− 2x)δr+i εr+i (x)P

(r+i)
m

∥∥∥∥∥
p

≤

(
‖P̃r (D)Pm‖p + ‖Pm‖p

)
.

Therefore,

‖Pr (D)Pm‖p ≤ C
(
‖P̃r (D)Pm‖p + ‖Pm‖p

)
. (3.7)

On the other hand, we have

K ( f, r, n−1/2)p ≤ C
(
‖ f − Pm‖p + n−r

‖Pr (D)Pm‖p + n−r−1/2
‖ϕ2r+1 P(2r+1)

m ‖p

)
.

We know from (3.1) and (3.2)

‖ f − Pm‖p + n−r−1/2
‖ϕ2r+1 P(2r+1)

m ‖p ≤ Cω2r+1
ϕ ( f, n−1/2)p,

and from (3.7), (2.4), (3.1) and (3.2)

n−r
‖Pr (D)Pm‖p ≤ C

(
‖Kn,r (Pm)− Pm‖p + ω

2r+1
ϕ ( f, n−1/2)p + n−r

‖ f ‖p

)
.

Hence, there holds

K ( f, r, n−1/2)p ≤ C
(
‖Kn,r (Pm)− Pm‖p + ω

2r+1
ϕ ( f, n−1/2)p + n−r

‖ f ‖p

)
.

Following from (3.1)

‖Kn,r (Pm)− Pm‖p ≤

(
‖Kn,r ( f )− f ‖p + ω

2r+1
ϕ ( f, n−1/2)p

)
and from Theorem 9.3.6 of [2]

ω2r+1
ϕ ( f, n−1/2)p ≤ Cn−r−1/2

(
n∑

k=1

kr−1/2
‖Kk,r ( f )− f ‖p + ‖ f ‖p

)
,

we have

K ( f, r, n−1/2)p ≤ C

(
‖Kn,r ( f )− f ‖p + n−r−1/2

×

n∑
k=1

kr−1/2
‖Kk,r ( f )− f ‖p + n−r

‖ f ‖p

)
.

By multiplying nr−1/2 in the above inequality and summing from N to 2N , we obtain by the
monotonicity of K ( f, r, n−1/2)p

N r+1/2 K ( f, r, (2N )−1/2)p ≤ C

(
2N∑
k=1

kr−1/2
‖Kk,r ( f )− f ‖p + N 1/2

‖ f ‖p

)
,

which obviously implies (1.4). �

Next we should apply Theorem 1.3 and Lemma 2.4 to verifying Theorem 1.4.
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Proof of Theorem 1.4. For Pm ∈ Πm with m = [
√

n] satisfying ‖ f − Pm‖p = Em( f )p, we
have

ω2r
ϕ ( f,m−1)p ≤ C

(
‖ f − Pm‖p + m−2r

‖ϕ2r P(2r)
m ‖p

)
.

By (2.5) with α = 0, and (2.1), we conclude

ω2r
ϕ ( f,m−1)p ≤ C(‖ f − Pm‖p + m−2r

‖Pr (D)Pm‖p + m−2r
‖ f ‖p)

≤ C
(

K ( f, r,m−1)p + m−2r
‖ f ‖p

)
,

which obviously implies

ω2r
ϕ ( f,m−1)p + m−2r Er ( f )p ≤ C(K ( f, r,m−1)p + m−2r Er ( f ))p.

Therefore, it follows from (1.4) that

ω2r
ϕ ( f, n−1/2)p + n−r Er ( f )p ≤ Cn−r−1/2

n∑
k=1

kr−1/2(‖Kk,r ( f )− f ‖p + n−r Er ( f )p).

Consequently, for τ = 0, 1/4, we obtain from the last display

ω2r
ϕ ( f, n−1/2)p + n−r Er ( f )p ≤ Cn−r−τ max

1≤k≤n
kr+τ (‖Kk,r ( f )− f ‖p + n−r Er ( f )p).

On the other hand, let J ( f, t)p = ω2r
ϕ ( f, t)p + t2r Er ( f )p, then J ( f, λt) ≤ Cλ2r J ( f, t) for

λ ≥ 1. We conclude from (1.1)

n−r−τ max
1≤k≤n

kr+τ (‖Kk,r ( f )− f ‖p + n−r Er ( f )p) ≤ C J ( f, n−1/2)p.

Combining the last two displays, we obtain finally for τ = 0 and 1/4

n−r−τ max
1≤k≤n

kr+τ (‖Kk,r ( f )− f ‖p + n−r Er ( f )p) � J ( f, n−1/2)p. (3.8)

Hence, there holds

n−r max
1≤k≤n

kr (‖Kk,r ( f )− f ‖p + n−r Er ( f )p)

� n−r−1/4 max
1≤k≤n

kr+1/4(‖Kk,r ( f )− f ‖p + n−r Er ( f )p).

Assuming 1 ≤ k0 ≤ n satisfies

max
1≤k≤n

kr+1/4(‖Kk,r ( f )− f ‖p + n−r Er ( f )p)

= k0
r+1/4(‖Kk0,r ( f )− f ‖p + n−r Er ( f )p),

we have for some C0 > 0

n−r kr
0(‖Kk0,r ( f )− f ‖p + n−r Er ( f )p)

≤ n−r max
1≤k≤n

kr (‖Kk,r ( f )− f ‖p + n−r Er ( f )p)

≤ Cn−r−1/4kr+1/4
0 (‖Kk0,r ( f )− f ‖p + n−r Er ( f )p),
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which gives k0 ≥ nC−4
0 . Therefore we have from (3.8)

J ( f, n−1/2)p ≤ Cn−r−1/4 max
1≤k≤n

kr+1/4(‖Kk,r ( f )− f ‖p + n−r Er ( f )p)

≤ Cn−r−1/4k0
r+1/4(‖Kk0,r ( f )− f ‖p + n−r Er ( f )p)

≤ C

(
max

k≥nC−4
0

‖Kk,r ( f )− f ‖p + n−r Er ( f )p

)
.

The property of J ( f, n−1/2) implies

J ( f, (nC−4
0 )−1/2)p ≤ C

(
max

k≥nC−4
0

‖Kk,r ( f )− f ‖p + n−r Er ( f )p

)
.

The desired assertion follows from this estimate and (1.1). �
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