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Abstract

We introduce a new free entropy invariant, which yields improvements of most of the applications of free
entropy to finite von Neumann algebras, including those with Cartan subalgebras, simple masas, property T ,
property Γ , nonprime factors, and thin factors.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of free probability and free entropy was introduced by Voiculescu in the 1980s.
In papers [18,19], Voiculescu introduced the concept of free entropy dimension and used it to
provide the first example of separable type II1 factor that does not have Cartan subalgebras, which
solved a long-standing problem. Later, using the theory of free entropy, Ge in [5] showed that
the free group factors are not prime, i.e., are not a tensor product of two infinite-dimensional von
Neumann algebras. This also answered an old open question. In [8], Ge and the second author
computed free entropy dimension for a large class of finite von Neumann algebras including
some II1 factors with property T .

Here we introduce a new invariant, the upper free orbit-dimension of a finite von Neumann
algebra, which is closely related to Voiculescu’s free entropy dimension. Suppose that M is a
finitely generated von Neumann algebra with a faithful normal tracial state τ and M can be faith-
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fully embedded into the ultrapower of the hyperfinite II1 factor. Roughly speaking, if x1, . . . , xn

generates M, Voiculescu’s free entropy dimension δ0(x1, . . . , xn) is obtained by considering the
covering numbers of certain sets by ω-balls, and letting ω approach 0. The upper free orbit-
dimension K2(x1, . . . , xn) is obtained by considering the covering numbers of the same sets by
ω-neighborhoods of unitary orbits (see the definitions in Section 2), and taking the supremum
over ω, 0 < ω < 1. It is easily shown that

δ0(x1, . . . , xn) � 1 + K2(x1, . . . , xn)

always holds.
The upper free orbit-dimension has many useful properties, mostly in the case when

K2(x1, . . . , xn) = 0. The key property is that if K2(x1, . . . , xn) = 0 for some generating set for M,
then K2(y1, . . . , yp) = 0 for every generating set y1, . . . , yp of M. This fact allows us to show
that the class of finite von Neumann algebras M with K2(M) = 0 is closed under certain opera-
tions that enlarge the algebra:

(1) If K2(N1) = K2(N2) = 0 and N1 ∩N2 is diffuse, then K2((N1 ∪N2)
′′) = 0.

(2) If M = {N , u}′′ where N is a von Neumann subalgebra of M with K2(N ) = 0 and u

is a unitary element in M satisfying, for a sequence {vn} of Haar unitary elements in N ,
dist‖ ‖2(uvnu

∗,N ) → 0, then K2(M) = 0.
(3) If {Ni}∞i=1 is an ascending sequence of von Neumann subalgebras of M such that

K2(Ni ) = 0 for all i � 1 and M = ⋃
i Ni

SOT , then K2(M) = 0.

Using these closure operations as building blocks, and the fact that K2(M) = 0 whenever M
is hyperfinite, we can show that K2(M) = 0 for a large class of von Neumann algebras. As a
corollary we recapture most of the old results. In particular, we extend results in [5,7–10,19,20].

Using free orbit dimension, we also obtain some general results on the decompositions of
type II1 factors (see Theorem 6). As a corollary, we extend the results in [3,4,6,12,14–16].

The organization of the paper is as follows. In Section 2, we give the definitions of free orbit
dimension and upper free orbit dimension. Key properties of upper free orbit dimension are
discussed in Section 3. The values of upper free orbit dimension for finite von Neumann algebras
are computed in Section 4. Some results on the decompositions of type II1 factors are obtained
in Section 5.

In the paper, we only consider the finite von Neumann algebras M that can be faithfully
embedded into the ultrapower of the hyperfinite II1 factor.

After the completion of this work, we were informed that K. Jung [13] introduced a notion
of a “strongly 1-bounded” set of generators of a finite von Neumann algebra and proved some
results similar to ours. It seems that these two concepts are closely related to each other.

2. Definitions

Let Mk(C) be the k × k full matrix algebra with entries in C, and τk be the normalized trace
on Mk(C), i.e., τk = 1

k
Tr, where Tr is the usual trace on Mk(C). Let U(k) denote the group

of all unitary matrices in Mk(C). Let Mk(C)n denote the direct sum of n copies of Mk(C).
Let ‖ · ‖2 denote the trace norm induced by τk on Mk(C)n, i.e.,∥∥(A1, . . . ,An)

∥∥2
2 = τk

(
A∗

1A1
) + · · · + τk

(
A∗

nAn

)
for all (A1, . . . ,An) in Mk(C)n.
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For every ω > 0, we define the ω-ball Ball(B1, . . . ,Bn;ω) centered at (B1, . . . ,Bn) in
Mk(C)n to be the subset of Mk(C)n consisting of all (A1, . . . ,An) in Mk(C)n such that
‖(A1, . . . ,An) − (B1, . . . ,Bn)‖2 < ω.

For every ω > 0, we define the ω-orbit-ball U(B1, . . . ,Bn;ω) centered at (B1, . . . ,Bn) in
Mk(C)n to be the subset of Mk(C)n consisting of all (A1, . . . ,An) in Mk(C)n such that there
exists some unitary matrix W in U(k) satisfying∥∥(A1, . . . ,An) − (

WB1W
∗, . . . ,WBnW

∗)∥∥
2 < ω.

For every R > 0, we define (Mk(C)n)R to be the subset of Mk(C)n consisting of all these
(A1, . . . ,An) in Mk(C)n such that max1�j�n ‖Aj‖ � R.

Let M be a von Neumann algebra with a faithful normal tracial state τ , and x1, . . . , xn be
elements in M. We now define our new invariants. For any positive R and ε, and any m,k in N,
let ΓR(x1, . . . , xn;m,k, ε) be the subset of Mk(C)n consisting of all (A1, . . . ,An) in Mk(C)n

such that (A1, . . . ,An) is contained in (Mk(C)n)R , and∣∣τk

(
A

η1
i1

· · ·Aηq

iq

) − τ
(
x

η1
i1

· · ·xηq

iq

)∣∣ < ε,

for all 1 � i1, . . . , iq � n, all η1, . . . , ηq in {1,∗}, and all q with 1 � q � m.
For ω > 0, we define the ω-orbit covering number ν(ΓR(x1, . . . , xn;m,k, ε),ω) to be the

minimal number of ω-orbit-balls that cover ΓR(x1, . . . , xn;m,k, ε) with the centers of these ω-
orbit-balls in (Mk(C)n)R .

Now we define, successively,

K(x1, . . . , xn;ω,R) = inf
m∈N, ε>0

lim sup
k→∞

log(ν(ΓR(x1, . . . , xn;m,k, ε),ω))

−k2 logω
,

K(x1, . . . , xn;ω) = sup
R>0

K(x1, . . . , xn;ω,R),

K1(x1, . . . , xn) = lim sup
ω→0

K(x1, . . . , xn;ω),

K2(x1, . . . , xn) = sup
0<ω<1

K(x1, . . . , xn;ω),

where K1(x1, . . . , xn) is called the free orbit-dimension of x1, . . . , xn and K2(x1, . . . , xn) is
called the upper free orbit-dimension of x1, . . . xn.

In the spirit as in Voiculescu’s definition of free entropy dimension, we shall also define
free orbit-dimension and upper free orbit-dimension of x1, . . . , xn in the presence of y1, . . . , yp

for all x1, . . . , xn, y1, . . . , yp in the von Neumann algebra M as follows. Let ΓR(x1, . . . , xn :
y1, . . . , yp;m,k, ε) be the image of the projection of ΓR(x1, . . . , xn, y1, . . . , yp;m,k, ε) onto
the first n components, i.e.,

(A1, . . . ,An) ∈ ΓR(x1, . . . , xn : y1, . . . , yp;m,k, ε)

if there are elements B1, . . . ,Bp in Mk(C) such that

(A1, . . . ,An,B1, . . . ,Bp) ∈ ΓR(x1, . . . , xn, y1, . . . , yp;m,k, ε).

Then we define, successively,
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K(x1, . . . , xn : y1, . . . , yp;ω,R),

= inf
m∈N,ε>0

lim sup
k→∞

log(ν(ΓR(x1, . . . , xn : y1, . . . , yp;m,k, ε),ω))

−k2 logω
,

K(x1, . . . , xn : y1, . . . , yp;ω) = sup
R>0

K(x1, . . . , xn : y1, . . . , yp;ω,R),

K1(x1, . . . , xn : y1, . . . , yp) = lim sup
ω→0

K(x1, . . . , xn : y1, . . . , yp;ω),

K2(x1, . . . , xn : y1, . . . , yp) = sup
0<ω<1

K(x1, . . . , xn : y1, . . . , yp;ω).

Definition 1. Suppose M is a finitely generated von Neumann algebra with a faithful normal
tracial state τ . Then the free orbit-dimension K1(M) of M is defined by

K1(M) = sup
{
K1(x1, . . . , xn)

∣∣ x1, . . . , xn generate M as a von Neumann algebra
}
,

and the upper free orbit-dimension K2(M) of M is defined by

K2(M) = sup
{
K2(x1, . . . , xn)

∣∣ x1, . . . , xn generate M as a von Neumann algebra
}
.

Here, we quote a useful proposition from [9, Theorem 2.1], which is an extension of
[18, Lemma 4.3].

Proposition 1. Suppose R is a hyperfinite von Neumann algebra with a faithful normal tracial
state τ . Suppose that x1, . . . , xn is a family of generators of R. Then, for every δ > 0, R >

max1�j�n ‖xj‖, there are a positive integer m0 and a positive number ε0 such that the following
hold: for k � 1, if A1, . . . ,An,B1, . . . ,Bn in Mk(C) satisfying,

(a) 0 � ‖Aj‖,‖Bj‖ � R for all 1 � j � n;

(b)

∣∣τk

(
A

η1
i1

· · ·Aηp

ip

) − τ
(
x

η1
i1

· · ·xηp

ip

)∣∣ < ε0,∣∣τk

(
B

η1
i1

· · ·Bηp

ip

) − τ
(
x

η1
i1

· · ·xηp

ip

)∣∣ < ε0,

for all 1 � i1, . . . , ip � n, {ηj }pj=1 ⊂ {∗,1} and 1 � p � m0,

then there exists a unitary matrix U in U(k) such that

(
n∑

j=1

‖U∗AjU − Bj‖2
2

)1/2

< δ.

Proof. Suppose on the contrary that the following holds: there is some δ0 > 0 such that for every
m � 1, there are some km � 1 and some A1,m, . . . ,An,m,B1,m, . . . ,Bn,m in Mkm(C) satisfying:

(a) max
{‖Aj,m‖,‖Bj,m‖} � R;
1�j�n
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(b)
∣∣τk

(
A

ε1
i1,m

· · ·Aεp

ip,m

) − τ
(
x

ε1
i1

· · ·xεp

ip

)∣∣ <
1

m
;

∣∣τk

(
B

ε1
i1,m

· · ·Bεp

ip,m

) − τ
(
x

ε1
i1

· · ·xεp

ip

)∣∣ <
1

m
;

for all 1 � i1, . . . , ip � n, {ε1, . . . , εp} ⊂ {∗,1} and 1 � p � m; and
(c) for all U in U(km),

∑n
j=1 ‖UAj,mU∗ − Bj,m‖2

2 > δ2
0 .

Let ω be a free filter in β(N)\N. Denote by Mkm(C)ω the ultrapower of {Mkm(C)}∞m=1 along
the filter ω. So Mkm(C)ω is a type II1 factor.

Let ρ, or σ , be the mapping from R into Mkm(C)ω induced by sending each xj , for 1 � j � n,
to [(Aj,m)m], or [(Bj,m)m], respectively. It is not hard to see that ρ and σ are two trace-preserving
embeddings of R into Mkm(C)ω. For δ0 > 0, there exist a finite dimensional subalgebra A0 of R
and {x̃1, . . . , x̃n} in A0 such that (

∑
1�j�n ‖xj − x̃j‖2

2)
1/2 � δ0/8. Since Mkm(C)ω is a type II1

factor and ρ and σ are two trace-preserving embedding of A0 into Mkm(C)ω , there is some
unitary element u in Mkm(C)ω such that ρ(y) = uσ(y)u∗ for all y ∈ A0. Let [(Um)m] be a rep-
resentative of u in Mkm(C)ω . We can further assume that each Um is a unitary element in U(km)

for all m � 1. It follows that (limm→ω

∑
1�j�n ‖UmAj,mU∗

m −Bj,m‖2
2)

1/2 � δ0/2, which contra-

dicts with the assumption that (
∑

1�j�n ‖UAj,mU∗ − Bj,m‖2
2)

1/2 > δ0 for all unitary matrix U

in U(km). Therefore, the statement of the proposition is true. �
3. Key properties of K2

In this section, we are going to study the properties of upper free orbit dimension. By using an
equivalent packing number formulation of free entropy dimension due to Jung [11] or the fractal
free entropy dimension defined by Dostál and Hadwin [2], we have the following lemma.

Lemma 1. Let x1, . . . , xn be self-adjoint elements in a von Neumann algebra M with a faithful
normal tracial state τ . Let δ0(x1, . . . , xn) be Voiculescu’s modified free entropy dimension. Then

δ0(x1, . . . , xn) � K1(x1, . . . , xn) + 1 � K2(x1, . . . , xn) + 1.

Proof. The first inequality follows from [2, Theorem 14] or [11], and the second inequality is
obvious. �
Lemma 2. Let x1, . . . , xn, y1, . . . , yp be elements in a von Neumann algebra M with a faithful
normal tracial state τ . If y1, . . . , yp are in the von Neumann subalgebra generated by x1, . . . , xn

in M, then, for every 0 < ω < 1,

K(x1, . . . , xn;ω) = K(x1, . . . , xn : y1, . . . , yp;ω).

Proof. It is a straightforward adaptation of the proof of [19, Proposition 1.6]. Given R >

max1�j�n ‖xj‖ + max1�j�p ‖yj‖, m ∈ N and ε > 0, we can find m1 ∈ N and ε1 > 0 such
that, for all k ∈ N,
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ΓR(x1, . . . , xn;m1, k, ε1) ⊂ ΓR(x1, . . . , xn : y1, . . . , yp;m,k, ε)

⊂ ΓR(x1, . . . , xn;m,k, ε).

Hence

ν
(
ΓR(x1, . . . , xn;m1, k, ε1),ω

)
� ν

(
ΓR(x1, . . . , xn : y1, . . . , yp;m,k, ε),ω

)
� ν

(
ΓR(x1, . . . , xn;m,k, ε),ω

)
,

for all 0 < ω < 1. The rest follows from the definitions. �
The following key theorem shows that, in some cases, the upper free orbit-dimension K2 is a

von Neumann algebra invariant, i.e., it is independent of the choice of generators.

Theorem 1. Suppose M is a von Neumann algebra with a faithful normal tracial state τ and is
generated by a family of elements {x1, . . . , xn} as a von Neumann algebra. If

K2(x1, . . . , xn) = 0,

then

K2(M) = 0.

Proof. Suppose that y1, . . . , yp are elements in M that generate M as a von Neumann alge-
bra. For every 0 < ω < 1, there exists a family of noncommutative polynomials ψi(x1, . . . , xn),
1 � i � p, such that

p∑
i=1

∥∥yi − ψi(x1, . . . , xn)
∥∥2

2 <

(
ω

4

)2

.

For such a family of polynomials ψ1, . . . ,ψp , and every R > 0 there always exists a con-
stant D � 1, depending only on R,ψ1, . . . ,ψn, such that

(
p∑

i=1

∥∥ψi(A1, . . . ,An) − ψi(B1, . . . ,Bn)
∥∥2

2

)1/2

� D
∥∥(A1, . . . ,An) − (B1, . . . ,Bn)

∥∥
2,

for all (A1, . . . ,An), (B1, . . . ,Bn) in Mk(C)n, all k ∈ N, satisfying ‖Aj‖,‖Bj‖ � R,
for 1 � j � n.

For R > 1,m sufficiently large, ε sufficiently small and k sufficiently large, every (H1, . . . ,Hp,

A1, . . . ,An) in ΓR(y1, . . . , yp, x1, . . . , xn;m,k, ε) satisfies

(
p∑

i=1

∥∥Hi − ψi(A1, . . . ,An)
∥∥2

2

)1/2

� ω

4
.

It is obvious that such an (A1, . . . ,An) is also in ΓR(x1, . . . , xn;m,k, ε). On the other hand, by
the definition of the orbit covering number, we know there exists a set {U(Bλ, . . . ,Bλ

n ; ω )}λ∈Λk
1 4D
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of ω
4D

-orbit-balls that cover ΓR(x1, . . . , xn;m,k, ε) with the cardinality of Λk satisfying |Λk| =
ν(ΓR(x1, . . . , xn;m,k, ε), ω

4D
). Thus for such (A1, . . . ,An) in ΓR(x1, . . . , xn;m,k, ε), there ex-

ists some λ ∈ Λk and W ∈ U(k) such that

∥∥(A1, . . . ,An) − (
WBλ

1 W ∗, . . . ,WBλ
nW ∗)∥∥

2 � ω

4D
.

It follows that

p∑
i=1

∥∥Hi − Wψi

(
Bλ

1 , . . . ,Bλ
n

)
W ∗∥∥2

2 =
p∑

i=1

∥∥Hi − ψi

(
WBλ

1 W ∗, . . . ,WBλ
nW ∗)∥∥2

2 �
(

ω

2

)2

,

for some λ ∈ Λk and W ∈ U(k), i.e.,

(H1, . . . ,Hp) ∈ U
(

ψ1
(
Bλ

1 , . . . ,Bλ
n

)
, . . . ,ψp

(
Bλ

1 , . . . ,Bλ
n

); ω

2

)
.

Hence, by the definition of the free orbit-dimension, we get

0 � K(y1, . . . , yp : x1, . . . , xn;ω,R) � inf
m∈N,ε>0

lim sup
k→∞

log(|Λk|)
−k2 logω

= inf
m∈N,ε>0

lim sup
k→∞

log(ν(ΓR(x1, . . . , xn;m,k, ε), ω
4D

))

−k2 logω

= 0,

since K2(x1, . . . , xn) = 0. Therefore K(y1, . . . , yp : x1, . . . , xn;ω) = 0. Now it follows from
Lemma 2 that

K(y1, . . . , yp;ω) = K(y1, . . . , yp : x1, . . . , xn;ω) = 0;
whence K2(y1, . . . , yp) = 0 and K2(M) = 0. �
Theorem 2. If M is a hyperfinite von Neumann algebra with a faithful normal tracial state τ ,
then K2(M) = 0.

Proof. When M is an abelian von Neumann algebra, the result follows from [18, Lemma 4.3].
Generally, it is a direct consequence of Proposition 1, that, for each 0 < ω < 1,

ν
(
ΓR(x1, . . . , xn,m, ε, k),ω

) = 1

whenever m is sufficiently large and ε is sufficiently small. �
The proof of next theorem, being a slight modification of that of Theorem 1, will be omitted.

Theorem 3. Suppose that M is a finitely generated von Neumann algebra with a faithful normal
tracial state τ . Suppose that {Ni}∞i=1 is an ascending sequence of von Neumann subalgebras

of M such that K2(Ni ) = 0 for all i � 1 and M = ⋃
i Ni

SOT . Then K2(M) = 0.
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Definition 2. A unitary matrix U in Mk(C) is a Haar unitary matrix if τk(U
m) = 0 for all

1 � m < k and τk(U
k) = 1.

The proof of following lemma can be found in [8] (see also [20]). For the sake of complete-
ness, we also sketch its proof here.

Lemma 3. Let V1,V2 be two Haar unitary matrices in Mk(C). For every δ > 0, let

Ω(V1,V2; δ) = {
U ∈ U(k)

∣∣ ‖UV1 − V2U‖2 � δ
}
.

Then, for every 0 < δ < r , there exists a set {Ball(Uλ; 4δ
r

)}λ∈Λ of 4δ
r

-balls in U(k) that cover

Ω(V1,V2; δ) with the cardinality of Λ satisfying |Λ| � ( 3r
2δ

)4rk2
.

Sketch of Proof. Let D be a diagonal unitary matrix, diag(λ1, . . . , λk), where λj is the j th
root of unity 1. Since V1,V2 are Haar unitary matrices, there exist W1,W2 in U(k) such
that V1 = W1DW ∗

1 and V2 = W2DW ∗
2 . Let Ω̃(δ) = {U ∈ U(k) | ‖UD − DU‖2 � δ}. Clearly

Ω(V1,V2; δ) = {W ∗
2 UW1 | U ∈ Ω̃(δ)}; whence Ω̃(δ) and Ω(V1,V2; δ) have the same covering

numbers.
Let {est }ks,t=1 be the canonical system of matrix units of Mk(C). Let

S1 = span
{
est

∣∣ |λs − λt | < r
}
, S2 = Mk(C) � S1.

For every U = ∑k
s,t=1 xst est in Ω̃(δ), with xst ∈ C, let T1 = ∑

est∈S1
xst est ∈ S1 and T2 =∑

est∈S2
xst est ∈ S2. But

δ2 � ‖UD − DU‖2
2 =

k∑
s,t=1

∣∣(λs − λt )xst

∣∣2 �
∑

est∈S2

∣∣(λs − λt )xst

∣∣2

� r2
∑

est∈S2

|xst |2 = r2‖T2‖2
2.

Hence ‖T2‖2 � δ
r
. Note that ‖T1‖2 � ‖U‖2 = 1 and dimR S1 � 4rk2. By standard arguments on

covering numbers, we know that Ω̃(δ) can be covered by a set {Ball(Aλ; 2δ
r

)}λ∈Λ of 2δ
r

-balls

in Mk(C) with |Λ| � ( 3r
2δ

)4rk2
. Because Ω̃(δ) ⊂ U(k), after replacing Aλ by a unitary Uλ in

Ball(Aλ, 2δ
r

), we obtain that the set {Ball(Uλ; 4δ
r

)}λ∈Λ of 4δ
r

-balls in U(k) that cover Ω̃(δ) with

the cardinality of Λ satisfying |Λ| � ( 3r
2δ

)4rk2
. The same result holds for Ω(V1,V2; δ). �

Definition 3. Suppose that M is a diffuse von Neumann algebra with a faithful normal tracial
state τ . Then a unitary element u in M is called a Haar unitary if τ(um) = 0 when m �= 0.

Theorem 4. Suppose M is a diffuse von Neumann algebra with a faithful normal tracial state τ .
Suppose N is a diffuse von Neumann subalgebra of M and u is a unitary element in M such
that K2(N ) = 0 and {N , u} generates M as a von Neumann algebra. If there exist Haar uni-
tary elements v1, v2, . . . and w1,w2, . . . in N such that ‖vpu − uwp‖2 → 0 as p → ∞, then
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K2(M) = 0. In particular, if there are Haar unitary elements v,w in N , such that vu = uw,
then K2(M) = 0.

Proof. Suppose that {x1, . . . , xn} is a family of generators of N . We know that {x1, . . . , xn, u} is
a family of generators of M.

For every 0 < ω < 1, 0 < r < 1, there exist an integer p > 0 and two Haar unitary elements
vp,wp in N such that

‖vpu − uwp‖2 <
rω

65
.

Note that {x1, . . . , xn, vp,wp} is also a family of generators of N .
For R > 1, m ∈ N, ε > 0 and k ∈ N, by the definition of the orbit covering number,

there exists a set {U(Bλ
1 , . . . ,Bλ

n ,V λ,Wλ; rω
64 )}λ∈Λk

of rω
64 -orbit-balls in Mk(C)n+2 that cover

ΓR(x1, . . . , xn, vp,wp;m,k, ε), where the cardinality of Λ satisfies |Λk| = ν(ΓR(x1, . . . , xn,

vp,wp;m,k, ε), rω
64 ). When m is sufficient large, ε is sufficient small, by Proposition 1 we can

assume that all V λ,Wλ are Haar unitary matrices in Mk(C).
For m sufficiently large and ε sufficiently small, when (A1, . . . ,An,V,W,U) is contained

in ΓR(x1, . . . , xn, vp,wp,u;m,k, ε) then, by Proposition 1, there exists a unitary element U1 in
U(k) so that

‖U1 − U‖2 <
rω

64
and ‖V U1 − U1W‖2 <

rω

64
.

It is easy to see that (A1, . . . ,An,V,W) is also in ΓR(x1, . . . , xn, vp,wp;m,k, ε). Since
ΓR(x1, . . . , xn, vp,wp;m,k, ε) is covered by the set {U(Bλ

1 , . . . ,Bλ
n ,V λ,Wλ; rω

64 )}λ∈Λk
of rω

64 -
orbit-balls, there exist some λ ∈ Λk and X ∈ U(k) such that

∥∥(A1, . . . ,An,V,W) − (
XBλ

1 X∗, . . . ,XBλ
nX∗,XV λX∗,XWλX∗)∥∥

2 � rω

64
.

Hence,

∥∥V λX∗U1X − X∗U1XWλ
∥∥

2 = ∥∥XV λX∗U1 − U1XWλX∗∥∥
2 � rω

16
.

Note that V λ,Wλ were chosen to be Haar unitary matrices in Mk(C). From Lemma 3, it follows
that there exists a set {Ball(Uλ,σ ; ω

4 )}σ∈Σk
of ω

4 -balls in U(k) that cover Ω(V λ,Wλ; rω
16 ) with

|Σk| � ( 24
ω

)4rk2
, i.e., there exists some Uλ,σ in {Uλ,σ }σ∈Σk

such that

∥∥X∗U1X − Uλ,σ

∥∥
2 = ∥∥U1 − XUλ,σ X∗∥∥

2 � ω

4
.

Thus for such an (A1, . . . ,An,V,W,U) in ΓR(x1, . . . , xn, vp,wp,u;m,k, ε), there exist some
(Bλ

1 , . . . ,Bλ
n ,V λ,Wλ) and Uλ,σ such that

∥∥(A1, . . . ,An,U) − (
XBλ

1 X∗, . . . ,XBλ
nX∗,XUλ,σ X∗)∥∥

2 � ω
,

2
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for some X ∈ U(k), i.e.,

(A1, . . . ,An,U) ∈ U
(
Bλ

1 , . . . ,Bλ
n ,Uλ,σ ;ω)

.

Hence, by the definition of the free orbit-dimension, we have shown

0 � K(x1, . . . , xn, u : vp,wp;ω,R) � inf
m∈N,ε>0

lim sup
k→∞

log(|Λk||Σk|)
−k2 logω

� inf
m∈N,ε>0

lim sup
k→∞

(
log(|Λk|)
−k2 logω

+ log( 24
ω

)4rk2

−k2 logω

)

� 0 + 4r · log 24 − logω

− logω
,

since K2(x1, . . . , xn, vp,wp) � K2(N ) = 0. Thus, by Lemma 2,

0 � K(x1, . . . , xn, u;ω) = K(x1, . . . , xn, u : vp,wp;ω) � 4r · log 24 − logω

− logω
.

Because r is an arbitrarily small positive number, we have K(x1, . . . , xn, u;ω) = 0; whence,
K2(x1, . . . , xn, u) = 0. By Theorem 1, K2(M) = 0. �
Theorem 5. Suppose M is a von Neumann algebra with a faithful normal tracial state τ . Sup-
pose M is generated by von Neumann subalgebras N1 and N2 of M. If K2(N1) = K2(N2) = 0
and N1 ∩N2 is a diffuse von Neumann subalgebra of M, then K2(M) = 0.

Proof. Suppose that {x1, . . . , xn} is a family of generators of N1 and {y1, . . . , yp} a family
of generators of N2. Since N1 ∩ N2 is a diffuse von Neumann subalgebra, we can find a Haar
unitary u in N1 ∩N2.

For every R > 1 + max1�i�n,1�j�p{‖xi‖,‖yj‖}, 0 < ω < 1
2n

, 0 < r < 1 and m ∈ N, ε > 0,
k ∈ N, there exists a set {U(Bλ

1 , . . . ,Bλ
n ,Uλ; rω

24R
)}λ∈Λk

of rω
24R

-orbit-balls in Mk(C)n+1 covering
ΓR(x1, . . . , xn, u;m,k, ε) with |Λk| = ν(ΓR(x1, . . . , xn, u;m,k, ε), rω

24R
).

Also there exists a set {U(Dσ
1 , . . . ,Dσ

p ,Uσ ; rω
24R

)}σ∈Σk
of rω

24R
-orbit-balls in Mk(C)p+1 that

cover ΓR(y1, . . . , yp,u;m,k, ε) with |Σk| = ν(ΓR(y1, . . . , yp,u;m,k, ε), rω
24R

). When m is suf-
ficiently large and ε is sufficiently small, by Proposition 1 we can assume all Uλ, Uσ to be Haar
unitary matrices in Mk(C).

For each (A1, . . . ,An,C1, . . . ,Cp,U) in ΓR(x1, . . . , xn, y1, . . . , yp,u;m,k, ε), we know
that (A1, . . . ,An,U) is contained in ΓR(x1, . . . , xn, u;m,k, ε) and (C1, . . . ,Cp,U) is con-
tained in ΓR(y1, . . . , yp,u;m,k, ε). Note ΓR(x1, . . . , xn, u;m,k, ε) is covered by the set
{U(Bλ

1 , . . . ,Bλ
n ,Uλ; rω

24R
)}λ∈Λk

of rω
24R

-orbit-balls and ΓR(y1, . . . , yp,u;m,k, ε) is covered by
the set {U(Dσ

1 , . . . ,Dσ
p ,Uσ ; rω

24R
)}σ∈Σk

of rω
24R

-orbit-balls. Hence, there exist some λ ∈ Λk ,
σ ∈ Σk and W1,W2 in U(k) such that

∥∥(A1, . . . ,An,U) − (
W1B

λ
1 W ∗

1 , . . . ,W1B
λ
nW ∗

1 ,W1UλW
∗
1

)∥∥
2 � rω

24R
,

∥∥(C1, . . . ,Cp,U) − (
W2D

σ
1 W ∗

2 , . . . ,W2D
σ
pW ∗

2 ,W2Uσ W ∗
2

)∥∥
2 � rω

.

24R
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Hence,

∥∥W ∗
2 W1Uλ − Uσ W ∗

2 W1
∥∥

2 = ∥∥W1UλW
∗
1 − W2Uσ W ∗

2

∥∥
2 � rω

12R
.

From our assumption that Uλ,Uσ are Haar unitary matrices in Mk(C), by Lemma 3 we know
that there exists a set {Ball(Uλσγ ; ω

3R
)}γ∈Ik

of ω
3R

-balls in U(k) that cover Ω(Uλ,Uσ ; rω
12R

)

with the cardinality of Ik never exceeding ( 18R
ω

)4rk2
. Then there exists some γ ∈ Ik such that

‖W ∗
2 W1 − Uλσγ ‖2 � ω

3R
. This in turn implies

∥∥(A1, . . . ,An,C1, . . . ,Cp,U) − (
W2Uλσγ Bλ

1 U∗
λσγ W ∗

2 , . . . ,W2Uλσγ Bλ
nU∗

λσγ W ∗
2 ,

W2D
σ
1 W ∗

2 , . . . ,W2D
σ
pW ∗

2 ,W2Uσ W ∗
2

)∥∥
2 � nω

for some λ ∈ Λk,σ ∈ Σk,γ ∈ Ik and W2 ∈ U(k), i.e.,

(A1, . . . ,An,C1, . . . ,Cp,U) ∈ U
(
Uλσγ Bλ

1 U∗
λσγ , . . . ,Uλσγ Bλ

nU∗
λσγ ,Dσ

1 , . . . ,Dσ
p ,Uσ ;2nω

)
.

Hence, by the definition of the free orbit-dimension we get

K(x1, . . . , xn, y1, . . . , yp,u;2nω,R)

� inf
m∈N,ε>0

lim sup
k→∞

log(|Λk||Σk||Ik|)
−k2 log(2nω)

� inf
m∈N,ε>0

lim sup
k→∞

(
log(|Λk|)

−k2 log(2nω)
+ log(|Σk|)

−k2 log(2nω)
+ log(|Ik|)

−k2 log(2nω)

)

� 0 + inf
m∈N,ε>0

lim sup
k→∞

log( 18R
ω

)4rk2

−k2 log(2nω)

� 4r · log(18R) − logω

− log(2nω)
,

since K2(N1) = K2(N2) = 0. Since r is an arbitrarily small positive number, we get that
K(x1, . . . , xn, y1, . . . , yp,u;2nω,R) = 0; whence K2(x1, . . . , xn, y1, . . . , yp,u) = 0. By Theo-
rem 1, K2(M) = 0. �
4. Applications

In this section, we discuss a few applications of the results from the last section. (We only
consider finite von Neumann algebra M that can be faithfully embedded into the ultrapower of
the hyperfinite II1 factor.) Let L(Fn) denote the free group factor on n generators. By Voicules-
cu’s fundamental result in [18], we know δ0(L(Fn)) � n, where δ0 is Voiculescu’s modified free
entropy dimension. By combining Theorems 1–5, we obtain the results in [5,7,8,19,20]. Here are
a few sample applications improving earlier results.

The following lemma can be proved using [1, Theorem 5.3].
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Lemma 4. If M is a II1 factor with property Γ with the tracial state τ , then there are a hyperfi-
nite II1 factor R and a sequence {un} of Haar unitary elements of R such that

‖unx − xun‖2 → 0

for every x ∈ M.

Corollary 1. If M is a II1 factor with property Γ , then K2(M) = 0.

Proof. Choose a hyperfinite II1 factor R and a sequence of Haar unitary elements u1, u2, . . .

in R such that limn→∞ ‖xun −unx‖2 = 4 for every x in M. Since R is hyperfinite, K2(R) = 0.

If {v1, v2, . . .} is a sequence of Haar unitaries that generate M, it inductively follows from The-
orem 4 that, for each n � 1

K2
((
R∪ {v1, . . . , vn}

)′′) = 0.

Whence, by Theorem 3, K2(M) = 0. �
A maximal abelian self-adjoint subalgebra (or, masa) A in a II1 factor M is called a Cartan

subalgebra if the normalizer algebra of A,

N1(A) = {
u ∈ U(M): u∗Au = A

}′′

equals M. We define Nk+1(A) = N1(Nk(A)) for k � 1, and N∞(A) = (
⋃

1�k<∞ Nk(A))′′.
The following is a direct consequence of Theorems 4 and 3.

Corollary 2. Suppose M is a finitely generated type II1 factor, and A is a diffuse von Neumann
subalgebra with K2(A) = 0. If M = Nk(A) for some k,1 � k � ∞, then K2(M) = 0, and
δ0(M) � 1.

Some applications of free entropy to finite von Neumann algebras (nonprime factors, some II1
factors with property T ) are consequences of a result of L. Ge and J. Shen [8], which states that
if M is a II1 von Neumann algebra generated by a sequence of Haar unitary elements {ui}∞i=1
in M such that each ui+1uiu

∗
i+1 is in the von Neumann subalgebra generated by {u1, . . . , ui}

in M, then δ0(M) � 1. This result is also a consequence of Theorem 4. Here is another result.

Corollary 3. Suppose M is a finitely generated type II1 factor that is generated by a family
{uij : 1 � i, j < ∞} of Haar unitary elements in M such that:

(1) for each i, j , ui+1,j uij u
∗
i+1,j is in the von Neumann subalgebra generated by {u1j , . . . , uij };

and
(2) for each j � 1, {u1j , u2j , . . .} ∩ {u1,j+1, u2,j+1, . . .} �= ∅.

Then K2(M) = 0, δ0(M) � 1. Thus M is not ∗-isomorphic to any L(F(n)) for n � 2.

Remark 1. Suppose that G is a group generated by elements a, b, c such that ab2 = b3a and
ac2 = c3a. The group von Neumann algebra associated with G is a type II1 factor, and the
preceding corollary implies that K2(L(G)) = 0 and δ0(L(G)) � 1.
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The next two corollaries follows directly from Corollary 3.

Corollary 4. Suppose M is a nonprime II1 factor, i.e. M � N1 ⊗ N2 for some II1 subfactors
N1,N2. Then K2(M) = 0, δ0(M) � 1. Thus M is not *-isomorphic to any L(F(n)) for n � 2.

Corollary 5. If M = L(SL(Z,2m + 1)) is the group von Neumann algebra associated with
SL(Z,2m + 1) (the special linear group with integer entries) for m � 1, then K2(M) = 0,
δ0(M) � 1. Thus M is not *-isomorphic to any L(F(n)) for n � 2.

5. Decompositions of type II1 factors

In [6] L. Ge and S. Popa defined a type II1 factor to be weakly n-thin, if it contains hy-
perfinite subalgebras R0,R1 and n vectors ξ1, . . . , ξn in L2(M, τ ) such that L2(M, τ ) =
span‖·‖2(R0{ξ1, . . . , ξn}R1). They showed that L(Fm) is not weakly n-thin for m > 2 + 2n.
In [16], Stefan extended the preceding result in [6] and showed that free group factors are not
decomposable over nonprime subfactors and abelian subalgebras. Motivated by these facts, we
have the following theorem.

Theorem 6. Suppose that M is a finitely generated type II1 factor with a tracial state τ . Suppose
there exist von Neumann subalgebras N0,N1 of M with K2(N0) = K2(N1) = 0 and n vectors
ξ1, . . . , ξn in L2(M, τ ) such that

L2(M, τ ) = span‖·‖2N0{ξ1, . . . , ξn}N1.

Then K1(M) � 1 + 2n and δ0(M) � 2 + 2n. Thus M is not *-isomorphic to L(Fm) for m >

2 + 2n.

Proof. Suppose x1, . . . , xp is a family of self-adjoint elements in M that generate M as a von
Neumann algebra. Note there exist von Neumann subalgebras N0,N1 of M with K2(N0) =
K2(N1) = 0 and n vectors ξ1, . . . , ξn in L2(M, τ ) such that span‖·‖2N0{ξ1, . . . , ξn}N1 =
L2(M, τ ). We can choose self-adjoint elements y1, y2, . . . , y2n−1, y2n in M to approximate
Re ξ1, Im ξ1, . . . ,Re ξn, Im ξn, respectively. Hence, for any positive ω < 1, there are a positive
integer N , elements {ai,j,l}1�i�p,1�j�N,1�l�2n in N0, {bi,j,l}1�i�p,1�j�N,1�l�2n in N1, and
self-adjoint elements y1, . . . , y2n in M such that

p∑
i=1

∥∥∥∥∥xi −
N∑

j=1

2n∑
l=1

ai,j,lylbi,j,l

∥∥∥∥∥
2

2

�
(

ω

8

)2

.

Without loss of generality, we can assume that {ai,j,l}1�i�p,1�j�N,1�l�n generates N0 and
{bi,j,l}1�i�p,1�j�N,1�l�n generates N1 as von Neumann algebras. Otherwise we should add
generators of N0, N1 into the families.

Let a be max1�i�p{‖xi‖2} + 2. From now on the sequence z1, . . . , zs, . . . , zt is denoted by
(zs)s=1,...,t or (zs)s if there is no confusion arising from the range of index, where zs is an element
in M or a matrix in Mk(C).
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For R > a, define mapping ψ : (Mk(C)N)2n × Mk(C)2n × (Mk(C)N)2n → Mk(C) as fol-
lows,

ψ
(
(Dj,l)j l, (El)l, (Fj,l)j l

) =
N∑

j=1

2n∑
l=1

Dj,lElLj,l .

Let (Mk(C))R be the collection of all A in Mk(C) such that ‖A‖ � R. Then there always exists
a constant D > 1, not depending on k, such that

∥∥(
ψ

((
A

(1)
1,j,l

)
j l

, (Yl)l,
(
B

(1)
1,j,l

)
j l

)
, . . . ,ψ

((
A

(1)
p,j,l

)
j l

, (Yl)l,
(
B

(1)
p,j,l

)
j l

))
− (

ψ
((

A
(2)
1,j,l

)
j l

, (Yl)l,
(
B

(2)
1,j,l

)
j l

)
, . . . ,ψ

((
A

(2)
p,j,l

)
j l

, (Yl)l,
(
B

(2)
p,j,l

)
j l

))∥∥
2

� D
∥∥((

A
(1)
i,j,l

)
ij l

,
(
B

(1)
i,j,l

)
ij l

) − ((
A

(2)
i,j,l

)
ij l

,
(
B

(2)
i,j,l

)
ij l

)∥∥
2, (5.1)

for all

{
A

(1)
i,j,l , Yl,B

(1)
i,j,l ,A

(2)
i,j,l ,B

(2)
i,j,l

}
i,j,l

⊂ (
Mk(C)

)
R

∀k ∈ N.

For m sufficiently large, ε sufficiently small and k sufficiently large, if

(
X1, . . . ,Xp, (Ai,j,l)ij l , (Yl)l, (Bi,j,l)ij l

) ∈ ΓR

(
x1, . . . , xp, (ai,j,l)ij l , (yl)l, (bi,j,l)ij l; k,m, ε

)
,

then

∥∥(X1, . . . ,Xp) − (
ψ

(
(A1,j,l)j l, (Yl)l, (B1,j,l)j l

)
, . . . ,ψ

(
(Ap,j,l)j l, (Yl)l, (Bp,j,l)j l

))∥∥
2

=
(

p∑
i=1

∥∥∥∥∥Xi −
N∑

j=1

2n∑
l=1

Ai,j,lYlBi,j,l

∥∥∥∥∥
2

2

)1/2

� ω

8
, (5.2)

and

(
(Ai,j,l)ij l

) ∈ ΓR

(
(ai,j,l)ij l; k,m, ε

)
, and

(
(Bi,j,l)ij l

) ∈ ΓR

(
(bi,j,l)ij l; k,m, ε

)
.

On the other hand, from the definition of the orbit covering number, it follows there ex-
ists a set {U((Aλ

ij l)ij l; ω
16D

)}λ∈Λk
, or {U((Bσ

ij l)ij l; ω
16D

)}σ∈Σk
, of ω

16D
-orbit-balls that cover

ΓR((ai,j,l)ij l; k,m, ε), or ΓR((bi,j,l)ij l; k,m, ε), respectively, with

|Λk| = ν

(
ΓR

(
(ai,j,l)ij l; k,m, ε

)
,

ω

16D

)
, |Σk| = ν

(
ΓR

(
(bi,j,l)ij l; k,m, ε

)
,

ω

16D

)
.

Therefore for such sequence ((Ai,j,l)ij l , (Bi,j,l)ij l), there exist some λ ∈ Λk , σ ∈ Σk and W1,W2
in U(k) such that

∥∥(
(Ai,j,l)ij l , (Bi,j,l)ij l

) − ((
W1A

λ
i,j,lW

∗
1

)
ij l

,
(
W2B

σ
i,j,lW

∗
2

)
ij l

)∥∥
2 � ω

. (5.3)

8D
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Thus, from (5.1), (5.2) and (5.3), it follows that

∥∥(X1, . . . ,Xp) − (
ψ

((
W1A

λ
1,j,lW

∗
1

)
j l

, (Yl)l,
(
W2B

σ
1,j,lW

∗
2

)
j l

)
, . . . ,

ψ
((

W1A
λ
p,j,lW

∗
1

)
j l

, (Yl)l,
(
W2B

σ
p,j,lW

∗
2

)
j l

))∥∥
2

=
( ∑

1�i�p

∥∥∥∥∥Xi −
N∑

j=1

2n∑
l=1

W1A
λ
i,j,lW

∗
1 YlW2B

σ
i,j,lW

∗
2

∥∥∥∥∥
2

2

)1/2

� ω

4
. (5.4)

Hence

( ∑
1�i�p

∥∥∥∥∥W ∗
1 XiW1 −

N∑
j=1

2n∑
l=1

(
Aλ

i,j,lW
∗
1 YlW2B

σ
i,j,l

)
W ∗

2 W1

∥∥∥∥∥
2

2

)1/2

� ω

4
. (5.5)

By a result of Szarek [17], there exists a ω
4ap

-net {Uγ }γ∈k
in U(k) that cover U(k) with respect

to the uniform norm such that the cardinality of Ik does not exceed (
4apC

ω
)k

2
, where C is a

universal constant. Thus ‖W ∗
2 W1 − Uγ ‖ � ω

4ap
, for some γ ∈ Ik . Because of (4.5), we know

∥∥∥∥∥
N∑

j=1

2n∑
l=1

Aλ
i,j,lW

∗
1 YlW2B

σ
i,j,l

∥∥∥∥∥
2

� ‖Xi‖2 + ω < a. (5.6)

From (5.5) and (5.6), we have

( ∑
1�i�p

∥∥∥∥∥W ∗
1 XiW1 −

(
N∑

j=1

2n∑
l=1

Aλ
i,j,lW

∗
1 YlW2B

σ
i,j,l

)
Uγ

∥∥∥∥∥
2

2

)1/2

� ω

2
. (5.7)

Define a linear mapping Ψλσγ :Mk(C)2n →Mk(C)p as follows:

Ψλσγ (S1, . . . , S2n) =
(

1

2

N∑
j=1

2n∑
l=1

(
Aλ

i,j,lSlB
σ
i,j,l

)
Uγ + ((

Aλ
i,j,lSlB

σ
i,j,l

)
Uγ

)∗
)

i=1,...,p

.

Let Fλσγ be the range of Ψλσγ in Mk(C)p . It is easy to see that Fλσγ is a real-linear subspace
of Mk(C)p whose real dimension does not exceed 2nk2. Therefore the bounded subset

{
(H1, . . . ,Hp) ∈ Fλσγ

∣∣ ∥∥(H1, . . . ,Hp)
∥∥

2 � ap
}

(5.8)

of Mk(C)p can be covered by a set {(Hλσγ,ρ

1 , . . . ,H
λσγ,ρ
p )}ρ∈Sk

of ω-balls with the cardinality

of Sk satisfying |Sk| � (
3ap

)2nk2
. But we know from (5.6) that
ω
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∥∥∥∥∥
(

1

2

N∑
j=1

2n∑
l=1

(
Aλ

i,j,lW
∗
1 YlW2B

σ
i,j,l

)
Uγ + ((

Aλ
i,j,lW

∗
1 YlW2B

σ
i,j,l

)
Uγ

)∗
)

i=1,...,p

∥∥∥∥∥
2

=
(

p∑
i=1

∥∥∥∥∥1

2

N∑
j=1

2n∑
l=1

(
Aλ

i,j,lW
∗
1 YlW2B

σ
i,j,l

)
Uγ + ((

Aλ
i,j,lW

∗
1 YlW2B

σ
i,j,l

)
Uγ

)∗
∥∥∥∥∥

2

2

)1/2

< ap, (5.9)

and from (5.7) we have∥∥(
W ∗

1 X1W1, . . . ,W
∗
1 XpW1

) − Ψλσγ

(
W ∗

1 Y1W2, . . . ,W
∗
1 Y2nW2

)∥∥
2

=
∥∥∥∥∥(

W ∗
1 X1W1, . . . ,W

∗
1 XpW1

)

−
(

1

2

N∑
j=1

2n∑
l=1

(
Aλ

i,j,lW
∗
1 YlW2B

σ
i,j,l

)
Uγ + ((

Aλ
i,j,lW

∗
1 YlW2B

σ
i,j,l

)
Uγ

)∗
)

i=1,...,p

∥∥∥∥∥
2

� ω. (5.10)

Thus, from (5.8), (5.9) and (5.10), there exists some ρ ∈ Sk such that∥∥(
W ∗

1 X1W1, . . . ,W
∗
1 XpW1

) − (
H

λσγ,ρ

1 , . . . ,H
λσγ,ρ
p

)∥∥
2 � 2ω.

By the definition of the free orbit-dimension, we know that

K
(
x1, . . . , xp : (aij l)ij l , (yl)l, (bij l)ij l;4ω,R

)
� inf

m∈N,ε>0
lim sup
k→∞

log(|Λk||Σk||Ik||Sk|)
−k2 log(4ω)

� inf
m∈N,ε>0

lim sup
k→∞

(
log |Λk|

−k2 log(4ω)
+ log |Σk|

−k2 log(4ω)
+ log(

4apC
ω

)k
2
(

3ap
ω

)2nk2

−k2 log(4ω)

)

= 0 + 0 + log(4 · (3ap)2n · apC) − (2n + 1) logω

− log(4ω)
,

since K2(N0) = K2(N1) = 0. Thus, by Lemma 2

0 � K(x1, . . . , xp;4ω) = K
(
x1, . . . , xp : (aij l)ij l , (yl)l, (bij l)ij l;4ω

)
� log(4 · (3ap)2n · apC) − (2n + 1) logω

− log(4ω)
.

By the definition of the free orbit-dimension, we obtain

K1(x1, . . . , xp) � lim sup
ω→0

log(4 · (3ap)2n · apC) − (2n + 1) logω

− log(4ω)
� 1 + 2n.

Hence, K1(M) � 1 + 2n and δ0(M) � 2 + 2n. �
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Remark 2. The mapping a �→ a∗ extends from M to a unitary map on L2(M, τ ), so for
ξ ∈ L2(M, τ ), it makes sense to talk about Re ξ = (ξ + ξ∗)/2 and Im ξ = (ξ − ξ∗)/2i.

In particular, it makes sense to talk about self-adjoint elements of L2(M, τ ). If we have
span‖·‖2N0{ξ1, . . . , ξn}N1 = L2(M, τ ) with ξ1, . . . , ξn self-adjoint elements in L2(M, τ ), the
proof of Theorem 6 yields K1(M) � 1 + n and δ0(M) � 2 + n.

Combining Theorem 6 and the preceding remark with Theorem 3, we have the following
corollaries (see also [3,4,6,12,15,16]).

Corollary 6. L(Fn) has no simple maximal abelian self-adjoint subalgebra for n � 4.

Corollary 7. L(Fn) is not a thin factor for n � 4.

Remark 3. Another corollary of Theorem 6 is as follows. Suppose M is a II1 factor with a
tracial state τ . Suppose that N is a subfactor of M with finite index, i.e., [M : N ] = r < ∞. If
K2(N ) = 0, then K1(M) � 2[r] + 3 and δ0(M) � 2[r] + 4 where [r] is the integer part of r .
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