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In some sense the theory we develop is dual to the usual Galois theory of  fields. 
We have chosen terminology to reflect that duality and to aid memory.  

• For K / k  a finite extension of fields, we write 

Cog(K/k) = { y/¢ ~/~//~ :/~/m > 0 with ym ~ I¢}. 

Hence Cog(K/k) is the torsion subgroup of/(/ /¢.  For H a subgroup of  Cog(K/k), 
we write KH for the set of  all a e K such that a can be written a = b~ +. . .  + bn with 
bl]~, . . . ,  bnl¢ ~ H. We call K / k  cogalois with cogalois group Cog(K/k) if: 

(1) (Conormality) card(Cog(K/k)) is finite and at most [K: k]; 
(2) (Coseparability) K = K H with H = Cog(K/k). 
In the first section, we prove: 

- If K / k  is cogalois and E is a field between K and k, then K / E  and E / k  are 
cogalois. 

- The maps  C o g ( - / k )  and K(_) are inverse bijections between the lattices of in- 
termediate fields of K/k ,  and of subgroups of Cog(K/k), respectively. 

t l  I 

- There are many examples; e.g. ~ (  ~r~[, ..., n~-t)C IR (ai > 0) is cogalois over ©. 

In the special case of simple radical extensions, our cogalois theory was essentially 
known (see Theorem 2.1 of  Oroczo/Vdlez [7]). 

Let us remark that if  K / k  is cogalois, then it is a kH-galois object in the sense 
of [2] (also called an H-ful ly graded algebra). Our correspondence theorem is a 
sharpened version of the fundamental  theorem of  Galois theory in that setting (we 
get all subfields). 

In the second section we study the connection between G = Ant(K/k)  and H= 
Cog(K/k) in case K / k  is both cogalois and galois. A somewhat surprising duality 
for a special class of  nonabel ian groups emerges, and we slightly enlarge the class 
of  extensions where we can exhibit all intermediate fields. 
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In an appendix we prove that Cog(K/k) is always finite if K and k are algebraic 
number fields. 

. 

Let K/k  always be a finite extension of fields. Recall the definition of  a cogalois 
extension from the introduction and observe that if K / k  is cogalois, then 
card(Cog(K/k)) is exactly [K: k]. In other words, every set of representatives for 
Cog(K/k) forms a base of K over k. This will be used frequently. 

At this moment,  we give two examples: One can check directly that  Q(1/~)/© 
is cogalois and Cog(Q(l /~)/Q)= { ~ , l / ~ } .  ~ ( ] / - 3 ) / Q  is not cogalois since 
Cog(©(] / -  3) /©) contains three different elements ~,  1 / -  3~ ,  ( ( -1  + 1//- 3 ) /2 )~ .  

Lemma 1.1. I f  E is afield with k C E C K ,  then the following sequence is exact 

1 -~ Cog(E/k) -~ Cog(K/k) - '  Cog(K/E). 

Proof.  This is quite easy to check. One can also take the exact sequence 1 -~ E//c 

/~//c ~ / ~ / E  and apply (-)tor.  

Definition. K / k  is pure if the following holds: 
If p = 4 or p prime, ( e  K, and (P  = 1, then ~ ~ k. 

Examples. ©(l /~) /~  is pure and Q ( ] / - 3 ) / ~  is not. 

Lemma 1.2. I f  K / k  is cogalois, then it is coseparable, separable and pure. 

Proof.  (a) K / k  is coseparable by definition. 
(b) I f K / k  is not separable, we have char(k) =p ,  k is infinite, and p[  [K : k]. Since 

[K: k] = card(Cog(K/k)), there is an element ylc e Cog(K/k) of precise order p;  i.e., 
y ~ k  and yP6]c. Then for all c e k ,  also y + c ~ k  but (y+x)P=yP+cPEk. It is 
quite easy to see that (y  + c)/c :# (y  + d)/c for c ~ d • k. Therefore Cog(K/k) contains 
infinitely many elements (y  + c)/c, c e k. This is a contradiction. 

(c) Now we show K/k  is pure. Let (P= 1, ( e  K. Assume first that p is prime. We 
may assume cha r (k ) , : p  since char(k)=p implies ( =  1. Since (if ( , :  1) 

1 + ( + . . . + ( v + l = 0 ,  

it is not the case that l k , . . . ,  (P-~/c are distinct elements in Cog(K/k) (see the first 
observation of  this section). Hence some ( i /~Jek (i:~j),  so ( e k .  

Next assume p = 4, and again we may assume char(k)~: 2, ( ~  1. One checks that 
(1 + 0 4 = - 4 e / L  But 

1 + ( - ( 1  + ( )=0 ,  
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so it is not  the case that  the three elements l/c, (/~, (1 + 0/~ of  Cog(K/k) are distinct. 

But any of  the three possible equal i ty  relations between them implies ( e  k. 

The next l emma is the crucial step. 

Lemma 1.3. Assume K= k(a), a p = a ~ k, [K : k] =p prime, and K / k  is pure and 
separable. Then K / k  is cogalois. 

Proof. It is enough to show that  the cyclic group with p elements (a/~) makes  up 

the whole o f  Cog(K/k). 
Step 1. I f  q is a prime different  f rom p, Cog(K/k) has no element of  order  q. 

Proof. I f  ord(y/~) = q, we have yq = b ~ k. Since [k(y) : k] = q is impossible (q 
does not divide p), x q -  b is reducible over k. By [3, p. 62], x q -  b has a root  fl in 
k. Then (y/fl)q = 1, so by pureness y / f l  ~ k, so y e k. This contradicts o rd(y /~)=  q. 

Step 2. Cog(K/k) has no element o f  order  p2. 
Proof. Assume o rd (y k )  =p2,  yp" = b ~ k. Again  x p2- b must  be reducible. I f  p is 

odd,  b has a p- th  root  f l e k  by loc.cit. Then (yP/fl)P= 1, so yP / f l e k ,  so y P ~ k ,  
which is a contradict ion.  I f  p = 2 and  b has a square root  in k, the same a rgument  
works.  I f  p = 2 and b has no square  root  in k, then by loc.cit. - 4 b  = d 4 for some 

d e  k. Hence  (d/y) 4= - 4 .  Let z = d/y.  Since 

0 = Z 4 + 4 = ( z  2 - 2z + 2)(Z 2 + 2Z + 2), 

either z -  1 or  z + 1 is a four th  root  o f  1. Since K / k  is pure,  we get z ~ k, so y e k, 
which is again  a contradict ion.  

Step 3. al~ generates Cog(K/k). 
Proof. Take  ylc ~ Cog(K/k). By the first two steps, yP~ k and we may  assume 

y ¢ k .  Thus k ( y ) = K .  
Let E = k ( O  be a splitting field of  x p -  1 over k, with ( a primitive p- th  root  o f  

1. Note c h a r ( k ) : g p  because K / k  is separable.  Let 

L = K ( O = E ( a ) .  

We have [L : K] < p -  1, [E : k] _ < p -  1. (Actually, both [L : K] and [E : k] divide 
p -  1). Moreover  

p.  [L : KI = [L : kl = [L : EI[E : k], 

so p[ [L : E]  =p and aCE. Therefore L IE is a p-Kummer extension. Let 

A = { B e £ I p P ~ E } .  

Note y and  a are in A .  By [1, Theo rem 24], A / E  is cyclic o f  order p .  Since ot~E, 
this implies 

y =aie for  some i e N,  e ~/~. 
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Hence we have, with yP= de  k, 

d = aie p. 

Let F =  Aut(E/k).  The exact sequence 

1 ~ ( ( ) ~ / ~  (-)P , /~P~I  

gives an exact sequence 

yet (-)P ~(Ep)r~HI(F, ( ( ) )  

with the last group trivial because ord(F) and o r d ( ( ) = p  are coprime. Since 
e p = d / a  i is in (Ep)F, w e  get 

e p = gP for some g e /~ r  =/~. 

Thus d= aig p =yP. Hence y/(aig) is a p-th root of 1 and has to be in k. Thus 
Y ~ ctiic. 

Remark. There is a short proof of 1.3 which uses Theorem 1.7 of [6]. The proof 
of that theorem needs a condition on the characteristic, which is not explicit in the 
statement of the theorem. 

Lemma 1.4. l f  E is afield between k and K, and E/k  and K / E  are both conormal, 
then K /k  is conormal. 

Proof.  By definition, E / k  is conormal if and only if card(Cog(E/k))_< [E : k]. The 
lemma is a direct consequence of Lemma 1.1. 

The reason why we defined pureness is the following result: 

Theorem 1.5. K / k  is cogalois i f  and only i f  K / k  is coseparable, separable and pure. 

Proof. The 'only if '  part was proved in Lemma 1.2. Let us prove the ' i f '  part. We 
choose a finite subgroup G of Cog(K/k) such that Kc =K.  This is possible since 
Kcogtr/k) = K by hypothesis and K/k  is finite. There is a chain 

{e} = Ho < HI <- "" <-Hm= G 

of subgroups of G such that H i / H  i_ 1 is cyclic of order Pi, where Pi is a prime 
number for all i = 1,..., m. Thus KHi/KH,_, is pure (because K / k  is pure), and it is 
coseparable by construction. Since Hi~Hi_ 1 is cyclic of order Pi, KH~ is obtained 
from KHi_, by adjoining a Pi-root. Since K / k  is separable, so is KH,/KH,_,. By 1.3, 
KH,/KH,_, is cogalois, and thus conormal. By an inductive application of 1.4, K / k  
is conormal. Thus K / k  is cogalois. 
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This result enables us to prove the main theorem. The statement is this: 

T h e o r e m  1.6 .  Assume K / k  is a cogalois extension. 
(a) For every intermediate field k C E  c K ,  K / E  and E / k  are again cogalois. 
(b) For every intermediate field k C E C K, we have K c o g ( K / k  ) = g. 
(c) For every subgroup U<_ Cog(K/k), we have Cog(Ku/k)= U. 
(d) The maps C o g ( - / k )  and Kt_ ) are inverse isomorphisms o f  lattices. 
(e) Cog(K/E) is canonically isomorphic to Cog(K/k)/Cog(E/k). 

Proof.  (a) By 1.5, K/k  is coseparable, separable and pure. From this it follows that 
K / E  is coseparable, separable and pure. Applying 1.5 again, we get that K/E  is 
cogalois. In particular K / E  is conormal. By counting group orders and using 
Lemma 1.1, one sees that Cog(K/k) cannot have fewer than [E: k] elements. If 
ell~, . . .  , e r i c  is a listing of Cog(K/k), then the ei]~ a r e  also distinct elements of 
Cog(K/k), so ei, ..., er are k-linearly independent. Therefore the ei are a base of 
E/k ,  and E / k  is cogalois. 

(b) Clearly Kcog(E/k)cE. But one sees that [KcogtE/k):k] = card(Cog(E/k)), and 
[E :k ]  = card(Cog(Elk)) by (a). Hence we have equality. 

(c) Cleary HCCog(K~/k) .  By (a), card(Cog(KH/k))= [KH:k], and obviously 
[Kn : k] _< card(H), so we have equality. 

(d) Follows from (b) and (c). 
(e) One has a natural injection Cog(K/k) /Cog(E/k)~ Cog(K/E) by Lemma 1.1. 

It has to be surjective because the orders of the groups are equal. 

We close this section with some more examples. 
nl  / I t  

(a) Let az,.. . ,  at be positive rational numbers, n i e IN, and K = Q( ~/-~(, ..., ~ t )  C 
JR. Then it is trivial that K/Q is pure since K C  JR. K / ~  is obviously coseparable, so 
by 1.5 it is cogalois. This means that all intermediate fields E are generated by 

n~ 
monomials in the roots ~r~-. 

Remark. One can always determine the intermediate fields of a coseparable exten- 
sion K / k  by adjoining enough roots of unity to K (this gives the field K', say) and 
then determining all groups between Go = Aut(K' /K)  and G'= Aut(K'/k). This can 

10 
be trickier than one might expect. We offer ~(  ~/r~)/Q as an example. Note that 
©(l~/~) and Q((10) are not linearly disjoint. By cogalois theory we get at once that 

- -  5 10 
there are only four subfields: Q, Q(V~), Q(]~),  and Q(~/-5). 

(b) Let p be any odd prime. Take k= ~((p) and take K= Q((pn) (n e N arbi- 
trary). Again, K / k  is certainly coseparable and separable. K / k  is even cogalois: To 
show purity, one can use that Q(~p,) and ~(~q) are linearly disjoint whenever q #:p 
is a prime or q = 4. 

Remark. Of course, for this extension the intermediate fields are well-known since 
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it is an abelian galois extension. The interesting cogalois extensions are a mixture 
of type (a) and (b) (see the next section), and they usually are not abelian even if 
they are galois. 

. 

We assume throughout this section that char(k)= 0. F / k  is always a finite field 
extension. We intend to examine extensions which are cogalois and galois at the 
same time, to exhibit a duality between the involved cogalois and galois groups, and 
to generalize a little. 

Definition. F / k  is called a cn-extension ('coseparable and normal ')  if F is the 
splitting field of some polynomial ( X  n l -  a l ) - . . . .  ( x n t - a t )  with n i 6 N and ai~ k. 

Notation. g =  k ( n l , a l  ; ... ; nt, a t) is a neat presentation if ai, n i are such that for p 
dividing any hi, k already contains a primitive p-th root of unity. Here p runs over 
the set of primes united with {4}. 

Remarks 2.1. (a) F is cn over k if and only if F / k  is coseparable and normal. This 
justifies the name 'cn-extension'. 

(b) If F / k  is cn and cogalois, then it has a neat presentation. 

Proof.  (a) The 'only if' part is clear. 
Suppose F / k  is coseparable and normal. Write F =  K# with H<_ Cog(F/k)  finite, 

and write H = ( y l l ~ ) @ ) . . . ~ ( y t l ~ )  with o r d ( y i l c ) = q i = p e i a  prime power. We 
claim F =  k (n l ,  al; ... ;nt, at) with a i = yq'. For this we need that X q i -  a i splits com- 
pletely in F;  i.e., F contains a primitive qi-th root of unity. Since F is normal, F 
contains all conjugates Yi ( l , . . . ,  Yi(r of Yi over k. Here all (j are qi-th roots of 1. 
Just suppose no (y is primitive. Since every conjugate of Yi (q~/P~) is a (qi/Pi)-th 
power of a conjugate of Yi, this implies that y~q~/P') is equal to all its conjugates, so 
ytqi/pi) i ~ k, which is a contradiction. 

(b) Let p be prime or p = 4, and p I ni. We must show (p ~ k. But obviously ~p ~ F 
because X n ' -  a i splits completely over F. Since F / k  is pure (see 1.3), (p is in k. 

Now let F / k  be a cn-extension. Note F / k  is galois. Let G = A u t ( F / k )  and 
H =  Cog(F(k)). There is a canonical map 

a:  G x H - ~ g ( F ) =  { ( ~ F  I ( root of unity} 

(g, yl~)-* g(y) . y - l .  

G operates on/a(F) ,  a(g, - )  is linear on H, and a( - ,y /~)  is an element of 

X ( G )  = {Z : G ~/~(F) I Z crossed homomorphism}. 
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(Recall X is a crossed homomorphism if x (gg ' )=x(g)"  8x(g').) e is non-degenerate 
in the following sense: If tT(g,H)= 1, then g=id.  If tr(G,y/~)= 1, then y G/~. 
Therefore tr induces a monomorphism 

H ~ X ( G ) .  

For U_< G a subgroup, define 

H>_ U ± = {heHi tx (U,h)= 1}. 

We would like tx to be a perfect pairing; i.e., ± is a duality (anti-isomorphism) of 
lattices: Subgroups(G) ~ Subgroups(H). 

Theorem 2.2. I f  F /k  cogalois, then for  U<G we have Fix(U)=K(v~), and ± is a 
duality f rom Subgroups(G) onto Subgroups(H). 
(For W<_H, Kw is defined as in the introduction.) 

Proof.  K(v~ ) is fixed under U by definition. Just suppose Fix(U)<Ku~, ( ). By 
cogalois theory,  Fix(U)=Kw, W < U  ±. Pick w/~e W \  U 1. Then weFix(U) ,  so 
w/~ e U 1; hence we have a contradiction. 

Since the map F ix ( - )  is a duality, and K(_) is an isomorphism of lattices, ( - ) ±  
must be a duality of lattices. 

Example (of a non-abelian galois and cogalois extension). Take k=Q((3) ,  
F= k(~/~, (9)- Then [F: k] = 27 and F / k  is coseparable. One checks that (4 ~ F and 
(p ¢ F for all odd primes p #: 3 (use that  k(l~rS)((4) is quadratic over k(]7/~) but F is 
cubic over k(~/5),and use that p -  1 does not divide 54 = [F" ~]  for any odd prime 
p #: 3). Thus F / k  is cogalois, and C= Cog(F/k) is generated by xk and y/~ of order 
9 and 3 respectively, with x = ~/~, y = (9- Now G = Aut(F/k)  is generated by a and 
fl of  order 9 and 3 respectively, where a(x)=yx, a(y) and fl(x)=x, B(y)=y4. The 
pairing u is given by tr(a, x/~) = (9, o'(fl, XlC) = 1 and u(a, y/~) = 1, u(fl, y/~) = (9 3 = (3. 
We illustrate the resulting duality between subgroups of G and subgroups of C by 
just one nontrivial example: Let D C C be the group of  order 3 generated by x3yIc. 
Then D ± C C has order 9 and is generated by afl-l .  (Check that e(afl-1, x3yi~) = 1, 
and check that  (a/~ -1)9= id.) In a similar way, the reader may list the complete 
duality. G is a non-abelian group, for instance B" a .  B -1 = a 4. 

In order to understand the group-theoretical pattern behind this duality, we 
generalize 2.2 to the case of extensions with neat presentations. First we exhibit 
a class of  groups G such that there is a duality between Subgroups(G) and 
Subgroups(X(G)).  (For the definition of  X(G), the group of  'crossed characters' ,  
see below.) The final result is: 

Theorem 2.3. Assume F=k(n l , a l  ; ... ; nt, at) is a neat presentation. Then any in- 
termediate f ield E, FD E Dk, is generated by monomials in roots o f  X n ' - a i  . 
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We begin with the group-theoretical results. For any r • IN, we say that m e IN is 
related to r, i f  m divides r, every prime p dividing r also divides m, and 41 m in case 
41 r. Let Dr, m (or D, if  r and m are fixed) be the kernel of  the natural epimorphism 

(7/ /(r))" -* (Z/(m))' .  

We suppose here that r is related to m. 
Let 1-~H-*G--*Dr, m-~l be an extension of groups. We say it is allowable if H 

is finite abelian of  exponent dividing r, and if the induced operation of  Dr, m on/- /  
is the natural one, i.e., the action by scalar multiplication. Example: 
G = H K Dr, m, the split allowable extension. 

For the next lemma and theorem, we assume that G is an allowable extension of 
Dr,  m by H. G operates through Dr, m on the additive group Z/(r)  (by scalar multi- 
plication), so the following makes sense for all subgroups U<_G: 

X ( U )  = {X: U-*Z/ ( r ) [x  crossed homomorphism}.  

Lemma 2.4. (a) card(X(G)) > card(G). 
(b) For U< V < G  we have card(Ker(X(V)-*X(U))< [V" U]. In particular, 

card(X(V))/card(X(U))  < [ V " U]. 
(c) For U<_V<<_G the restriction map X ( V ) - ~ X ( U )  is surjective, and 

card(X(U)) = card(U) f o r  all U<_ G. 
(d) For U< V<_G, there is a x e X ( V )  with x(U)=O, x ( V ) ¢ 0 .  

Proof. (a) Let B ( G ) C X ( G ) b e  the subgroup of inner crossed homomorphisms 
Xa, a eZ / ( r ) .  (xa(g)=ga-a .  ) There is a canonical exact sequence 

0--* (7//(r)) G ~ Z/(r)--* B(G)--*O. 

Moreover, it is not hard to check that (7//(r))G=(7//(r))D'.m=(r/m)7//(r). Thus 
card(B(G)) = r /m.  

By definition of H l (G, Z/(r)) = X(G) /B(G) ,  we have 

card(X(G)) = card(H 1 (G, Z/(r))).  card(B(G )) 

= card(H 1 (G, Z/(r))) • r/m. 

Since card(G) = card(H)-  card(Dr, m) = card(H).  (r/m), we only have to show 

card(H l (G, Z/(r))) >_ card(H). 

The following exact sequence comes from the Lyndon-Hochschild spectral sequence 
(see [4, p. 354]): 

H l (G,  Z/(r))  res ~ H I  (H,  2Z/(r))G --* H2(Dr ,  m, (7 / / (r ) )H)  • 

We observe: 
(i) H operates trivially on Z/(r) ,  and rH= O, so H 1 (H, 7//(r)) = Hom(H, Z/(r)) 

has exactly card(H) elements. 
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(ii) The operation of  G o n  H I  (H, 71/(r)) comes from conjugation. G operates 

on H and 7//(r). On both groups, G operates through Dr, m by scalar multiplication. 
Since H I ( H , Z / ( r ) ) = H o m z ( H , Z / ( r ) ) ,  the operation of G on Hl(H, -~ / ( r ) )  is 

trivial. 
(iii) Note that H operates trivially on Dr, m" By (i) and (ii) it suffices now to show 

that res is surjective, and we even show that H2(Dr, m, Z / ( r ) ) =  O. From elementary 
number theory one knows that Dr, m is cyclic, SO 

H2 (Dr, m ,  7/ /(r) ) ---- H °  (Dr, m ,  7/ /(r)  ). 

We claim the latter group is zero, i.e., [71/(r)] Dr'm :NDr, m(Z//(r)). Let D=Dr,  m. We 
already know that [71/(r)]°= (r/m)7/ /(r) ,  so it suffices to show that r / m  + (r) is a 
norm from 7//(r) under D. Consider 

ND(1)---- ~ (1 + y m )  
(y rood r/m) 

r l r ( r  ) r ra 
--------+ - - 1  m - - - - +  ( m o d r )  

m ~2 m m -2 

with a = ( r /m)  - 1 • 7/. 
Claim. r / m  is an integral multiple of  r / m  + (ra)/2 mod r. 
Case 1: r / m  is odd.  Then a is even and r / m  + (ra)/2 = r / m  mod r, and there is 

nothing to prove. Case 2: r / m  is even. Since m is related to r, 8 must divide r, and 
4 l m .  We then have 

( r  + 2 ) ( 1  7 )  
r ra ra ram 2 

m 2 2 4 

r m r 
- ra 2 -  (mod r), 

m 4 m 

so r /m  is an integral multiple of r / m  + (ra)/2 mod r, as claimed. 
(b) By induction, one can perform a reduction to the case that there are no groups 

properly between U and V. 
It is easy to check the following: 

(i) There is an element y • V \ U with yP • U. 
(ii) U and y generate V. 

(iii) [V: U] is at least p. (Consider the cosets yJ .  U, j = 0 , . . . ,  p -  1.) 
Now let X • Ker (X(V)~X(U) ) .  We have to show that there are at most p choices 

for X. By (ii), it suffices to show that we have at most p possible values for X(Y). 
Let 1 + ma (mod r) be the image of  y in Dr, m" By repeated use of the definition 

of  a crossed homomorphism we get: 

0 = Z ( y  p) =Z(Y) + (1 + ma) .  X(Y) + "'" + (1 + ma) p -  1. Z(Y) 

p - 1  

= c. X(Y) with c = ~ (1 + ma) i. 
i=0 
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Claim. c and p (mod r) are associated in the ring Z/(r). 
If the claim is established, it follows at once that the equation 0 = c. 2~(Y) has at 

most p solutions in Z/(r), and we are done. 
Proof o f  the Claim. We have to establish two facts: 
(a) If  a prime q ~:p divides r, then q does not divide c. 
(/~) If p lr, then p lc. If p2lr,  then p2 does not divide c. 
Proof o f  (a). We also have q l m. Then c -  ~.iPo l (1 + 0)=-p (mod q). 

p - I  Proof o f  (fl). We have c-~i__o (1 + 0 ) - 0  (modp).  Assume now p21r. Since 
p21m2, the binomial  theorem yields the following congruence modp2:  

p - I  
c =- ~ ( l + i m a ) - p + m a p  p - 1  (modp2). 

i=0 2 

If p ~: 2, then p2 divides m a p ( p - 1 ) / 2 ,  so c--p (modp2).  If  p = 2, then (since 4Jr) 
4 already divides m, and we again get c - 2  (mod 4). 

(c) Consider {e} _< U. By (b), card(X(U)) < [U: e] = card(U). Again by (b), 
card(Ker(X(G)~X(U)))<_[G: U]. Finally, ( a ) says  that card(X(G))>card(G)= 
card(U).  [ G : U ] .  Taking these together, we get that all three inequalities are 
equalities and X ( G ) ~  X(U) is surjective. This implies that also X ( V )  ~ X(G) is sur- 
jective. 

(d) Since card(X(V))>  card(X(U)) by (c), the restriction map X ( V ) ~ X ( U )  can- 
not be injective. Take any Z ~: 0 in Ker(X(V) ~ X(U)). 

Now we define a duality between subgroups of G and subgroups of X(G). Let 
< , ) denote the evaluation map GxX(G)- ,7 / / (r ) .  For U<_G and W<_X(G) let 

u l  = {x  X(G)l <u, x>=o}, 

W ± - {g~Gl<g, w> =0}. 

One verifies that U ± and W ± are again subgroups. 

Theorem 2.5. The assignments ( - )  ± define mutually inverse order-inverting bijec- 
tions between the lattices Subgroups(G) and Subgroups(X(G)). 

Proof.  Obviously we have U ± ± D  U and W ± ± D  W in the above notation. But 
2.4(d) implies that U ± ± = U. 

On the other hand,  every g e G defines an element g'  in Hom(X(G),  Z/(r)), and 
g'= 0 implies g = e by 2.4(d). Since X(G) is abelian of exponent dividing r, and 

card(Hom(X(G),  Z/(r))  = card(X(G)) = card(G), 

the map g~g"  is a bijection from G onto Hom(X(G),Z/(r)). From the duality 
theory of  finite abelian groups it follows that for any W< W'<_X(G) there exists 
F~Hom(X(G),Z/(r) )  with F(W)=O, F(W')~O. Now F=g" for some g~G, so 
(g, w) = 0, (g, W' )  ~ 0. This yields W l ± = W, which proves the theorem. 
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Now we return to the field-theoretic situation. 

Proof of 2.3. Let r be the least common multiple of all n i. Then F contains a 
primitive r-th root ( of unity. Let H = A u t ( F / k ( O ) ,  G = Au t (F / k ) ,  D = A n t ( k ( O / k ) .  
Then we have an exact sequence 

(,) I ~ H ~ G ~ D ~ I .  

D is canonically a subgroup of (Z/(r)) ' .  (Identify r with ~ if r(O = (x.) We claim 
that D is of  the form Dr, re. For this, define m '  to be the product of  all primes 
dividing r if  4"1" r and twice the latter product if  41r. m' is the smallest divisor of  
r related to r. Dr, re' is cyclic, and the hypotheses in 2.3 concerning roots of  unity 
ensure that D C Dr, m" The order of D divides card(Dr, m') = tp(r)/Cp(m') = r /m ' ,  so it 
has the form r / m  with m'l m lr. Since Dr, m" is cyclic, it contains exactly one 
subgroup with r / m  elements, and therefore D =Dr, m" One can check now that (.) 
is allowable; i.e., D operates on H by scalar multiplication. 

Pick t~ i ~ F with a~' = ai. Let C <__ Cog(F/k )  be the subgroup generated by (/~ and 
all ail(:. We shall prove that C is canonically isomorphic to X ( G ) .  Note F = K c ;  
i.e., F is generated by C. We consider the canonical pairing as in 2.2 

tr: G × C--* lzr(F) ~ 2e /(r) 

(g, cl~)~ g(c). c - l ,  

tr is linear on C and crossed-linear on G. (G operates canonically o n  ~lr(F)CF. ) 
Moreover, if tr(G, y/~)= 1, then y e/~, so tr gives rise to an embedding of C into 

X ( G )  = {X : G-~  Z / ( r )  [ x crossed homomorphism}.  

From 2.5 we now get that c a r d ( X ( G ) ) = c a r d ( G ) =  [F:k] .  Since F = K c ,  we must 
have card(C)_> [F: k]. Thus C is naturally isomorphic to X(C) ,  and card(C)-- 
[F :k ] ,  so C forms a k-base of F. 

Now take any subfield E of  F / k  and let s = [F: E]. Then E = Fix(U) where U is 
a subgroup of order s in G. 

By 2.4(c), U ± = Ker(X(G)-~X(U))  has index s in C. The field K t v .  ) is contained 

in F i x ( U ) = E .  Since C forms a k-base of F, [K tv i ) : k ]  =card(U) ,  so [F: Ktt/l)] = 
[H:  U I ] = s = [ F : E ] ,  so E = K t v i  ). This means that E is generated by certain 

monomials in ~ and the ai. 

Remark. This proof actually yields a lattice isomorphism from k-Subfields(F) onto 
Subgroups(C), in analogy to 1.6. Note that C is in general not the whole of 
Cog(F/k) .  

Since X ( G )  is abelian, Theorem 2.5 implies that Subgroups(G) has an inclusion- 
inverting involution 0 with ]0(U)] = IG [/[ U[ for all U_< G. 
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Theorem 2.6. Let G be a finite group such that there exists an inclusion-inverting 
involution 0 o f  Subgroups(G) with [0(U)[ = [G I/[ U I for  all U<_ G. Then G is an 
allowable extension. 

Proof .  G is called quasi-hamiltonian if U V = U , V  for all U,V<G.  
(U.  V = ( U U  V).) First we show this is the case for G. We must show ] U .  V I < 
I U[[V [/] Uf'l V I. This formula is equivalent to each of the following: 

IG I / IU*V I  ->IGI. I G I - I u n v l / ( I U l .  Iv l .  IGI), 

IO(U)nO(V)l >_ le(U)l, le (v ) l / Io (un v)l, 

IO(U)ne(V)l >__ le(U)l- le(v)l/IO(u) • e(V)l. 

The last inequality is equivalent to 

le(U) • e(V)l _> le(U)l, l e( V) l /l e( V) n e( v) l , 

and this is indeed true. 
By [5, Theorem 7], G is nilpotent and all p-Sylow subgroups Gp of G have 

modular lattices of subgroups. For odd p, one knows that Gp cannot be hamil- 
tonian if it is non-abelian. For p =  2, this is also true. (Suppose G 2 non-abelian 
hamiltonian. Then the quaternion group Q is a factor of G2, and of G. Using 0, 
one finds an 8-element subgroup U<_G with Subgroups(U) anti-isomorphic to 
Subgroups(Q). One checks that no such U exists.) 

By [5, Theorem 14], Gp is abelian or the following holds: There is N < G, s ~ N 
(s>_2 if p =2) and t~  G such that G/N= (t) is cyclic, N is abelian, and t acts on 
N as multiplication by 1 +pS. Let pe= ord(t). One checks that 1 +pS has order pe 
in (~_/(pe+S)).. Hence we get a commutative diagram (f( t)= 1 +pS): 

1 ) N  ) G  

1 , N  ) G  

G / N  )1 

' Dp,+~,p, , 1 

and in the lower extension, Dp~+~ p~ operates on N by scalar multiplication. Thus G 
is an allowable extension if we can show that exp(N) divides pS+e. 

Just suppose it did not. Then multiplication by 1 +pS+e is not the identity on N. 
By definition of e, multiplication by (1 +pS) pe is the identity on N. But since for 
n~O, 1 +pS+e and (1 +pS)p" generate the same subgroup of (7//(p"))" (use that 
Dp.p is cyclic for p odd, and D2.,4 cyclic), this is a contradiction. 

We showed that all Gp are allowable extensions. (If Gp is abelian, this holds 
anyway.) So we have 

1 ~ N a -o Ga ~ Dr(p), re(v) ~ 1. 
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It is not hard to see that (setting r - I I  r(p),  m--YI re(p), N =  I-INp) G is an 
allowable extension of Dr, m by N. 

Remark 2.7. The class of extensions covered by 2.3 does not seem much larger than 
the class of cogalois extensions considered in 2.2. (One example distinguishing these 
two classes is Q( ] / -  3)/Q, which is covered by 2.3 but not by 2.2.) Nevertheless, 2.3 
has the following advantage: In general it is much easier to establish that F / k  has 
a neat presentation than to prove that F / k  is pure (which involves hunting for roots 
of unity in F and deciding whether they are already in k). Another point is that the 
class of fields with neat presentations is closed under composition, and the class of 
cogalois cn-extensions is not, as can be shown. 

Appendix: A finiteness result 

Let, as always, F / k  be a finite extension of fields. Since we are mainly interested 
in coseparable extensions, the only obstruction that might prevent F / k  from being 
cogalois is that Cog(F/k )  may become too large. This motivates the following exam- 
ple and subsequent theorem: 

Example. Let F =  Q(exp(2zti/2n))n~ N, k = F N  ~. Then [F:  k] = 2 and C o g ( F / k )  is 
countably infinite. 

Idea of proof. Show F =  k(i), g(k) = { _+ 1 }, and/z(F) is infinite. (p denotes the set 
of roots of unity.) 

Theorem. I f  k is a number  f ield,  then Cog(F/k )  is f ini te .  

Remark. If F =  k(a l ,  . . . ,  as) with a/" e/c and [F : k] = nl . . . . .  n s, then the theorem 
is a consequence of Theorem A in [7]. 

Proof  of the Theorem. If a is a homomorphism of abelian groups, denote the tor- 
sion part of cok(a) by C(a). If the range of u is finitely generated, then C(tO is finite- 
ly generated and torsion, so it is finite. If 

0 ~A ~B , C  ~0 

0 , A '  ~B'  , C '  ~0 

is exact and commutative, then we have the implications 
(i) y injective, C(a) finite, C(~,) finite = C(fl) finite; 

(ii) fl injective, ker(~,) finite, C(fl) finite~ C(a) finite. 
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(The verification of these uses the snake lemma.) 
Now we apply (ii) to the diagram 

0 , Prin(k) , Div(k) 

0 ' Prin(F) , Div(F) 

, Cl(k) ,0  

, CI(F)  , 0  

To do this, we need C(h) finite. We get this by decomposing h into 

hra m: Divra m (k)  ~ Divra m ( F ) ,  

hun : D ivun (k )  --, Divun(F), 

where ram stands for 'ramified in F/k '  and un stands for 'unramified in F/k' .  One 
has to check that cok(hun) has no torsion at all, and one uses that Divram(F) is 
finitely generated. Now (ii) yields that C(f)  is finite. 

Apply (i) to the diagram 

1 , U(k) ,/c , Prin(k) , 0  

I 1 , 
1 , U(F) ,/¢ , Prin(F) ,0 

This is possible since f is injective, C(f)  is finite by the previous step, and C(j) is 
finite. (U( - )  denotes the unit group of  the maximal order.) The result is that the 
torsion part of/~//~ is finite, and this proves the theorem. 
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