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Abstract

We present a systematic procedure to establish a connection between complex neutrino mass matrix textures and experimental observables,
including the Dirac CP phase. In addition, we illustrate how future experimental measurements affect the selection of textures in the (θ13, δCP)-
plane. For the mixing angles, we use generic assumptions motivated by quark–lepton complementarity. We allow for any combination between
U� and Uν , as well as we average over all present complex phases. We find that individual textures lead to very different distributions of the
observables, such as to large or small leptonic CP violation. In addition, we find that the extended quark–lepton complementarity approach
motivates future precision measurements of δCP at the level of θC � 11◦.
© 2007 Elsevier B.V.
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1. Introduction

By using the same parameterization for VCKM and UPMNS,
and by quantifying the differences between these two mixing
matrices, it is implied that the quark and lepton sectors might
be somehow connected. Recently, interesting “quark–lepton
complementarity” (QLC) relations [1–4] have been proposed,
which could be indicative for such a quark–lepton unification.
These QLC relations suggest empirical connections between
quark and lepton mixings, such as

(1)θ12 + θC � π/4 � θ23.

A simple underlying hypothesis may therefore be that all mix-
ings in the charged lepton and neutrino sectors are either max-
imal, or Cabibbo-like. It can be motivated by the observation
that mixing angles ∼ θC (and powers ∼ θn

C thereof), as well as
maximal mixing, can be readily obtained in models from flavor
symmetries. Consequently, any deviation from maximal mixing
in the large leptonic mixing angles θ12 and θ23 can only arise as
a result of taking the product of the charged lepton mixing ma-
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trix U� and the neutrino mixing matrix Uν in the PMNS mixing
matrix

(2)UPMNS = U
†
� Uν.

If one assumes that all mixing angles in U� and Uν can only
be from the sequence {π/4,0, ε, ε2, . . .} with ε � θC , one can
systematically construct the parameter space of all possible
combinations of U� and Uν in this framework and choose the
realizations being compatible with data. This analysis was per-
formed in Ref. [5] for the case of real matrices up to oder
ε2, and it was called “extended quark–lepton complementarity”
(for a seesaw implementation, see Ref. [6]). Simple conven-
tional quark–lepton complementarity implementations, such as
UPMNS � V

†
CKMUbimax, emerge as special cases in this ap-

proach (see, e.g., Refs. [7,8]), but are not the exclusive so-
lutions. For example, the charged lepton sector may actually
induce two large mixing angles.

Any realization of Eq. (2) can be used to construct the effec-
tive Majorana neutrino mass matrix as

(3)M
Maj
ν = UνM

diag
ν UT

ν ,

where we can use the experimentally motivated mass eigenval-
ues, such as m1 : m2 : m3 � ε2 : ε : 1 for the normal hierarchy.
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This additional assumption for the neutrino mass eigenvalues is
compatible with the current measurements of �m2

21 and �m2
31.

Similarly, the charged lepton and quark mass hierarchies can
be described by powers of ε as well, which means that by our
hypothesis, all mixings and hierarchies are induced by a single
small quantity ε � θC as a potential remnant of a unified theory.
By identifying the leading order entries in the mass matrix re-
alization Eq. (3), the “texture”, one can establish a connection
to theoretical models. For example, masses for quarks and lep-
tons may arise from higher-dimension terms via the Froggatt–
Nielsen mechanism [9] in combination with a flavor symmetry:

(4)Leff ∼ 〈H 〉εnΨ̄LΨR.

In this case, ε becomes meaningful in terms of a small parame-
ter ε = v/MF which controls the flavor symmetry breaking.1

The integer power of ε is solely determined by the quantum
numbers of the fermions under the flavor symmetry (see, e.g.,
Refs. [6,10]).

In this Letter, we demonstrate how one can construct the
full complex parameter space of realizations of Eq. (2) from
generic assumptions. We use the context of extended quark–
lepton complementarity to illustrate our procedure, where we
average over all possible complex phases. Since we will ob-
tain a 1 : n correspondence between a texture and a number
of valid (experimentally allowed) realizations of this texture,
we can study the distributions of observables corresponding to
the realizations. We will focus on the effective Majorana neu-
trino mass matrix for the normal hierarchy, but this procedure
can easily be extended to the neutrino Dirac mass matrix and
charged lepton mass matrix, as well as one can use different
neutrino mass schemes [5], or different generic input assump-
tions.

2. Method

Following the procedure in Ref. [5], the PMNS matrix can,
in general, be written as the product of two matrices in the
CKM-like standard parameterization Û :

(5)UPMNS = Û
†
� Uν = Û

†
� DÛνK.

Here D = diag(1, eiϕ1 , eiϕ2) and K = diag(eiφ1, eiφ2,1) are re-
maining diagonal matrices with phases in the range ϕ1, ϕ2, φ1,

φ2 ∈ [0,2π), which cannot be rotated away in general because
of the CKM-like parameterizations of Û� and Ûν . In addition,
Ûα can be parameterized by three mixing angles θα

12, θα
13, and

θα
23, as well as one Dirac-like phase δα in the usual way. Our

three-step procedure then reads:
Step 1. We generate all possible pairs {U�, Uν} described by

{
θ�

12, θ
�
13, θ

�
23, δ

�, θν
12, θ

ν
13, θ

ν
23, δ

ν, ϕ1, ϕ2, φ1, φ2
}
,

1 Here v are universal VEVs of SM singlet scalar “flavons” that break the
flavor symmetry, and MF refers to the mass of superheavy fermions, which are
charged under the flavor symmetry. The SM fermions are given by the Ψ ’s.
with sin θα
ij ∈ {1/

√
2, ε, ε2,0} (cut off by the current experi-

mental precision) and uniform distributions of all phases in 32
steps each, which corresponds to an averaging over the phases.2

Step 2. Then we calculate UPMNS by Eq. (2), read off the
mixing angles and physical phases, and select those realizations
with mixing angles being compatible with current data at the 3σ

confidence level (cf., Ref. [5]).
Step 3. For each valid realization, we find the corresponding

texture by computing Eq. (3), expanding in ε, and by identify-
ing the first non-vanishing coefficient, which is leading to the
texture entry 1, ε, ε2, or 0.3

Obviously, many possible realizations will lead to the same
texture, i.e., there will be a 1 : n correspondence between tex-
tures and realizations. We will therefore show the distributions
of observables for all valid realizations (valid choices of order
one coefficients) leading to a specific texture. The interpreta-
tion of the results has then to be done in the reverse direction:
A certain model will lead to a specific texture, which can be fit
to data by choosing the order one coefficients from our set of
realizations. Note that the realizations connect to experimental
observations, while the textures connect to theoretical models.

3. Results and interpretation

We find 29 different textures for M
Maj
ν from the above pro-

cedure. These come from realizations which represent valid
choices of UPMNS. In Table 1, we show seven selected textures
(see Ref. [11] for a complete list and examples of correspond-
ing M� textures computed as in Ref. [5]). The percentage of all
realizations leading to a specific texture is given in the third col-
umn. The distributions of the observables sin2 2θ13, δ, sin2 θ12
and sin2 θ23 are given in the last column (arbitrary units), where
the current best-fit values are marked by vertical lines. In Ta-
ble 2, we give specific examples for realizations leading to a
specific texture, where we have chosen cases with sin2 θ12 and
sin2 θ23 very close to the current best-fit values. One can read
off this table valid combinations between U� and Uν leading to
specific textures referred to by the texture number. For exam-
ple, only the shown realizations leading to textures #1 and #7
have exclusively small mixings coming from the lepton sector.
The choice φ1 = φ2 = 0 in this table is accidental (it does not
appear for more seldom textures). In comparison to Ref. [5], we
focus on M

Maj
ν , and we obtain a much larger number of textures

for M
Maj
ν . Allowing for the current measurement errors instead

of the more stringent ones used in Ref. [5], 13 more textures in
addition to the 6 original ones are allowed. If, in addition, com-
plex phases are introduced instead of using the real case only,
we find 10 more textures, leading to a total of 29 (cf. Ref. [11]
for details on which textures are falling into which category).

2 We have checked that 32 steps are sufficient to reproduce the general quali-
tative features.

3 Note that this definition of a texture only includes the absolute value of the
leading coefficient, while more sophisticated concepts may include the phase
as well.
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Table 1
Selected textures for M

Maj
ν . “Percentage” refers to the fraction of all realizations leading to a texture

No. Texture Percentage Distributions of valid realizations leading to this texture

#1

(
ε ε ε
ε 1 1
ε 1 1

)
41%

#2

(
ε ε ε2

ε ε ε
ε2 ε 1

)
8.4%

#3

(
ε ε 0
ε ε 0
0 0 1

)
5.6%

#4

(
1 ε2 1
ε2 ε ε2

1 ε2 1

)
5.4%

#5

(
ε ε ε
ε ε ε2

ε ε2 1

)
4.8%

#6

(
1 0 1
0 ε 0
1 0 1

)
1.4%

#7

(
ε2 ε2 ε2

ε2 1 1
ε2 1 1

)
0.5%
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Table 2
Examples for specific realizations for the textures in Table 1 (including the mixings from the lepton sector). All of the shown realizations have observables very
close to the current best-fit values

Text.
No.

Observables

(sin2 θ12, sin2 2θ13, sin2 θ23, δ)

Input parameters

(s�
12, s�

13, s�
23, δ�) (sν

12, sν
13, sν

23, δν ) (ϕ1, ϕ2, φ1, φ2)

#1 (0.30,0.15,0.50,4.70) (ε, ε, ε2,5.30) ( 1√
2
, ε, 1√

2
,4.71) (5.50,1.37,0,0)

#2 (0.30,0.15,0.50,4.74) (ε, ε, 1√
2
,4.32) ( 1√

2
,0, ε,0) (5.30,0.59,0,0)

#3 (0.30,0.15,0.50,4.74) (ε, ε, 1√
2
,4.71) ( 1√

2
,0,0,0) (5.50,2.55,0,0)

#4 (0.30,0.01,0.50,2.61) ( 1√
2
, 1√

2
, 1√

2
,4.91) (ε, 1√

2
, ε2,0.20) (0.20,3.53,0,0)

#5 (0.30,0.05,0.50,4.89) (ε, ε, 1√
2
,0.59) ( 1√

2
, ε, ε2,0.39) (5.89,1.18,0,0)

#6 (0.32,0.13,0.47,3.57) ( 1√
2
, 1√

2
, 1√

2
,1.77) (0, 1√

2
,0,3.53) (0,5.69,0,0)

#7 (0.22,0.01,0.50,3.18) (ε, ε, ε2,2.55) (ε, ε2, 1√
2
,3.14) (3.14,2.55,0,0)
As far as the interpretation of the distributions of the ob-
servables in Table 1 is concerned, it certainly depends on the
measure of the input parameter space, in particular, our choice
of discrete values for the mixing angles. Our choice ∝ εn cor-
responds to a uniform (anarchic) distribution on a logarithmic
scale. At the mass matrix level, one may justify such an assump-
tion by the Froggatt–Nielson mechanism by using an arbitrary
number of heavy fermion propagators in Eq. (4). The quark and
lepton mass hierarchies seem to obey such a “logarithmic uni-
formity” as well, which means that this assumption may be well
motivated for the eigenvalues. Our choices for the mixing an-
gles correspond to the postulate that we find, at least roughly,
this distribution in the matrix elements reflected in the mix-
ing angles. We have therefore checked that our distribution of
mixing angles translates into a similar (uniform) distribution of
mass matrix powers if one allows for all possible hierarchies.
In fact, there is a slight (but not order of magnitude-wise) devi-
ation from this uniformity for the diagonal elements leading to
a peak at 1, and for the off-diagonal elements leading to a peak
at ε2. The choice of a normal neutrino mass hierarchy is an ad-
ditional, experimentally motivated constraint, which obviously
affects the mapping between the mass matrix and mixing angle
parameter spaces.

Given our assumptions for the input values, the interpreta-
tion of our figures is then as follows from the experimental
point of view: For the valleys where no realizations are found,
a measurement could exclude a texture. For the peaks, where
most realizations are found, a measurement would confirm the
most “natural” choice of observables. This naturalness argu-
ment may be similar to a landscape interpretation, such as in
Refs. [12,13] (using a different measure). Note, however, that
we impose at least some flavor structure before we obtain the
distributions. Similarly, the figures can be interpreted from the
model building point of view: The peaks correspond to plenty
of possibilities how a specific texture can be implemented. For
the valleys, where only a few realizations are found, exceptional
realizations can lead to this texture. This means that one can ba-
sically read off such tables which textures to use if one wants to
produce small sin2 2θ13, large sin2 2θ13, deviations from maxi-
mal mixing, etc.
We discuss now the different observables. For sin2 θ23, ei-
ther maximal mixing, or relatively large deviations from max-
imal mixing can be observed. Only texture #2 has a relatively
broad distribution in this observable. Deviations from maximal
mixing will therefore be an important model discriminator, see
Ref. [14]. For sin2 θ12, the current best-fit value can only be
exactly generated in very few cases, which is not surprising
since θ12 has to emerge from combinations between maximal
mixing and θC in our approach. Only texture #4 covers the cur-
rent best-fit value very well. Therefore, precise measurements
of sin2 θ12 will be very valuable for such a quark–lepton com-
plementarity ansatz. For sin2 2θ13, any case can be found: large
sin2 2θ13 (e.g., #4), small sin2 2θ13 (e.g., #7), medium sin2 2θ13
(e.g., #1), or a broad distribution in sin2 2θ13 (e.g., #5). And
for δCP, maximal CP violation (#5 and #7), CP conservation,
or small deviations from these cases at the level of π/16 ∼ θC

are present. This can be understood as follows: The phases may
be given in the symmetry base of an underlying theory, where
uniform distributions (or any other assumptions) may be well
motivated. These assumptions translate (via invariants) into the
observables, where combinations with the mixing angles enter.
Obviously, by choosing powers of the Cabibbo angle for the
mixing angles, these powers will somehow translate into the
phase distributions. This implies that a measurement precision
of ∼11◦ may be a reasonable requirement for future experi-
ments to test a small CP violation. Such a precision could be
obtained in optimized beta beams or neutrino factories (see,
e.g., Ref. [15]).

Let us now discuss the use of simultaneous constraints on
sin2 2θ13 and δCP on this texture space. We show in Fig. 1,
left, clusters representing 50% of all valid realizations for dif-
ferent selected textures in the sin2 2θ13-δCP-plane. In Fig. 1,
right, we show the precision for a typical potential future high
precision instrument, namely the γ = 350 beta beam option
from Ref. [16] simulated with GLoBES [17,18].4 From Fig. 1,

4 This setup assumes eight years of simultaneous operation with 2.9 × 1018

useful 6He and 1.1 × 1018 useful 18Ne decays per year and a 500 kt water
Cherenkov detector. The gamma factor is 350 for both isotopes, and the base-
line is L = 730 km. The setups is simulated with the migration matrices from
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Fig. 1. Left panel: Clustering of specific textures (as labeled in the plot) in the sin2 2θ13-δCP-plane. The clusters contain 50% of all realizations leading to a specific
texture. Right panel: Measurement precision of a γ = 350 beta beam for different selected true values of sin2 2θ13 and δCP (diamonds). The contours correspond to
1σ , 2σ , and 3σ (2 d.o.f., not shown oscillation parameters marginalized over).
left, which represents the two-dimensional version of the his-
tograms in Table 1, we find that the realization distributions
for different textures cluster in different, often non-overlapping
regions of the sin2 2θ13-δCP-plane. Therefore, in order to dis-
tinguish many different textures, combined information on both
sin2 2θ13 and δCP is useful. For example, for #5, all possible val-
ues of sin2 2θ13 and δCP are covered by the clusters. However, a
simultaneous measurement of sin2 2θ13 and δCP (cf. right panel)
may easily indicate that this cluster is not realized because cer-
tain regions in the sin2 2θ13-δCP-plane are sparsely populated.
From the right panel we learn that, compared to the texture
cluster sizes, the future experiments will provide very precise
measurements in this parameter space. In particular cases, such
as for texture #5, a separate measurement of sin2 2θ13 or δCP
could hardly exclude the texture, but a combined measurement
might (depending on the best-fit point). Therefore, we conclude
that a simultaneous measurement of sin2 2θ13 and δCP, as it is
usually discussed from the experimental point of view, will be
a much stronger discriminator than an individual measurement
of one of these parameters.

4. Summary and conclusions

We have demonstrated how one can systematically con-
struct experimentally allowed realizations of UPMNS from very
generic assumptions, and we have used them to relate neutrino
mass textures with observables. Our procedure can be easily
applied to other observables, different (or additional) assump-
tions, different neutrino mass schemes, or to the Dirac mass
matrix case. The resulting distributions of observables could

Ref. [16]. In order to impose constraints to the atmospheric parameters, ten
years of T2K disappearance information is added (such as in Ref. [19]).
be useful for experiments, such as to illustrate their exclusion
power in the model space, and theorists, such as to identify
textures connected with specific distributions for the observ-
ables. It turns out the possibilities leading to a specific texture
can often be connected with very characteristic observable dis-
tributions, such as small sin2 2θ13, large sin2 2θ13, strong CP
violation, CP conservation, a strong deviation from maximal
mixing, etc.

As an example, we have used the context of extended quark–
lepton complementarity to apply our procedure: All mixing an-
gles are forced to either zero or maximal by a symmetry, or are
generated by a quantity � θC as a single remnant from a Grand
Unified Theory. This framework means that the solar mixing
angle can only emerge as a combination between maximal mix-
ing and the Cabibbo angle, and it is directly related to the quark
sector. As more specific conclusions from this assumption, we
find that θ12 will be an important indicator for specific textures,
i.e., future precision measurements of θ12 will be very selective.
In addition, the extended quark–lepton complementarity ansatz
motivates future precision measurements of δCP at the level of
±θC � ±π/16 � 11◦. Such hints are important for the design
of future experiments, since one would like to know how far
one has to go experimentally.
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