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Several lines of evidence support for a role of angiotensin converting enzyme (ACE) in Alzheimer disease (AD).
Most genetic studies have focused on an Alu insertion/deletion (I/D) polymorphism in the ACE gene (DCP1) and
have yielded conflicting results. We evaluated the association between 15 single-nucleotide polymorphisms (SNPs)
in DCP1, including the I/D variant, and AD in a sample of 92 patients with AD and 166 nondemented controls
from an inbred Israeli Arab community. Although there was no evidence for association between AD and I/D, we
observed significant association with SNPs rs4343 ( ) and rs4351 ( ). Haplotype analysis revealedP p .00001 P p .01
remarkably significant evidence of association with the SNP combination rs4343 and rs4351 (global P p 7.5 #

). Individuals possessing the haplotype “GA” (frequency 0.21 in cases and 0.01 in controls) derived from these5710
SNPs had a 45-fold increased risk of developing AD (95% CI 6.0–343.2) compared with those possessing any of
the other three haplotypes. Longer range haplotypes including I/D were even more significant (lowest global

), but the only consistently associated alleles were in rs4343 and rs4351. These results suggest512P p 1.1 # 10
that a variant in close proximity to rs4343 and rs4351 modulates susceptibility to AD in this community.
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Alzheimer disease (AD [MIM #104300]) is a progres-
sive, neurodegenerative disease characterized clinically
by gradual loss of memory and pathologically by
neurofibrillary tangles and amyloid plaques in the
brain. Currently, the apolipoprotein E (APOE [MIM
�107741]) �4 allele is the only broadly recognized ge-
netic risk factor for late-onset AD (LOAD) in most pop-
ulations.1 Much attention has been focused on the con-
nection between angiotensin I converting enzyme (ACE
[MIM �106180]) and AD. ACE is a dipeptidyl carbox-
ypeptidase that plays an important role in regulation of
blood pressure by converting angiotensin I to biologi-
cally active angiotensin II. Several studies show that an
Alu insertion/deletion (I/D) polymorphism in the ACE
gene (symbol DCP1) is associated with plasma level of
ACE,2,3 although the genetic regulation of ACE levels in
the brain is poorly understood. Studies showing asso-
ciation between the I/D polymorphism and cardiovas-
cular disease risk4–8 and evidence suggesting cardiovas-

cular risk factors promote AD9–11 are consistent with the
idea that ACE might play a role in AD via a cardio-
vascular mechanism. However, the observation that
ACE degrades Ab, the pathological hallmark of AD, in
vitro12–14 suggests that variation in DCP1 may directly
modulate susceptibility to AD.

Nearly all investigations of the association between
DCP1 and AD have examined the I/D polymorphism.
Of the published reports on 41 independent samples,15–

17 11 showed significant association with the I allele, 1
showed significant association with the D allele, and 29
found no association with this marker. These conflicting
results prompted four meta-analyses of ACE studies,
which considered 39 samples published before Septem-
ber 2004.17–20 Two SNPs in the DCP1 promoter region
(rs4291 and rs1800764) and one synonymous coding
SNP (rs4343) proximate to I/D have been associated
with AD in a combined sample of four case-control sam-
ples from Sweden and the United Kingdom.18 The
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Table 1

Characteristics of DCP1 Markers and Their Association with AD

MARKER

NAME

MAP

POSITION LOCATION OR TYPE

MINOR

ALLELE

MINOR ALLELE

FREQUENCY

PCases Controls

rs1518772 58,679,848 Upstream of 5′ UTR T .45 .40 .36
rs1800764 58,904,261 Promoter SNP A .37 .39 .57
rs4291 58,907,926 Promoter SNP T .36 .33 .56
rs4295 58,910,030 Intron C .42 .39 .61
rs4311 58,914,495 Intron C .47 .53 .26
rs4329 58,917,190 Intron G .27 .33 .15
rs4335 58,918,757 Intron A .43 .45 .75
Alu I/D 58,919,636 Intron I .27 .31 .44
rs4343 58,919,763 T776T G .42 .18 .00001
rs4351 58,923,464 Intron A .44 .32 .01
rs4353 58,924,154 Intron G .38 .51 NTa

rs4362 58,927,493 F1129F C .49 .40 .06
rs4575595 58,930,947 Intron A .37 .30 .18
rs4267385 58,937,488 Intron C .30 .31 .73
rs894407 59,255,373 Downstream of 3′ UTR A .35 .41 .30

a NT p not tested (see text).

rs4343 A allele was associated with both risk and age
at onset of AD.21

In this study, we evaluated the association between
DCP1 and AD in Wadi Ara, an Israeli Arab community
with a high prevalence of AD.22 A total of 92 individuals
meeting DSM-IV criteria for AD23 and 166 nondemented
controls aged 60 and older were included in this study.
Although most members of this community of 181,500
people trace their ancestors to ∼14 founder families, in-
vestigation of family history by use of multiple infor-
mants (since genealogical records do not exist) revealed
that most subjects belonged to distinct multigenerational
pedigrees. Thus, for analytical purposes, this group was
treated as a case-control sample. A detailed description
of subject ascertainment and evaluation is provided else-
where.24 We profiled the sample for the I/D polymor-
phism and 21 SNPs spanning a 575.53-kb region in-
cluding the 5′ and 3′ portions of DCP1 which were
selected from public databases, primarily dbSNP. Four
nonsynonymous coding SNPs (rs4317, rs4318, rs4364,
and rs4976) were almost completely monomorphic. As-
says for SNPs rs4342 and rs13030 were unsuccessful.
SNPs available for the statistical analyses include 11
within the coding region, 2 within the promoter region,
and 2 in the flanking regions (see table 1). Genotyping
was perfomed either by the MassARRAY Homogenous
MassEXTEND (hME) Assay (Sequenom) or by TaqMan
SNP Genotyping Assays (Applied Biosystems).

Analyses of individual SNPs were performed using
SAS software, release 9.1. A x2 test was used to deter-
mine whether the genotype distribution in control sub-
jects conformed to Hardy-Weinberg equilibrium. Ge-
notype and allele frequencies were compared between
cases and controls by x2 analysis. Fisher’s exact test was

used when the expected frequency of one or more cells
was too small for the x2 test. Differences were considered
significant if the P value was �.05. A Bonferroni cor-
rection was applied to results of analyses with individual
SNPs. The linkage disequilibrium (LD) structure among
SNPs was examined with the program Haploview.25

Haplotype blocks were defined using an algorithm which
created 95% confidence boundaries on D′ to define SNP
pairs in strong LD. Haplotype analysis was carried out
using Haplo.stats v1.1.1.26 Haplotypes were considered
significant if the empirical global P value was below .05.

Of the 15 polymorphic DCP1 markers, only the ge-
notypes for rs4353 were not in Hardy-Weinberg equi-
librium in controls and therefore excluded from further
analysis. The remaining panel of 14 markers displayed
variable and often weak intermarker linkage disequilib-
rium (LD) (fig. 1). SNPs rs1518772 and rs894407 are
respectively located in the genes immediately proximal
(TANC2) and distal (FTJS3) to DCP1, and are not in
LD with any of the DCP1 intragenic markers. The LD
block structure derived from this sample of AD cases
and controls from Wadi Ara is nearly identical to the
structure obtained for the Caucasian sample in the
HapMap project27 although not all SNPs in this study
are included in HapMap.

Analysis of individual markers revealed significant dis-
ease association with SNPs rs4343 and rs4351 (table 1).
The allele frequency difference between cases and con-
trols for rs4343 remained significant after correcting for
multiple testing (adjusted ). To assess whetherP p .0002
a particular marker profile including rs4343 accounts
for or clarifies the association with AD, we first per-
formed haplotype analysis of all marker pair combina-
tions including rs4343. The most significant haplotypes
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Figure 1 LD block structure in the DCP1 region. The upper triangle shows LD calculated using the measure, and the lower triangle2r
shows LD calculated using the measure.′D

included rs4343 and rs4351 (data not shown). Next, to
assess whether adding more markers would significantly
modify the effect, we evaluated 3–5 marker haplotypes,
including these two SNPs using a sliding-window ap-
proach. Compared to the haplotype containing only
rs4343 and rs4351 (global ), noticeable�7P p 7.5 # 10
improvement was obtained by extending the haplotypes
in the 5′ direction (most significant global P p 1.1 #

), however, the same alleles in these proximal SNPs�1210

(including the I/D polymorphism) were present in both
the risk and protective haplotypes suggesting that the
source of the effect on AD risk is more proximate to
rs4343 and rs4351 than to the I/D site (table 2). Close
examination of the haplotype containing rs4343 and
rs4351 showed a significant enrichment of the haplotype
G-A in AD cases (21%) compared to controls (1%).
Subjects possessing this haplotype versus all other
rs4343–rs4351 haplotypes had 45-fold increased risk of
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Table 2

Association of AD with Haplotypes Containing rs4343 and rs4351

HAPLOTYPE

FREQUENCY P
GLOBAL

Pars4329 rs4335 Alu I/D rs4343 rs4351 rs4362 rs4575595

G A .10 4.0#10�8 7.5#10�7

D G A .10 1.8#10�9 1.6#10�11

G A C .10 2.8#10�9 6.4#10�7

G D G A .11 1.5#10�9 3.9#10�12

D G A C .10 1.4#10�10 5.9#10�10

G A C A .08 3.5#10�8 4.0#10�5

A G D G A .10 1.1#10�10 1.1#10�12

G D G A C .10 1.4#10�10 2.5#10�10

D G A C A .08 1.0#10�9 1.9#10�10

A G .43 5.3#10�4 7.5#10�7

D A G .32 7.8#10�8 8.0#10�13

G D A G .22 6.6#10�10 3.9#10�12

NOTE.—Protective haplotypes are shaded, and risk haplotypes are not.
a Global P value is based on comparison of frequency distribution of all haplotypes for the combination of SNPs

indicated among cases and controls.

developing AD (table 3). Haplotype analyses of DCP1
using sliding windows excluding rs4343 showed unre-
markable results.

The unusually high prevalence of AD in and the con-
sanguineous nature of Wadi Ara make this population
attractive for investigating AD susceptibility genes. Re-
markably, AD is not associated with APOE because the
frequency of the �4 allele is very low in both nonde-
mented (2.4%) and demented elders (3.6%).28 Previ-
ously, we carried out an unconventional yet efficient 10-
cM genome scan, using a small sample of cases and
controls from this community, and confirmed the exis-
tence and narrowed substantially the locations of pre-
viously reported AD loci on chromosomes 9, 10, and
12.24

In this study, we observed in this population signifi-
cant evidence of association with two adjacent poly-
morphisms (rs4343 and rs4351) in the DCP1 gene and
AD. One of these markers (rs4343) is located 127 bp
from an Alu I/D polymorphism which has been reported
to be associated with AD in some but not all studies.17–

20 Notably, I/D is not associated in this population,29

despite the fact that it is in strong LD ( ) with′D p 1
rs4343 (fig. 1) and that markers encompassing this re-
gion are in the same LD block in the African, Asian, and
European ancestry samples included in the HapMap
project.27 However, the findings that the minor allele
frequencies differ markedly (table 1) and the correlation
of alleles at these two sites is low ( ; see fig. 1)2r p 0.22
are consistent with the observation that AD is associated
with only one of two polymorphisms in very close prox-
imity to each other. Explanations for this phenomenon
include recent admixture, local variation in recombi-
nation rates, gene conversion, and small chromosomal
inversions.30,31

The observed genetic association between DCP1 and
AD is unlikely to be a consequence of population strat-
ification, because the individuals in our sample de-
scended from a small number of founders in a com-
munity which until recently was genetically isolated. It
is also possible that the significance of our results is
overestimated because we were unable to account for
extended familial relationships. However, the impact of
population structure on conclusions from genetic asso-
ciation analyses in a genetic isolate, which has been in-
vestigated in the context of a genomewide scan,32 is
probably minor in this study because we tested a prior
hypothesis and obtained an extraordinarily significant
result. It is also unlikely that the association between
AD and DCP1 is due to LD with pathogenic SNPs in a
neighboring gene, because the SNPs associated with AD
were located within the central portion of DCP1,
whereas SNPs in the flanking genes TANC2 and FTSJ3,
which are in haplotype blocks different from DCP1,
showed no association.

Although the association between AD and the I/D
polymorphism has been intensively scrutinized, few
studies have examined other variants in DCP1 in the
context of AD susceptibility. Kehoe et al. evaluated eight
DCP1 markers in three late-onset AD and one early-
onset AD case-control data sets.18 Five of these markers
(rs1800764, rs4291, I/D, rs4343, and rs4362) were
common to our study, and all were contained within the
region of our SNP panel. None of the markers was sig-
nificantly associated with AD in any of the individual
data sets; however, significant evidence was obtained for
rs1800764, rs4291, and rs4343 in the combined data
sets composed of samples from Sweden, England, and
Scotland. Curiously, the most significant result from this
previous study was obtained with the promoter SNP
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Figure 2 Proposed mechanisms for influence of ACE on devel-
opment of AD via a pathway leading to increased production of the
toxic form of Ab (Ab42) or through the action of vascular risk factors
(see text for details).

Table 3

Risk of AD Associated with rs4343 and rs4351 Haplotypes

HAPLOTYPE FREQUENCY

ODDS RATIO (95% CI) Prs4343 rs4351 Cases Controls

A A .23 .32
G G .20 .18
A G .35 .50
G A .21 .01 45.2 (5.95–343.23) 3.4#1059

NOTE.—The first three haplotypes shown are the reference group.

rs4291 ( ), which was derived from a�5P p 2 # 10
weighted odds ratio comparing AA�AT versus TT sub-
jects. We did not detect association with this SNP or its
immediate neighbors, rs1800764 and rs4295, which are
located 3,665 bp upstream and 2,104 bp downstream,
respectively. Moreover, in the Kehoe et al. study, rs4343
exhibited relatively weak association with AD, and the
pattern of association was opposite to that observed in
the Wadi Ara sample. These conflicting results might
reflect that rs4343 is in tight LD with another variant
with pathogenic alleles or, as has been suggested,33 that
there exist pathogenic alleles at multiple locations within
DCP1.

Our haplotype analysis suggests that the functional
variant responsible for the AD association in this pop-
ulation is located distal to I/D and proximate to rs4343
and rs4351. This region of the ACE gene is shared by
all three transcript isoforms. Because Alu insertions can
be associated with alternative splicing, many studies
have suggested that the I/D polymorphism may explain
differences in ACE plasma levels. However, recent in
vitro minigene studies have shown that the I/D poly-
morphism and rs4343 do not affect alternative splicing
of DCP1.34 Our in silico examination of the rs4351 using
the program RESCUE-ESE35 suggests that it could affect
alternative splicing; however, this has not been dem-
onstrated in vitro or in vivo. There are no common se-
quence variants between rs4343 and rs4351 that have
obvious pathogenic alleles. It is possible that rs4343,
rs4351, or other SNPs in LD with these SNPS affect
alternative isoform production, tissue specificity, or ACE
activity for substrates (such as Ab) that have not been
studied extensively. This may explain the controversial
evidence of association between I/D and other SNPs in
this region with disease.

In summary, our results indicate that a genetic variant
near rs4343 and rs4351 has a major influence on AD
susceptibility in the Wadi Ara community. In view of (1)
the preponderance of data supporting a genetic associ-
ation between DCP1 and AD, (2) evidence showing as-
sociation between CSF Ab42 levels and both APOE ge-
notype36 and DCP1 haplotypes,18 (3) the observation of
significantly smaller hippocampal and amygdalar vol-
umes in women homozygous for the DCP1 I allele in-

dependent of vascular factors,16 and (4) the growing rec-
ognition that vascular factors including inflammation
contribute to the development of AD,37–41 multiple path-
ways linking APOE and ACE to AD risk can be proposed
(fig. 2). Increased plasma levels of particular ACE and
APOE isoforms may lead to increased production of the
toxic form of Ab (Ab42).12–14 Alternatively, ACE and
APOE might influence AD risk through action on vas-
cular risk factors (including blood pressure, lipids, and
the endothelium) that alter metabolism of Ab or perhaps
through another factor leading to inflammatory response
associated with AD.41,42 Our hypothesis predicts that the
DCP1/AD association may be more evident in popula-
tions like Wadi Ara showing a weak influence of APOE
genotype. Studies of DCP1 and APOE in other popu-
lations will help to distinguish and elaborate these
pathways.
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Web Resources
Accession numbers and URLs for data presented herein are as
follows:

Daniel J. Schaid’s Web site, http://mayoresearch.mayo.edu/mayo/
research/biostat/schaid.cfm (for Haplo.stats v1.1.1)

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/ (primary source
for SNP information)

International HapMap Project, http://www.hapmap.org/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for AD, APOE, and ACE)
RESCUE-ESE Web Server, http://genes.mit.edu/burgelab/rescue-ese/
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