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A b s t r a c t - - I n  this paper, we shall suggest and study a conservative discrete model for the linear 
vibrat ing str ing and rod fixed at the end points. We shall prove tha t  the  difference systems involved 
in our models may be seen as second-order unconditionally stable finite difference schemes of the 
classical equations of the  linear vibrat ing string and vibrat ing rod. If the forces acting on the  string 
(or rod) are conservative the total  energy of the discrete solutions of our models is conserved and 
we can prove tha t  we have stability for every choice of the t ime step At. We have considered both  
hinged and clamped rod; the constrains are naturally included into the model and the conservation 
of energy is still proved by giving a suitable definition of potential energy. Some numerical examples 
are presented. 

1. I N T R O D U C T I O N  

In some previous papers (see, f.i., [1-3]), some discrete models for the vibrating string and rod have 
been considered following the approach suggested by Greenspan (see, f.i., [4,5]), who starts from a 
computer approach of the mechanics of particles in order to study a physical phenomenon. In the 
quoted references [1-3] it has been shown as the difference systems arising from the discrete models 
may be seen as particular second-order finite difference schemes of differential equations which 
model the motion of the continuous string (or rod). The stability of the considered difference 
systems have been studied by using standard techniques. 

We remark now that, in the conservative cases, such discrete models are not conservative as 
the computed total energy is not constant in time. 

In this paper, we shall suggest and study new conservative discrete models for the linear 
vibrating string and rod. In Section 2, some definitions and notations are introduced and a 
short review of the main previous results is given. In Section 3, the conservative model for the 
linear string is presented and theorems regarding energy conservation, discretization order, and 
stability are proved. In Section 4, similar results for the discrete rod are given. In Section 5, some 
numerical examples emphasizing the stability conditions, accuracy, and energy conservation are 
produced. 

2. S H O R T  R E V I E W  O F  P R E V I O U S  R E S U L T S  

A discrete string (or rod) fixed at the end points, free to move in x y  plane vertically only 
(transversal vibrations) may be represented as a set of n + 1 particles P0, P1, . . . ,  P ,  whose centers 
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have coordinates xi = iA x and Yi. P0 and Pn which mass is m / 2 ,  are not in motion and have 
coordinates (of the centers) Xo = 0, xn = L, and Y0 = Yn = 0, while Pi (i = 1,2 . . . .  ,n  - 1), have 
mass m and are free to move vertically only. 

If A t  is the finite time step, Yi,k, (i = 0, 1 , . . .  ,n,  k = 1,2 . . . .  ) represents the position in the 
x y  plane of the particle P~ at time tk = k A  t. In the discrete model, given the initial position Yi,0 
and speed v~,0, the motion of the particle Pi is determined for every tk by 

F ,k = ma ,k. (1) 

In [1-3] position, speed, and acceleration are linked according to the leap-frog formulas 

A t  
vi,1/2 = v~,o + - ~ -  a~,o, 

Vi,k+l/2 "~ ~]i,k-1/2 d- /k tai,k, 

Yi,k+l = Yi,k "~ A t•i,k+l/2. 

(2) 

Once a proper structure for F~,k is given, then the motion of each particle will be determined 
recursively by (1) and (2). 

In the case of the string, we consider as internal forces the tension only [1,2], in the case of the 
rod the tension and the bending moment, as external force the gravity [3]. 

In the linear case in [1], it was assumed the stress-strain law to be linear (Hooke's law) 

• / A  x 2 d- (Yi+l,k -- Y~,k) 2 
F~,k = T + i,k -- Ti.k = K L  A x 

- K L  ~ A x 2  + (Yi,k -- Yi-l,k) 2 

A x  
(3) 

For the bending moment it was assumed that  this vary linearly with the angular deformation 
(Euler's law). In order to simulate, in a one-dimensional model, the bending moment of the rod, 
in [3] the following bending force was defined: 

F +-  F + _ F - +  Fi,k = F ~ .  k -  ~,k + ~,k ~ ,k '  (4) 

where 

For the vibrating string, from (1)-(3) we obtain, 

L C  O~+~,k -- O~,k 

F+_ L C  Oi-l,k -- Oi-2,k 

A z  ~ /Ax  2 + (yi,k -Yi - l ,k )  2' 

F +  = L C  O~,k - 0~-1,k 
i,k A z  

- -  ~ A x  ~ + (Y~+~,k - y ~ , k )  2'  

L C  O~,k -- Oi-l ,k 

A X/A + - y _x,k) x 

in the linear case (see [1]), 

(5) 

Y~,k+l -- 2y~,k + Yi,k-1 ToL  [Y~+l,k -- 2y~,k + Yi-l,k] -- g, (6) 
A t2 = M A x  2 

where L = nA x and M = n m .  

For the vibrating rod, if To = 0, from (1), (2), and (4) we obtain, in the linear case (that is, 
assuming 1 + ((Y~,k - Y i , k - 1 ) / A x )  2 ~- 1), (see [3]) 

Y~,k+l -- 2yi,k + Y~,~-I L 2 C  
A t  2 = M A x 4  [Yi+2,k -- 4y~+,,k + 6y~,k -- 4y~-l ,k  + Y~-2,k] -- g, (7) 
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while, if To ~ 0, from (1)-(5), we obtain [3] 

1 L T o  . 
A t 2 [Y~,k+l -- 2y~,k + Y~,k-1] = M-'~-~x 2 [Y{+l,k -- 2yi,k + Y~-l,k] 

L2C [Yi+2,/, - 4Y~+l,k + 6y~,k -- 4y~-l,k + Y~-2,k] -- g, 
M A x  4 (8) 

where C is a constant linking the bending action with the deformation of the rod. 
The discrete schemes (6)-(8) are second-order finite difference schemes for the following classical 

differential equations: 

02y LTo 02y 
Ot ~ - M Ox 2 g' (9) 
c92y L2C i)4y 
Ot 2 - M Ox 4 g' (10) 
02y LTo 02y L~C 04y 
Ot 2 - M cgx 2 M Ox 4 g" (ii) 

It is easy to verify that  the previous discrete schemes are not conservative. 

3. A C O N S E R V A T I V E  S C H E M E  F O R  T H E  S T R I N G  

We now remark, that  in all conservative schemes considered by Greenspan (see, f.i., [4,5]) the 
forces F~,k, acting on each particle Pi at time tk of the discrete model, depend on the positions 
of the particles P~-I, P~, and Pi+l at times tk and tk+l, while all the forces considered in the 
discrete scheme in Section 2 depend on the positions at time tk only. 

We now redefine the tension force in (4) as 

(12) 

(which reduces to (3) if we use a clock with arbitrarily small time step) and we assume that 
position, speed, and acceleration of particle P~ are linked (instead of (2)) by the formulas 

1 1 
5 (vi,k+l + v~,k) = ~-/(yi,~+, - yi,k), 

1 
a---~ (v~,k+l - v~,~) = a~,~. 

(13) 

From (12), (13), and (1) we obtain, in the linear case, the following discrete scheme for i = 
1 , . . . , n -  1: 

m 
TO [(Yi+l,k+l d- Yi+l ,k)  --  2 (Yi,k+l  + Yi,k) -}- (Yi-l,k+l d" Yi-l,k)] = " ~  (Vi,k+l  -- Vi,k) 

2 A x  
1 1 

(v~,k+l + v~,k) = - ~  (y~,k+l - y~,k) . 
(14) 

3.1. Energy Conservation Theorem 

Let 
1 2 K~,k = ~ mvi,k 

be the kinetic energy of Pi at time tk, and 

(15) 

n 
1 

Kk = ~ m E v~, k 
i--0 

(16) 
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be the kinetic energy of the vibrating discrete string at time tk, and let Wm be the work done by 
the particle Pi from the time to to the time tin. By using (12) and the techniques developed by 
Greenspan in [4,5], we can prove that  

W m =  K m -  Ko. (17) 

Indeed, if W~,m is the work done by the particle P~ from time to to time tin, we have 

rn--1 

w~,,,, = ~ ]  mai,i, (ui,k+~ - u~,l,) 
k=0 

~rt-1 

?x~ (y i ,k+l  - yi ,k) m 
g..=..d 

k=O 
m - 1  

= m E (vi,k+l - vi,k) V~,k+l + Vi,k (18) 
2 

k=O 
r n - 1  

m 
=--2 ~ v2 (,,k+,-vh) 

k=0 
m \ 

-~-- - -  - -  i , 0 )  2 (v'~,m " '  
n W, From (15) and (18), we have Wi,m = Ki,~ - Ki,o, and by (16) defining W m =  ~ i = o  ~,m, (17) 

follows. 
If we now define the potential energy of particle Pi at time tk as 

To Yi,k (Yi+l,k -- 2Yi,k + Yi-l,k) Vi,k = 2Ax  
To (19) 

= 2Ax  [Yi,k (Yi,k -- Yi+!,k) + Yi,k (Y~,k -- Yi-l,k)] 

and Vk = Y'~---o ~,k, the potential energy of the discrete string at time tk, then 

I'n--1 

w , , ~  = ~ F,,~ (y~,k+l - ui,k) 
k=O 

To m-1 (20) 
= 2Ax  E [(Yi+l,k+l -{- Yi+l,k) -- 2 (Yi,k+l + Yi,k) 

k=O 

+ ( Y i - l , k + l  + Y i - l , k ) ]  ( Y i , k + l  - -  Y i , k )  

and 
Wm = Vo-- Ym. 

From (17) and (21) it follows K m -  K0 = V0 - Vm, that  is, 

(21) 

Km + Vm = Ko + Vo, (22) 

and the following conservation theorem is proved. 

THEOREM 3.1. The discrete model (14), with the potentiM energy given by (19) and the tension 
force given by (12) is conservative. 

REMARK 3.1. We remark that, defining A xTo/m = V 2 and neglecting the external force due 
to gravity (g = 0), it is easy to prove that  (14) is a second-order finite difference scheme for the 
differential system 

dy 
d'~ = v ,  

(23) 
dv 2 O2Y 
-~ = V Ox ~. 
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Indeed from (23), we have 

f 
t+Z~ t 

y (x, t + A t) = y(x, t) + v(x, r) dr, 
J t  (24) 

f t+zx  t 02y(z, r) 
v (x, t + A t) = v(x, t) + V 2 dr, 

J t 0X2 

and to discretize with (14) is equivalent to using the trapezoidal rule to approximate the in- 
tegrals in (24), where in the second integral the second-order approximation 02y(x ,r ) /Ox 2 = 
(y(x - A x, 7-) - 2y(x, T) + y(x + A X, T))/A X 2 has been used. 

As (23) is equivalent to the D' Alembert equation 

O~Y = V 2 02Y (25) 
&2 Ox2 ' 

the scheme (14) is a second-order finite difference method for the D' Alembert equation (24) 
which solution, for every choice of A t and A x, verifies the energy conservation law. 

REMARK 3.2. It is obvious that  if we consider also the external force due to gravity, being this 
a conservative one, the conservation energy theorem is still verified by the discrete model (14). 

3.2. S t a b i l i t y  T h e o r e m  

In order to s tudy the stability of the difference system (14) we use the following lemma. 

LEMMA 3.1. Let Cn be a symmetric definite positive matrix of order n, and A and B two matrices 
of order 2n defined by 

.4 = -~I,~ 7I,~ ' B = -~I,~ - 7 I n  ' 

with a, 13 E R +, 7 nonnegative, and In the identity matrix of order n, then the eigenvalues of the 
pencil problem 

A_x = AB_x (27) 

are all complex and on the unit circle. 

PROOF. Let _x = [T1,_x2] r with x_l, x_ 2 vectors of order n. From (27) because of (26), we have 

- -  (1  -4- A )  C n x _ 1  - ~ ( 1  - A)x  2 : 0, 

-13(1 - A ) x  1 -[- 7 (1  -4-/~)x 2 = 0. (28)  

The determinant of the matrix of the homogeneous linear system (28) must vanish and this 
implies, by using standard results of linear algebra [6] 

det ( -7(1  + A)2Cn - a/~(1 - A)2112) = 0. (29) 

Because Cn = Q-rf~Q with Q orthogonal and f~ = diag(wl,W2,... ,w12), wi > 0 Vi, from (29) 
we have 

det ( -7(1  + A)2QTf~Q - a13(1 - A)2QTQ) 

= det [QT (_7( 1 + A)2f~ _ a~(1 - A)2In) Q] 

= det ( -7(1  + A)2~2 - a~(1 - A)2In) 
12 

= H ( -7 (1  + A)2w( - o~(1 - A) 2) (30) 
i----I 
n 

= H - + 2 (-7 i + + - = o .  
i = l  

This implies, by solving the quadratic equation in A and remembering the positivity of a, 8, 
7, and w~, that  the 2n roots As of (29) are complex and [hi[ = 1. | 

REMARK 3.3. With the same technique used in the proof of Lemma 3.1 it may be proved that  
det(A) # 0, and so the values As are the inverse of the eigenvalues of the matrix A - l B .  

We may now prove the following. 
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THEOREM 3.2. The  difference sys tem (14) is unconditionally stable. 

PROOF. The difference system (14) may be written in the matrix form 

Az_k+ 1 = Bz~, (31) 

where 

and A and B are of the form (26) with 

--Zk ---- ~-k' Y-kIT' (32) 

m 1 1 
a = A t '  f~ = A---t' ")'---- 2 '  (33) 

and 

2Ax  c . =  
To 

I 2 -1  0 . . . . . .  
- 1  2 - 1  . . . . . .  

. . . . . . . . . .  1 2 

(34) 

Because Cn is Vn a symmetric positive definite matrix, the proof follows from Lemma 3.1. | 

4 .  T H E  C O N S E R V A T I V E  S C H E M E  

F O R  T H E  R O D  

In order to obtain a conservative scheme as a model for the linear rod, we now redefine the 
force F~,k in (4) as 

_- _ _ F - +  a , k  ~ 2 F+_ 1 ( ,,k+1% ~ F - +  ,,k ) (35) 

(which reduces to (4) if we use a clock with arbitrarily small time step). 
If we neglect the tension and we assume that  position, velocity, and acceleration are linked 

by (13), from (35) and (1) for i = 1 ,2 , . . .  ,n  - 1, we obtain the following relations: 

L C  
2A x 3 [(-Yi+2,k+l -I- 4yi+l,k+l - 6yi,k+l -{- 4yi-l,k+l -- Yi-2,k+l) 

+ (--Y~+2,k + 4y~+l,k -- 6yi,k + 4y~-l,k -- Y~-2,k)] 
m 

= (Vi'k+l -- Vi,k), 

1 1 
(vi ,k+l  + v ,k) = K 7  (y ,k+l - 

(36) 

In (36) we assume Y-1 = Y0 = Yn = Yn+l = O. 

4 . 1 .  E n e r g y  C o n s e r v a t i o n  T h e o r e m  

As done in the case of the string, we have that  the work done by the kinetic energy of the rod 
from t ime  to to  t ime tm is 

W m =  K,a - Ko. (37) 

Now we define the potential energy of particle P,, i = 1 , . . . ,  n - 1 at time tk as 

L C  
~ , k  -- ~ (y ,+2, /y , ,k  - 4y,+l,k$/,,k -I- 6y~k -- 41h-l,ky,,/~ .-I- Y,-2,kY,,k). (38) 
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Then 
~-1 LC m-1 

= F , , k  ( y , , k ÷ l  - = + 

k=O k=O 

+ 4 (Yi+l,k+l + Yi+l,k) -- 6 (Yi,k+l q- YLk) -1- 4 ( Y i - l , k + l  "4- Yi-l,k) 

- -  ( ~ ] i - 2 , k ÷ l  -[- Y i - 2 , k ) ]  ( Y i , k ÷ l  - -  Yi,k)" 
. - 1  

Being Vk = ~ = o  V~,k, we have 

From (37) and (40) we have 

(39) 

Wm= V0 - ym. (40) 

K m - K o  = V o - V m ,  

tha t  is, V0 + K0 = Vm + Kin, and the following conservation theorem is proved. 

THEOREM 4.1. The discrete model (36), with the potential energy given by (38) is conservative. 

REMARK 4.1. We remark that ,  being e = LCA x /m,  it is easy to prove that  (36) is a second-order 
difference scheme of the differential system 

Oy 
0-7 = v ,  

Ov 04y (41) 

0-7 = - e  O x  4 . 

Indeed from (41) we have 

f 
t+A t 

y (x, t + A t) = y(x, t) + v(x, T) dT, 
Jt  

(42) 

f t+~ t 04y(x, r) 
V(X,t + A t )  =V(X, t ) - -e  dT, 

J t Ox4 

and to discretize with (36) is equivalent to using the trapezoidal rule to approximate the integrals 
in (42), where in the second integral the second-order approximation 

04y(x, T) = y(x - 2A x, v) - 4y (x - A x, r )  + 6y(x, T) - 4y (x + A x, r )  + y (x + 2A x, v) 
Ox4 Az4 

has been used. 
As (41) is equivalent to the classical vibrating rod equation 

02y 04y 
Or2 = - e ~ z 4  ' 

(43) 

the scheme (36) is a second-order finite difference method for the equation (43) whose solutions, 
for every choice of A t and A x, verify the energy conservation law. 

4.2. Stability Theorem 

As done for the vibrating string we can now prove the following. 

THEOREM 4.2. The difference system (36) is unconditionally stable. 

PROOF. The difference system (36) may be written in the matrix form 

Az_k+ 1 = Bz_.k, (44) 

where A and B are of the form (26), z~ is defined as in (32), a,  B, 7 are defined by (33) and 

6 - 4  1 0 . . . . . .  0" 
- 4  6 - 4  1 . . . . . .  0 

2A x 3 _ " . . . . . . . . . . . . . . . . . . . .  
LC C n :  "'" 1 - 4  6 - 4  1 . . .  (45) 

0 . . . . . .  1 - 4  6 - 4  
0 . . . . . . . . .  1 - 4  6. 
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Being Ca related to the square of the matrix defined in (34), it is Vn, a symmetric definite 
positive matrix, and the proof follows again from Lemma 3.1. 

4.3 .  H i n g e d  a n d  C l a m p e d  R o d  

In Section 4, we have arbitrarily assumed the fictitious particles P-1 and Pn+l to not be in 
motion. In order to study the two classical problems of a hinged rod and of a clamped one, 
we must modify in (36) the first and the last equation in the system formed by the first n - 1 
equations according to the boundary conditions. 

HINGED ROD. The hinged rod may be simulated by assuming [7] 

Y-l ,k  = --Yl,k, Yn-l,k = -Yn+l ,k ,  (46) 

for i = 1 and i = n - 1 the following equations: 

- -  Y3,k+l) -F  ( - -5y l ,k  "1- 4y2,k - -  YZ,k)] 

which allows us to substitute in (36) 

LC 
2 A x 3  [ ( - - 5 y l , k + l  "}- 4y2 ,k+l  

m 
= h---'~ (~)l,k-F1 -- Vl,k) , 

LC 
2Ax3 [(-Yn-3,k+l + 4Yn-2,k+l - 5yn-l,k+l) + (--Yn-3,k + 4yn-2,k -- 5yn-l,k)] 

m 
--  h i [  ( Y n - l ' k + l  -- V n - l ' k )  ' 

CLAMPED ROD. The clamped rod may be simulated by assuming [7] that  

(47) 

for the hinged rod, and 
LC 

--~ "]-Yn-l,k) (51) Vk+2-Z  3(Yl ,k 2 

for the clamped rod. 
Also, for the stability conditions it is easy to show, in virtue of Lemma 3.1, that  the schemes 

are still unconditionally stable. Indeed, the new matrices differ from the one defined in (45) only 
in position (1,1) and in, n), where we have instead of a 6, a 5, or a 7, respectively. Now we 
remark that,  if we consider a rod in which we take into account the tension force (defined as 
in (3) and (12)) and the bending force (defined as in (4), (5), and (35)), as internal forces, and 
gravity, as an external force, we still have a conservative scheme whose finite difference system is 
unconditionally stable. This system is a second-order finite difference scheme for the equation 

~2y 2 02Y ~4y 
= v - - g" ( 5 2 )  

Y-l,k = Yl,k, 9n-l,k = Yn+l,k, (48) 

which allows us to substitute in (36) for i = 1 and / = n - 1 the following equations: 

LC 
2 A  X 3 [ ( - -Tyl ,k+1 ~-4y2,k+1 -- Y3,k+l) "~- (-Tyl,k ÷ 4y2,k -- Yz,k)] 

Tr~ (Ul ,k+l  -- ~1,k) , 
A t  

LC (49) 
2A  x 3 [(--Yn-3,k+l -F 4yn-2,k+l -- 7yn- l ,k+l)  Jr (--Yn-3,k "}-4yn-2,k -- 7yn-l ,k)] 

= ~ (Vn_l,k.{_ 1 -- Vn_1,k) . 
A t  

After some calculations, it is easy to see that  the new models obtained by modifying (36) 
according to (47) and (49), respectively, are still conservative when we define the potential energy 
as  

L C  ( y 2  k -[" Y n - l , k )  ( 5 0 )  
= vk 2 A = 2  
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Figure  1. Position. 
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Figure  2. Velocity. 

Table  1. Position. 

P~ 

2 - 3 . 7 7 5 2 e - 0 5  

11 - 3 . 3 4 4 3 e  - 0 4  

21 - 4 . 6 7 2 4 e - 0 4  

31 - 3 . 3 4 4 3 e - 0 4  

40 - 3 . 7 7 5 2 e - 0 5  

At-- - -1  A t  = 0 . 1  A t  = 0 . 0 1  A t  = 0.001 A t  = 0.0005 

- 6 . 1 2 2 1 -  e06 

- 4 . 4 1 2 1 -  e05 

- 6 . 2 3 8 2 -  e05 

- 4 . 4 1 2 1 -  e05 

- 6 . 1 2 2 1 -  e06 

- 2 . 7 0 0 2 -  e05 

-2 .1496  - e 0 4  

- 2 . 7 6 9 8 -  e04 

- 2 . 1 4 9 6 -  e04 

- 2 . 7 0 0 2 -  e05 

-2.7624- e05 

-2.1333- e04 

-2.8173- e04 

-2.1333- e04 

-2.7624- e05 

- 2 .7666-  e05 

- 2 .1332-  e04 

- 2 . 8 1 7 7 -  e04 

- 2 .1332-  e04 

- 2 . 7666 -  e05 

5.  N U M E R I C A L  R E S U L T S  

We now give some numerical results obtained by considering a vibrating string and a vibrating 
rod. From these it may be seen that, for different choices of the time step A t, the energy is 



Pi 

2 

ii 

21 

31 

40 
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Table 2. Velocity. 

1.7344e - 0 4  

1 . 0 3 8 6 e - 0 3  

1.2385e - 0 3  

1 . 0 3 8 6 e - 0 3  

1.7344e - 0 4  

A t = l  A t = 0 . 1  A t  = 0.01 A t  = 0.001 A t  = 0.0005 

2 x 10 -5 

- 8 . 3407e  - 0 5  

-8 .1030e  - 0 4  

-1 .2254e  - 0 3  

-8 .1030e  - 0 4  

-8 .3407e  - 0 5  

-8.7885e - 0 5  

-1.1739e - 0 3  

-2.0771e - 0 3  

-1.1739e - 0 3  

-8.7885e - 0 5  

- 1 . 4 3 5 0 e - 0 4  

- 1 . 1 2 0 4 e  - 0 3  

-2 .0977e  - 0 3  

-1 .1204e  - 0 3  

- 1 . 4 3 5 0 e - 0 4  

-1 .4164e  - 0 4  

- 1 . 1 1 9 4 e - 0 3  

- 2 . 1 0 2 4 e  - 0 3  

- 1 . 1 1 9 4 e  - 0 3  

-1 .4164e  - 0 4  
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Figure  3. Posit ion.  
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Figure  4. Velocity. 

always the same at every time tk, while the position and the velocity at time tk depend on the 
choice of A t. 

EXAMPLE 1. We have considered a harmonic steel string with To -- 62.5 N, L -- 1.5 m, circular 
section with diameter i mm and density 7.8 Kg/dm s. We have taken n = 41, and so we have 
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Table 3. Position. 
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P~ 

2 

11 

21 

31 

40 

A t - - I  A t = 0 . 1  At  = 0.01 At  = 0.001 At  = 0.0005 

-5.7947e-07 

-3.5887e-05 

-6.5848e-05 

-3.5887e -05 

-5.7947e -07 

-1.7415e-07 

-6.3006e-06 

-9.8317e -06 

-6.3006e-06 

-1.7415e-07 

-1.1197e-06 

-6.6968e-05 

-1.2303e -04 

-6.6968e-05 

-1.1197e -06 

--I.1544e--06 

-6.5555e--05 

--I.1693e--04 

--6.5555e--05 

-I.1544e--06 

-1.1510e-06 

-6.5667e -05 

-1.1672e -04 

-6.5667e -05 

-1.1510e-06 

P~ 

2 

11 

21 

31 

40 

Table 4. Velocity. 

& t = l  ~ t = 0 . 1  &t = 0.01 ~ t  = 0.001 A t = 0.0005 

1.0559e-05 

5.8056e-04 

1.0179e-03 

5.8056e -04 

1.0559e -05 

1.6574e -06 

2.1255e-04 

5.6661e -04 

2.1255e-04 

1.6574e -06 

5.2761e -06 

5.8064e -04 

9.4202e-04 

5.8064e -04 

5.2761e -06 

4.9634e-06 

4.7244e-04 

1.1095e-03 

4.7244e -04 

4.9634e -06 

0 

-1 

-2 

-3 

-4 

-5 

-6 
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-8  

6.2362e-06 

4.7578e-04 

1.1094e -03 

4.7578e-04 

6.2362e-06 
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Figure 5. Position. 

supposed the  mass m of P~ to be m _~ 0.023 g. We have assumed as external  forces only  the 

gravi ty  and  the s t r ing to be at  t ime t = 0, in a horizontal  posi t ion at 1 m from the floor wi th  null  

velocity. 

Figures  1 and  2 show the posit ions and  the velocities in the first 4 s for t imes tk = k × 0.2 s 

wi th  k -- 0 , 1 , . . . , 2 0 .  In  Tables 1 and  2, we can see the posit ions and the velocities at  t ime 

t = 4s  of particles /:'2, P l l ,  />21, />31, P40 obta ined  with A t  = l s ,  A t  = 0.1s, A t  = 0.01s, 

A t  = 0.001s, and  A t  = 0.0005s. For all A t  and for every tk, the computed  tota l  energy is 

always 9.015e - 2  Kgm2/ s  2. 

EXAMPLE 2. We have considered a clamped rod of the same mater ia l  of the  s t r ing wi th  To = 0 

(no tension) ,  L = 1.5 m, circular section with diameter  3 0 m m  and  densi ty  7.8 K g / d m  3. We have 

taken  n = 41, and  so we have supposed the tota l  mass M to be M _~ 8.27Kg. We have assumed 

as externa l  forces only  the gravi ty  and  the rod to be at t ime t = 0, in a horizontal  posi t ion a t  1 m 

from the  floor wi th  null  velocity. 
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Figure  6. Velocity. 

Table  5. Posit ion.  

Pi 

2 

11 

21 

31 

40 

A t = l  A t = 0 . 1  A t  = 0 . 0 1  A t  = 0.001 A t  = 0.0005 

- 6 . 7 3 2 4 e - 0 5  

- 6 . 0 6 6 1 e - 0 4  

- 8 . 5 7 6 8 e - 0 4  

- 6 . 0 6 6 1 e - 0 4  

- 6 . 7 3 2 4 e - 0 5  

-4 .9764e  - 0 5  

-4 .4822e  - 0 4  

-6 .3382e  - 0 4  

-4 .4822e  - 0 4  

-4 .9764e  - 0 5  

- 6 . 2 3 2 4 e - 0 5  

- 5 . 6 0 4 8 e - 0 4  

- 7 . 9 2 5 5 e - 0 4  

- 5 . 6 0 4 8 e - 0 4  

- 6 . 2 3 2 4 e - 0 5  

- 6 . 3 1 7 5 e - 0 5  

- 5 . 6 3 9 0 e - - 0 4  

- 7 . 9 0 3 3 e - - 0 4  

- 5 . 6 3 9 0 e - - 0 4  

-6 .3175e  - 0 5  

- 6 . 3 1 7 4 e - 0 5  

- 5 . 6 3 9 2 e - - 0 4  

- - 7 . 9 0 2 9 e - 0 4  

- 5 . 6 3 9 2 e - 0 4  

- 6 . 3 1 7 4 e - 0 5  

Table  6. Velocity. 

A t = l  A t = 0 . 1  A t  = 0.01 A t  = 0.001 A t  = 0.0005 Pi 

2 5.7907e - 0 5  

11 4.6927e - 0 4  

21 6 . 1 1 4 0 e - 0 4  

31 4 . 6 9 2 7 e - 0 4  

40 5 . 7 9 0 7 e - 0 5  

- 1 . 6 0 8 9 e - 0 4  

- 1 . 4 5 6 4 e - 0 3  

- 2 . 1 1 7 9 e - 0 3  

- 1 . 4 5 6 4 e - 0 3  

- 1 . 6 0 8 9 e - 0 4  

-1 .0477e  - 0 4  

-9 .1843e  - 0 4  

-1 .4101e  - 0 3  

-9 .1843e  - 0 4  

-1 .0477e  - 0 4  

- 9 . 6 0 3 7 e  - 0 5  

-9 .7206e  - 0 4  

-1 .3331e  - 0 3  

-9 .7206e  - 0 4  

-9 .6037e  - 0 5  

- 1.0651e - 0 4  

- 9 . 5 8 3 9 e  - 0 4  

- 1.3391e - 0 3  

-9 .5839e  - 0 4  

- 1 . 0 6 5 1 e  - 0 4  

Figures 3 and 4 show the positions and the velocities in the first 4 s for times tk  ---- k X 0.2 S 
with k = 0, 1 , . . .  ,20. In Tables 3 and 4, we can see the positions and the velocities at time 
t = 4s, of particles P2, Pl l ,  P21, Psi, P40 obtained with A t  = l s ,  A t  = 0.1s, A t  = 0.01s, 
A t  = 0.001s, and A t  ---- 0.0005s. For all A t  and for every tk, the computed total energy is 
always 81.13 Kgm2/s 2. 

EXAMPLE 3. With the same assumptions of Example 2, we have considered a hinged rod. Figures 
5 and 6 show again the positions and the velocities in the first 4s  for times tk = k x 0.2s with 
k = 0 , 1 , . . . ,  20, observe the difference in the boundary conditions (see Figures 3 and 4). In 
Tables 5 and 6, we can see the positions and the velocities at time t = 4s of particles P2, P l l ,  
P21, Psi ,  P40 obtained with A t  = l s ,  A t  ---- 0.1s, A t  = 0.01 s, A t  = 0 .001  s,  and A t  ---- 0 . 0 0 0 5 s .  

For all A t  and for every tk, the computed total energy is still always 81.13Kgm2/s 2. 
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