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Summary

Phosphatidylinositol transfer proteins (PITPs) are
highly conserved polypeptides that bind phosphatidy-

linositol or phosphatidylcholine monomers, facilitat-
ing their transfer from one membrane compartment to

another [1]. Although PITPs have been implicated in
a variety of cellular functions, including lipid-mediated

signaling and membrane trafficking, the precise biolog-
ical roles of most PITPs remain to be elucidated [1, 2].

Here we show for the first time that a class I PITP is
involved in cytokinesis. We found that giotto (gio),

a Drosophila gene that encodes a class I PITP, serves

an essential function required for both mitotic and
meiotic cytokinesis. Neuroblasts and spermatocytes

from gio mutants both assemble regular actomyosin
rings. However, these rings fail to constrict to com-

pletion, leading to cytokinesis failures. Moreover, gio
mutations cause an abnormal accumulation of Golgi-

derived vesicles at the equator of spermatocyte telo-
phases, suggesting that Gio is implicated in mem-

brane-vesicle fusion. Consistent with these results,
we found that Gio is enriched at the cleavage furrow,

the ER, and the spindle envelope. We propose that
Gio mediates transfer of lipid monomers from the ER

to the equatorial membrane, causing a specific local
enrichment in phosphatidylinositol. This change in

membrane composition would ultimately facilitate
vesicle fusion, allowing membrane addition to the fur-

row and/or targeted delivery of proteins required for
cytokinesis.

Results and Discussion

The gio Complementation Group

We identified the first gio mutant allele, gioZ3934, in the
course of a screen for mutants defective in spermatocyte
cytokinesis [3]. Flies homozygous for gioZ3934 show
frequent multinucleate spermatids [3] (Figure 1C),
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a phenotype diagnostic of failures in meiotic cytokinesis
[3, 4]. gio maps to the third chromosome and is uncov-
ered by Df(3R)D1-BX12 that removes the polytene chro-
mosome interval 91F-92D6 [3]. Complementation tests
with P element insertions mapping to the same interval
showed that the P-induced lethals gioRM1, gioj5A6, and
gioEP513 fail to complement each other and gioZ3934 for
the defect in meiotic cytokinesis (Figures 1A and 1D). In
addition, larval brains of these lethal mutants exhibit fre-
quent polyploid cells but have normal frequencies of
anaphases (Figures 1A and 2D), consistent with a defect
in neuroblast cytokinesis [5].

gio Encodes a Class I PITP

gioRM1 is a P-induced mutation generated in our labora-
tory; inverse PCR and sequencing experiments revealed
that the P element responsible for this mutation is in-
serted into the first, untranslated exon of the predicted
CG5269 gene (Figure 1B). Transposase-induced precise
excision of this P element rescued all mutant pheno-
types associated with gioRM1. gioj5A6 is another P-in-
duced mutation with the P element inserted within the
first intron of the CG5269 gene, while gioEP513 carries
an EP element inserted very close to that of gioRM1 (Fly-
Base, http://flybase.bio.indiana.edu; Figure 1B). EP ele-
ments contain a GAL4 binding site and a weak promoter
and have the ability to drive the directional expression of
adjacent genes in the presence of GAL4 [6]. GAL4-
driven expression of the CG5269 gene rescued all the
mutant phenotypes associated with the gio mutations
(see Supplemental Experimental Procedures available
with this article online). Together, these results indicate
that gio corresponds to the CG5269 gene. We also se-
quenced all the exons of the EMS-induced gioZ3934 mu-
tant gene but did not find any mutation. This suggests
that the gioZ3934 allele carries a mutation in the promoter
region.

The CG5269 gene encodes a 272 aa polypeptide of 35
kDa that is closely related to phosphatidylinositol
(PtdIns) transfer proteins (PITPs). In animal cells, the
PITPs comprise small soluble 32–35 kDa proteins con-
taining a single PtdIns transfer domain (class I PITPs),
as well as larger integral membrane proteins possessing
additional domains (class II PITPs) [1, 2]. While in mam-
mals there are five PITPs, Drosophila has only three
proteins of this family [1, 2]. Class II PITPs include the
Drosophila RdgB2 and Rdg2Bb proteins and the three
human polypeptides Nir1, Nir2, and Nir3. RdgB2 is
encoded by the retinal degeneration B (rdgB) gene,
which serves a nonessential function specifically re-
quired for phototransduction and prevention of retinal
degeneration; the wild-type function of the rdgBb gene
is currently unknown [2]. Ablation of mouse Nir2 results
in early embryonic death, and its expression in Drosoph-
ila can rescue the mutant phenotypes elicited by rdgB2
mutations. In addition, Nir2 is essential for completion
of cytokinesis in human cells [2, 7]. The mouse Nir3
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Figure 1. The giotto Complementation Group

(A) Complementation analysis among gio mutant alleles. LL, late lethal; MS, viable, male sterile; PP, polyploid cells in larval brains; NP, no poly-

ploid cells in larval brains; DS, defective spermatids.

(B) Top: Map of the gio locus showing the exon/intron organization, the positions of the ATG and stop (TAA) codons, and the positions of P el-

ement insertions associated with the gio mutations used in this study (large inverted triangles). Bottom: Partial DNA sequence showing the pre-

cise localization of the P element insertions (small inverted triangles). Exon and intron sequences are in capital and lower case letters, respec-

tively.

(C) Abnormal spermatids observed in living gio mutant testes. (a) Wild-type spermatids with nuclei (n, white circles) and nebenkern (nk, dark

circles) of similar sizes. (b) Multinucleated spermatids from gio mutants containing two (2:1) or four (4:1) nuclei of similar sizes associated

with a single large nebenkern. Scale bar equals 10 mm.

(D) Frequencies (6 SE) of abnormal spermatids observed in gio mutant males. In wild-type males, the frequency of abnormal spermatids is vir-

tually zero.
gene is not required for photoreceptor function or sur-
vival, and its function is currently unclear [1, 2].

Mammalian cells contain two class I PITPs, PITPa and
PITPb, that share 77% sequence identity. PITPb defi-
ciency in mouse results in early failure of embryonic de-
velopment, whereas ablation of PITPa does not compro-
mise embryonic stem cell viability but leads to severe
neurodegenerative disorders, including the vibrator phe-
notype observed in hypomorphic mutations [1, 2, 8]. An
alignment of the predicted Gio protein with its mamma-
lian homologs revealed that Gio is 61%–62% and 59%
identical to mammalian PITPb and PITPa, respectively.
In addition, phylogenetic analysis with the PHYLIP suite
showed that Gio is closer to the b than to the a isoform.
Thus, we propose to call the CG5269 gene giotto instead
of vibrator (see Supplemental Experimental Proce-
dures).

Gio Is Required for Actomyosin Ring Constriction

Previous studies revealed that gioZ3934 spermatocytes
are defective in contractile ring constriction and furrow
ingression [3]. To confirm these results, we examined
gioRM1 mutant testes stained for chromatin, tubulin, and
F-actin. In gioRM1 males, early meiotic telophases were
completely normal and displayed regular actin rings
and central spindles (Figure S1). The central spindle
and the contractile ring remained normal also in most
mutant midtelophases. However, most late telophases
from gioRM1 mutants displayed actin rings that were
not fully constricted (Figures 2A, part b, and 2B). In ad-
dition, in 11% of these late telophases, the actin rings
were either discontinuous or absent and the central
spindles less dense than in wild-type (Figures 2A, part
c, and 2B).

We next determined the cytokinesis phenotype of gio
mutant neuroblasts (NBs) by examining brain prepara-
tions stained for chromatin, tubulin, and myosin II. In
brains from gioRM1/Df(3R)D1-BX12 larvae, all early and
midtelophase NBs (n = 28) exhibited regular central spin-
dles and myosin rings (data not shown). However, about
one half of mutant NBs in late telophase (48%; n = 35) dis-
played poorly constricted rings (Figure 2C, part b); in
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Figure 2. Meiotic and Mitotic Cells from gio Mutant Larvae Are Defective in Actomyosin Ring Constriction

(A) Spermatocyte telophases stained for tubulin (green), actin (red), and DNA (blue). (a) Wild-type late telophase; (b) mutant late telophase with an

incompletely constricted ring; (c) mutant late telophase with a discontinuous, incompletely constricted ring and a defective central spindle. Scale

bar equals 5 mm.

(B) Frequencies (6 SE) of irregular late telophases in gio Z3934/gio Z3934, gio Z3934/Df(3R)D1-BX12, and gioRM1/gioRM1 mutant males. Defective telo-

phases display incompletely constricted contractile rings (CR) and central spindles (CS) that are either normal or less dense than their wild-type

counterparts. In wild-type males, the frequency of irregular CRs and CSs is virtually zero.

(C) Late telophases of wild-type (a) and gioRM1/gioRM1 (b) neuroblasts stained for tubulin (green), myosin II (red), and DNA (blue). Note the incom-

pletely constricted actomyosin ring in the mutant telophase. Scale bar equals 5 mm.

(D) Frequencies (6 SE) of anaphases and polyploid cells in brains from wild-type (Oregon R), gioRM1/gioRM1, gioRM1/Df(3R)D1-BX12, gioEP513/

gioEP513, and gioEP513/Df(3R)D1-BX12 larvae.
wild-type, all NB late telophases (n = 44) consistently
showed highly constricted myosin rings (Figure 2C,
part a). Collectively, our results indicate that the wild-
type function of gio is specifically required for actomyo-
sin ring constriction in both mitotic and meiotic cells.

Mutations in gio Affect the Distribution of Golgi-

Derived Vesicles in Dividing Spermatocytes
Since PITPs have been implicated in budding of secre-
tory vesicles from the trans-Golgi network and in the
process of vesicle fusion with the plasma membrane
[1], we analyzed the behavior of Golgi-derived vesicles
during meiotic division of gio mutant males. Vesicles
were visualized with antibodies against two different
Drosophila Golgi proteins: anti-a mannosidase II (GMII)
[9] and anti-Lava lamp (Lva) [10]; these antibodies detect
identical Golgi structures in germline cells of males [11]
(data not shown). In wild-type testes, the Golgi stacks
disassemble at metaphase of meiosis I, resulting in nu-
merous vesicle-like structures [11] (data not shown). In
most spermatocytes (96%, n = 95) undergoing telo-
phase, these vesicles were concentrated near the poles
and excluded from the central region of the cell
(Figure 3A, parts a and b). In contrast, 61.7% of gio mu-
tant telophases (n = 84) displayed an abnormal localiza-
tion of vesicle-like structures at the cell equator
(Figure 3A, parts c and d). This vesicle phenotype could
either be a specific consequence of gio mutations or
a general consequence of failures in cytokinesis. To dis-
criminate between these possibilities, we examined
meiotic division in males hemizygous for the pebble
male sterile allele pblZ4836 [3]. pbl encodes a Rho GEF
required for both central spindle assembly and contrac-
tile ring formation during both mitotic and meiotic
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Figure 3. Mutations in gio Cause an Abnor-

mal Localization of Golgi-Derived Vesicles

during Spermatocyte Division and Affect

Acroblast Formation

(A) Visualization of Golgi-derived vesicles in

dividing primary spermatocytes by Lva im-

munostaining. Cells were stained for Lva

(black and white panels), tubulin (green),

and DNA (blue). In wild-type mid- (a) and

late (b) telophases, Golgi vesicles are ex-

cluded from the equatorial regions of the

cells. In gioEP513 mutants, Golgi vesicles dis-

play an abnormal localization at the cell equa-

tor both in midtelophases with a normal cen-

tral spindle (c) and in late telophases with

a disorganized central spindle (d). Scale bar

equals 5 mm.

(B) Wild-type (a) and gioEP513 (b) onion stage

spermatids stained for Lva (red) and DNA

(blue); n, nuclei; nk, nebenkern. Note that

the nuclei of wild-type spermatids are associ-

ated with Lva-enriched acroblasts; mutant

spermatids are associated with many Golgi

vesicles but lack organized acroblasts. Scale

bar equals 10 mm.
cytokinesis [3, 12]. Immunostaining for Lva of testes
from pblZ4836/Df(3R)pbl-NR mutant flies revealed that
in 96% of telophases (n = 47), the Golgi-derived vesicles
were excluded from the equatorial region of the cell
(Figure S2A). These results strongly suggest that the
vesicle phenotype observed in gio telophases is the
cause and not the effect of cytokinesis failures. The most
straightforward interpretation of the gio phenotype is
that the Golgi-derived vesicles fail to fuse with the invag-
inating furrow membrane, resulting in an abnormal accu-
mulation of these structures at the center of the cell.

These findings prompted us to examine the vesicle
phenotype in two additional Drosophila cytokinesis mu-
tants implicated in membrane trafficking, four wheel
drive (fwd) and four way stop (fws), which encode
a PtdIns 4-kinase and the Cog5 subunit of the conserved
oligomeric Golgi complex, respectively [11, 13]. Sper-
matocytes of both mutants form regular central spindles
and contractile rings but are specifically defective in ac-
tomyosin ring constriction, just as are gio mutant sper-
matocytes [3, 11, 13]. Analysis of mutant spermatocytes
from fwdZ0453/Df(3L)7C flies revealed that they exhibit an
equatorial localization of Golgi vesicles in 44% of the
telophases (n = 61; Figure S2B). In fws mutants, vesicle
distribution was comparable to wild-type, as only 10%
(n = 67) of mutant telophases displayed vesicles at the
cell equator (Figure S2C).

Gio Is Required for Acroblast Assembly
In wild-type spermatids, Lva and GMII localize to the
acroblast, a structure that forms at the end of the second
meiotic division through the aggregation and fusion of
Golgi vesicles [4, 11, 14] (Figure 3B, part a; Figure S3A).
Wild-type acroblasts are also enriched in the Cog5 pro-
tein [11] (Figure S3B) and are stained by fluorescein-con-
jugated wheat germ agglutinin (WGA); WGA is known to
associate with membrane-enriched structures, includ-
ing the acroblast [15, 16] (Figure S3C). In spermatids
from gio mutants, Lva, Cog5, and WGA are associated
with multiple vesicle-like structures dispersed in the cy-
toplasm (Figure 3B, part b; Figures S3A–S3C). This sug-
gests that in a gio mutant background, the Golgi-derived
vesicles fail to fuse with the anterior side of spermatid nu-
clei, thus preventing acroblast formation. Failures in
acroblast assembly due to defective Golgi vesicles fu-
sion have been previously observed in Drosophila fws
mutants [11] (Figure S2C), as well as in mice lacking the
Golgi-associated protein GOPC [17].
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Figure 4. Subcellular Localization of Gio in Spermatocytes, Spermatids, and Larval Neuroblasts

(A) Western blot from brain and testis extracts of wild-type (W), gioRM1 (R), and gioEP513 (E) larvae, showing that the anti-Gio antibody recognizes

a single band of approximately 35 kDa that is reduced in the mutant tissues. a tubulin was used as loading control.

(B) Gio and Pdi localization in primary spermatocytes. Metaphase (a), early telophase (b), and late telophase (c) figures stained for Gio, tubulin

(green), and DNA (blue). Gio is enriched at the cell poles, the spindle envelope, and the cleavage furrow area. Note that Gio starts to concentrate

at the cleavage furrow during late anaphase/early telophases (arrowhead in [b]). Metaphase (d), early telophase (e), and late telophase (f) figures

from primary spermatocytes expressing GFP-Pdi. Note that Pdi localization largely parallels that of Gio. Scale bar equals 5 mm.

(C) Gio localization in wild-type spermatids. Gio colocalizes with WGA at the anterior side of spermatid nuclei; n, nuclei; nk, nebenkern. Scale bar

equals 10 mm.

(D) Gio localization in metaphase (a), anaphase (b), midtelophase (c), and late telophase (d) figures of wild-type larval neuroblasts. Cells were

stained for Gio (red), tubulin (green), and DNA (blue). Note that Gio is enriched at the nuclear envelope and at the putative spindle envelope. Scale

bar equals 5 mm.
Subcellular Location of Gio

To determine the subcellular localization of Gio, we gen-
erated a rabbit polyclonal antibody against the entire
protein. Western blotting analysis showed that this anti-
body recognizes a single polypeptide of w35 kDa, con-
sistent with the molecular weight of the predicted Gio
protein. The amount of this protein was substantially re-
duced in both brain and testis extracts from gio mutant
larvae, demonstrating that the antibody specifically re-
acts with Gio (Figure 4A). Gio was also reduced in the
testes of the EMS-induced gioZ3934 mutant (Figure S4).

Immunostaining of wild-type primary spermatocytes
revealed that during metaphase and anatelophase I,
Gio accumulates both at the cell poles and at an elliptical
structure that encircles the chromosomes (Figure 4B,
parts a and b). As spermatocytes progress to telophase,
the Gio protein is still visible at the cell poles, but it be-
comes also enriched at the cleavage furrow area
(Figure 4B, parts b and c). The localization of the Gio-en-
riched structures in meiotic cells is highly reminiscent of
the distribution of the endoplasmic reticulum (ER) de-
scribed by Tates [4, 14]. According to Tates’ ultrastruc-
tural analysis of dividing spermatocytes, ER consists of
parafusorial membranes surrounding the nucleus and
astral membranes at the cell poles. Parafusorial mem-
branes have been observed in many invertebrates and
are also called ‘‘spindle envelope’’ [18]. Consistent
with Gio localization to the ER, the spermatocyte
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structures stained by the anti-Gio antibody are largely
coincident with those that express the ER marker Pro-
tein disulfide isomerase (Pdi) fused with GFP (Figure 4B,
parts d–f) [19]. However, there are some interesting dif-
ferences between Gio and Pdi localization. While Gio
concentrates at the cell equator during early telophase
(Figure 4B, part b), Pdi does not accumulate in this
area until late telophase (Figure 4B, parts e and f). More-
over, while the Gio signal extends across the entire
equatorial region of late telophases (Figure 4B, part c),
the Pdi signal is limited to the inner part of this region
(Figure 4B, part f). These observations suggest that
Gio is enriched at the equatorial plasma membrane
and that Pdi concentrates within the lumen of the mid-
body. Consistent with the interpretation that Gio is en-
riched at cleavage furrow membrane, we have found
that Gio colocalizes with the plasma membrane marker
FM1-43FX [20] during telophase (Figure S5).

Gio localization in fws or fwd mutant spermatocytes
was comparable to wild-type (data not shown). In sper-
matocytes of gioEP513 mutants, Gio was undetectable
(data not shown), further confirming the specificity of
our antibody. gioEP513 mutants also displayed a normal
localization of Pdi (Figure S6), indicating that mutations
in gio do not induce gross morphological modifications
of the ER.

In spermatids, Gio has a rather diffuse cytoplasmic lo-
calization and is enriched at the anterior side of nuclei.
This nuclear side is also stained by fluorescein-conju-
gated WGA (Figure 4C), suggesting that Gio accumu-
lates in the area of acroblast assembly.

Immunostaining of wild-type larval brains showed that
Gio is mainly cytoplasmic during NB prophase. In sub-
sequent stages of NB mitosis, Gio becomes enriched
at the spindle envelope and marks this structure until
midtelophase; in late NB telophases, the spindle enve-
lope disappears and Gio concentrates around the re-
forming nuclei (Figure 4D; the presence of a spindle en-
velope during NB mitosis has been observed by A.T.C.
Carpenter, personal communication). Although Gio lo-
calizes to the spindle envelope of both NBs and sper-
matocytes, we have not been able to detect a clear
Gio enrichment at the cleavage furrow area of NB telo-
phases. This observation could reflect either a lower
Gio concentration in NBs compared to spermatocytes
(see Figure 4A) or the difference in actomyosin ring mor-
phology between these two cell types. NBs form wide
actomyosin rings that progressively narrow as cells
progress through telophase, while spermatocytes dis-
play very narrow actomyosin rings throughout cytokine-
sis (Figure S7) [3, 21]. If Gio localized to the actin ring-as-
sociated membrane, its concentration at the cell
equator would be higher in spermatocytes than in NBs.

The Role of Gio in Drosophila Cytokinesis
In the past few years, many proteins involved in mem-
brane trafficking have been implicated in animal cell cy-
tokinesis [22]. Our results provide the first demonstra-
tion that a class I PITP is required for this process. The
other PITP that has been shown to be required for cyto-
kinesis is mammalian Nir2, a class II PITP homologous
to Drosophila RdgB [2, 7]. However, Gio and Nir2 are
likely to play different roles during cytokinesis, as they
exhibit different subcellular localizations. While Gio
localizes to the ER, Nir2 is primarily enriched at the Golgi
structures [2, 7].

Our observations on Gio localization and vesicle be-
havior in gio and fwd mutants suggest a model for the
role of Gio during Drosophila cytokinesis. We propose
that Gio mediates transfer of PtdIns monomers to the
equatorial membrane of anatelophase cells, thereby
causing a local enrichment in PtdIns molecules. An ele-
vated concentration of these lipid monomers and their
phosphorylation by the PtdIns 4-kinase encoded by
fwd would facilitate membrane-vesicle fusion, allowing
formation of new membrane and/or vesicle-mediated
targeted delivery of proteins required for cytokinesis.
However, proper cytokinetic function of the equatorial
membrane is likely to require further phosphorylation
of PtdIns(4)P molecules, leading to the formation of
PtdIns 4,5-biphosphate [PtdIns(4,5)P]. PtdIns(4,5)P has
been implicated in cytokinesis in a variety of systems, in-
cluding Drosophila and mammalian cells [23–27].

Although gio, fwd, and fws mutants display different
vesicle phenotypes, they have a common cytokinetic de-
fect: they form a normal actomyosin ring, but this ring
fails to constrict to completion. These findings indicate
that proper membrane trafficking is essential for actin re-
modeling during animal cell cytokinesis. This conclusion
is fully consistent with previous studies carried out both
in Drosophila and in other organisms. In cellularizing
Drosophila embryos mutant for syntaxin1, a protein in-
volved in vesicle fusion, the furrow canals lack an orga-
nized actin cytoskeleton [28]. Similarly, S2 cells depleted
of syntaxin1 by RNAi fail to form actin-based cytokinetic
rings [29]. Furthermore, Dyctyostelium mutants that lack
the vesicle-coating protein clathrin fail to assemble a ro-
bust actin ring [30]. Finally, recent studies on crane fly,
Drosophila, and mammalian cells indicate that
PtdIns(4,5)P2 plays an important role in actin ring forma-
tion and stabilization [25–27]. Collectively, these results
indicate that successful cytokinesis of animal cells re-
quires interactions between the plasma membrane and
the actin ring. However, most of the molecules involved
in these interactions and their precise biological func-
tions remain to be identified.

Supplemental Data

Supplemental Data include seven figures and Supplemental Exper-

imental Procedures and can be found with this article online at

http://www.current-biology.com/cgi/content/full/16/2/195/DC1/.
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