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Multivariate k-Nearest Neighbor Density Estimates 

Y. P. MACK AND M. ROSENBLATT* 

Univekty of California, San Diego, La Jolla, California 92093 

Communicated by P. R. Krishnaiah 

Under appropriate assumptions, expressions describing the asymptotic 
behavior of the bias and variance of K-nearest neighbor density estimates with 
weight function w are obtained. The behavior of these estimates is compared 
with that of kernel estimates. Particular attention is paid to the properties of the 
estimates in the tail. 

1. INT~~~DU~ION 

Let XI , X, ,..., X,, be independent, identically distributed random p-vectors 
with bounded continuous density f(x). Consider an estimate of f(x) given by 

where 

R, = R,(x) = the Euclidean distance between x and the kth nearest 
neighbor of x among the Xj’s, 

w is a bounded integrable weight function with 

s w(u) du = 1, 

and k = k(n) is a sequence of positive integers such that k -+ 03, k/n -+ 0 as 
?I.+ co. 

In the past there has been extensive research on the properties of kernel 
estimates (See for example [2,10, 111) where the bandwidth (analogous to R,) 
is deterministically specified. Recently there has been a good deal of interest in 
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nearest neighbor estimates. The basic idea of such an estimate is suggested in (51 
and formalized in [7]. Results on consistency are found in [4] and [S] and 
asymptotic normality is discussed in [9]. Comments on the use of such estimates 
in classification are to be found in [3]. Some researchers are attracted by what 
they regard as the self-adjusting character of nearest neighbor estimates as 
contrasted with kernel estimates [l]. Most of the earlier papers deal only with a 
uniform weight function. One of the objects of this paper is to derive results on 
the asymptotic bias and variance of nearest neighbor estimates for a reasonably 
large class of weight functions. These results generalize those of Fukunaga and 
Hostetler [6] who obtained comparable results on heuristic grounds for a uniform 
weight function. A comparison is also made between nearest neighbor and 
kernel estimates showing that the bias of nearest neighbor estimates can be very 
large in the tail of the distribution in spite of their self-adjusting character. 

We shall give a statement of the two basic theorems on variance and bias after 
introducing a little notation. Let ]I u /I denote the Euclidean norm of the p-vector 
u. Set S, = {z: [I z - x I] < Y}. Given a differentiable function g(x), let D,g 
denote the partial derivative of g with respect to x, . If g is twice continuously 
differentiable and w has finite second order moments let 

(2) 

The first theorem describes the asymptotic behavior of the variance. 

THEOREM 1. Let the density f be bounded. Assume that the weight function w is 
bounded with 

I I ~a I I w(4l du < ~0, a = l,..., p. (3) 

Further, let 1 - P(S,) = O(Y-a) for some 01 > 0 as r --+ co. Consider a point x 
with f(x) > 0 and f continuously d$erentiable in a neighborhood of x. Then, ;f 
h = h(n) -+ 00, h(n)/n -+ 0 as 71 -+ co 

Var(f,,(x)) =‘T @‘2 
r (fp) 

1 W”(U) du 

+ 0 (i). 

The second theorem is concerned with the asymptotic bias of nearest neighbor 
estimates. 

THEOREM 2. Let the density f  be bounded. The weight function w is assumed 
to be bounded with 

s II u II2 I44l du -=c aa s u,w(u) du = 0, (Y = l,..., p. (51 
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Further, let x be a point with f (x) > 0 and f continuously dz@mntiable up to second 
order in a neighborhood of x. Then 

EfnW =f@) + 
tr W,“” 

27rf (x)Z’P 
Q(f)( 

X 
) ,,,2’, 

n 

f(x) 
k s 44 W4 

Ilull= 

+ 0 ((3”‘” + ;,. (6) 

2 is the un;form distribution on the surface of the p-sphere of unit radius. 

Notice that Theorems 1 and 2 hold for a reasonably large class of density 
functions f with finite or infinite support. The results of Fukunaga and Hostetler 
are obtained from (4) and (6) by taking a uniform weight function w. 

One can already see that the contribution of the (bias)2 to the mean square 
error can overwhelm that of the variance in the tail of the distribution because 
of the factor f (x)2/p in the denominator of the second term on the right of (6). 
This does not happen in the case of a kernel estimate. Related questions will be 
discussed in greater detail in $4. 

2. PRELIMINARY COMMENTS 

Let us first consider the probability density h(r) of the distance R, between x 
and the kth nearest neighbor of x. Let S, = (z: 11 z - x )I < r>, G(Y) = P(S,), 
and 

G’(r) = lim i 
6-0 

[I s,+6f (t) dt - S,f (t) dt] = i,,-,,,=,f (t) da(t), 

where P is the probability measure with density f, and D is the surface area of the 
sphere 11 x - t 11 = T. Thus the density of R, is 

h(r) = n (; 1 ;) G(r)“-l(l - G(r))“-* G’(r). 

The joint density of the kth nearest neighbor Q, the k - 1 observations 
Y r ,..., YkeI falling within the sphere about x whose radius is determined by x 
and Q, and the remaining n - k observations VI ,..., V,+, falling outside this 
sphere, is given as follows. Consider the joint density of XI ,..., X, . There 
are n choices possible for Q. Given that Q is chosen, there are (:I:) possible 
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choices for the K - 1 observations falling within the sphere (and this determines 
the n - K falling outside the sphere). The joint density of Yi ,..., Yk-t , 
V 1 ,*.a, V,-, and Q is then 

where 

I 
n-k 

x Fl fh) Q1 ; W) ‘f(4) 
I 

(8) 

qz, A) = 
I 

if ZEA 
otherwise. 

(S$ is the complement of S,. , and r = 11 x - q 11. Notice that if we first integrate 
the y,‘s over S, , the V{s over (S~)O, and then finallyf(p) over all of space we get 
one. If f(q) is integrated over only r = 11 x - q (I we get h(r). This implies that the 
conditional distribution of the Yj’s, the Vi’s and Q given R, = Y is 

f(yl ,a’*, yk-1 ; % ,.'., %-k ; 4 I y, 

so that the Yj’s, the V/TI)s and Q are conditionally independent given R, = Y with 
respective marginal densities 

f(Y) f(Q) and f(q) 
G(r)’ l-G(r) ’ G’(r)’ 

~ES,,WE(~~)C,QE(~:~IX--~(~ = } h Y , w ere the conditional density of Q given 
R, is to be integrated with respect to the surface measure on the sphere of radius Y 

about x. 
We are interested in computing moments of various functions of R, . It is 

clear from what has been stated above that R, has the same distribution as 
G-l(T), where 2’ is the Kth order statistic from an i.i.d. uniform (0, 1) sample of 
size n. If we just assume f is bounded and continuous we have 

G(y) = js,fW du = CfW" + s, VW -f (41 du 

= Cf(W)Y" + O(YP) as y&O, where c = 
flP/Z 

r(V) - 
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.Then if t = G(Y) it follows that when f(x) > 0 

[G-l(t)]” = IA = -?- “’ + o(f’P). 
( d(x) ) 

In general, for 4 a measurable function, E(#(R,J) may not exist. However, since 
o < G(Y) < 1, a sufficient condition for its existence is the requirement that 

I ,,m I d(r)1 W) < ~0. (10) 

Of particular interest to us in this discussion is the function 

‘+(‘) = G(*)Y(l’: G(r))0 ’ 
(11) 

where A, y, /I are nonnegative integers. E(#(R,)) exists for n sufficiently large 
under the assumption (1 - G(Y)) = O(r-‘) as Y -+ co, 5 > o, which implies (lo), 
with 4 given by (11). 

With the change of variable t = G(Y), then 

E(#?,J) = n (; 1 ;) & G-l(t)Atk-l-~ (1 - t)n+ dr 

= n (; 1:) [ ([$-J + .@“l’)) e-1-Y (1 - t)“-“-5 &.(12) 

3. PROOFS OF THE THEOREMS 

We first derive the result on the asymptotic behavior of the variance of f,,(x). 
Now 

Wf&)) = JWr(f&) I %)I + Va4?%(4 I %)I. 

The following two propositions give us estimates of each of the terms on the 
right of the formula just written above. 

PROPOSITION 1. Let the density f be bounded. Assume the wtight function w is 
bounded and integrable. If f is continuous in a ne&hborhood of x and k = k(n) -+ 00, 
k(n)/n+O asn+ 00, then 

Epar(fJx) 1 R,)] = f? 
&v2 

r (qq 
I 

wz(u) du 

(13) 
f “(4 

- - (4, k u 



6 MACK AND ROSENBLATT 

PROPOSITION 2. Let the assumptions of Proposition 1 be satisjied. Let 

s I vs I I wWl du < ~0, a = I,..., p, 

and 1 - P(S,) = O(r+) for some d > 0 as Y -+ co. Then for f(x) > 0 and f  
continuously differentiable in a neighborhood of x, 

va@(f&) I %)I =fT (i,u,,,, 44 du)” + 0 (-$. (13’) 

Clearly Theorem 1 follows from Propositions 1 and 2. We first give the 

Proof of Proposition 1 

(14) 

where Y, Q, V have the distribution given in (8). Let S(n) = {y: 11 x - y  11 < R,}. 
The first term on the right of (14) is 

$&iv= (w (9) 1 R”) 
k-l 

= ___ n2 [ $Q’&) I.,,, w2(u)f (’ - uRn) d” 

- i&y (I.,,,, w(“)f(x - *Rn) d”)21* 

Consider the first term on the right of this last equality. Its expectation 

k-l 6- R.pP;S(n)) L,,,, W2(U)f(X - *RS) du) 

k-l E z- 
n2 ( W&W 1 s f(x) ,, ,,<1 w”o4 da + V)- 

(I. 

By (12), the first term on the right of (15) equals 

(15) 

k-lcf “(4 i, ,,<1 ~“(4 du + o(W, 
u, 
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as K -+ 03 and we shall show that E(A) = o(R-~). Notice that 

by the Schwarz inequality. However 

E(R;2”P(S(n))-2) = 0 (9-: 

and 

w”(u) If@ - 
(17) 

= 
s x - u&J -fW If@ - v&z) -fWl> du dv ,, ,, ,, ,,<1 w2w W”(V) EKf( 

u.v\ 

The expectation in the integrand on the right of (17) is bounded and converges 
to zero for all u, n sincef is bounded and continuous. This remark implies that 

(17) converges to zero. Using (16) one can then see that E(A) = 0(1/k). A 

similar argument then shows that 

EK-l 1 
C 
- - (j 

d P(S(n)J2 IlUll<l 
w(u)f(x - uRJ d,)z] 

(using (12)). Another argument of the same type using (12) shows that 

Var (w (9) ( R,)] = 0 (3. 

Again, using (12) and a similar argument one finds that 

E [J&$ Var (w (q) ) R,)] = q J‘,,,,,, w"(u)du + 0 ($- 

Thus 

Epar(fn(x) 1 R,)] = q s W”(U) du -fq (i,s,,,l W(U) du)’ + 0 @- 
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The following lemma gives useful estimates relating to the probability density 
of the kth order statistic and certain truncated moments. l(A) denotes the 
indicator function of the set A. 

LEMMA. Let T = T,,, be the kth order statistic in a sample of size n from a 
U[O, l] distribution. If  k = k(n) + 00, k(n)/n -to as n -+ 00, then upper and 
lower bounds for the density function of T in the range / T - (k - l)/(n - l)[ < 
ar(k/n) with (Y small are given by 

where 

I 1 (n - 1)3 
gn(‘) = exP - 2 (k - l)(n - k) 

Further 

(19) 

if y  = (1 - w.) k/n while 

JY?~(T > ~‘11 < c 5 & (I)’ (gn(y’Y2 + (i)’ exp(-$ck), (20) 

if y’ = (1 + a) k/n and c > 1 is Jixed but large. 

The probability density of the kth order statistic in a sample of size n is 

n-l 
n k _ 1 X*-1(1 - q-k, ( 1 o<xg1. 

The maximum of the logarithm of the function x”-‘(1 - x)%-~ is at 

k-l 
X~~-------* 

n-l 

The second derivative of the logarithm at this point is 

(21) 

I (n - 1)s - ----I 
(k - l)(n - k) = “kp 
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and the sth derivative of the logarithm at x is 

(s - l)! ((-1)“” & - 
n-k 

I (1 - x)’ * 

The sth derivative at x0 is bounded in absolute value by (s - l)! ns/k+l for large 
n. Using a Taylor expansion of the logarithm about x,, and these bounds together 
with Stirling’s approximation for a(;~:) yields the upper and lower bounds of (18) 
in the range 1 x - (k - l)/(n - 1)j < ol (k/n) with 01 small. Because the density 
(21) is increasing for x < (k - l)/(n - 1) 

with y = (1 - a) k/n. The second tail moment inequality (20) 

Wid,l(Tfi,n > r’>> 

- ; ’ EW”m.n-, > Y’N = 0 

= (;)’ EWf’ > Trc-we, > Y’N + (;)’ EWn-m-s 2 ~71, 

where y’ = (1 + LX) k/n and y” = c(k/n) with c fixed but large. Since 
(1 - x)*-~ < exp(-(n - k) x) for 0 < x < 1 

Thus, if c is fixed but much larger than one 

Also, since the density (21) is decreasing for x > (k - l)/(n - 1) 

We now give the 
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Proof of Proposition 2. The conditional expected value of fn(x) given R, is 

=a+@t-O, (22) 

where (s(n))0 is the complement of S(n) and &S(n) is the boundary of S(n). 
We shall make an estimate of Var(@). Similar estimates show that 

Var(@), Var(@) = 0 (ij. 

All other contributions to Var(@ + @ + @), except for Var(@) are 0(1/k). 
First note that 

K-l 1 @=--..-- 
s n P(W) IlUll~l 

w(u)f(x - uR,) du 

k-l 1 =-- 
s n T II~IIG 

w(u)f(x - uG-l(T)) du, 

where T is the Kth order statistic from a uniform distribution. In order to get 
sufficiently good estimates for various functions of T (such as, e.g., l/T, Tllp, 
G-l(T)) we require expansions in terms of T - (K - l)/(n - I). Eventually 
certain moments are estimated in terms of contributions from the range 
/ T - (K - l)/(n - l)l < &z/n) and the complimentary range. From the 
assumptions made on w andf and the estimates (19) and (20), it follows that the 
contribution to E(@) and E(a2) f rom the range j T- (k- l)/(n - I)[ >&z/n) 
is 

We shall now consider the contribution of (23) to Var(@) from the range 
I T - (k - l)/(n - l)/ < (Y k/n. Now 

k-l 1 k-l n-l -- 
n T 

= ---- (1 + (z,-‘(T- &+j)-’ 
n 

z + 11 _ (?d,-'(T- h&j 

+ 0 [(sj-'( T - s)]'/, (24) 
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while 

I,,,,, w&V (x - UP (s) - ~1 (G-W - G-l (s))) du 

r.zz j,,,,, w(“)f (x - uG-l (+E-# d” 

- s C u, w(u)& f (x - uG-l 
a 

($+)) du (G-l(T) - G-l (s)) 

+ o (G-l(T) - G-1 
c# 

It follows from (9) that 

t = G-l(t) = (cf(x))-l/p tl/P + o(W). 

However, 

tllp = (S)liP(l + (kL~‘(t _ S),“” 

= (gi,“” 

x 11 + j (&#‘(t - 

so that 

G-l(T) - G-l (S) = (cf(x))-1’” (g-y 

Neglecting the constant term we find that we have to estimate the second 
moment of 

-j,,,<, w(u)f (x - uG-l (y)) du (+)-‘( T - +) 

- j- 1 u,w(u) D,f (x - uG-l (5)) du =$ j (G)-‘*“’ 

- T 
( 

k-l 
- y-q) ww-l’p 

+ 0 ((s)“(T- &-#, (25) 
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where it is understood that I T - (k - l)/(n - l)] < n(kjn). By using (24) we 
see that the second moment of the first term of (25) is to the first order 

while the second moments of the other terms are all 

I 0 -. 0 k 

We now give the 

Proof of Theorem 2. From (22) it is clear that 

Efn(4 = E(O) + E(O) + E(O). 

Under the assumptions of the theorem 

k - l @ = nP(S(n)) [f(x) JcilriiS1 44 du 

But then 
. 

@= n-k 
41 - W(n))) I II~II>~ 44 f@ - 4) & 
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and using an expansion similar to that used in (26) (as well as Jll~ll,s 1 ru(u)] du = 
o(sP2) as s --f co) and then taking expectations, one finds that 

Further 

Jm) = f(x) Jlu,,, 44 d” + z(cf:*)))2,P 

- J;, u ,,>1 c, GW,f)(~) ~44 du (3”’ 

+ 0 (;,2Tp. 

where u denotes the surface area on the sphere of radius one. This implies that 

E(O) = q JT,,, ~(4 d-W + 0 (;). 

4. COMPARISON OF NEAREST NEIGHBOR AND KERNEL ESTIMATES 

Consider the kernel density function estimate jn(g) 

with bandwith 6(n) 1 o, rib(n)’ + co. Under the assumptions of Theorem 2 

@id4 -f(x) = 9 NnY Q(f)64 + 4W2), 
and 

wf?d~)) = * f w"(u) f&l + 0 (y&F), 

as n + co (see [2, 10, 111). If we consider setting S(n) = C%P, a: > 0, for a 
kernel estimate, the optimal rate of decay for the mean square error of the 
estimate is obtained when 01= (p + 4)-l and then the rate of decay is z r~~l(~+r). 
In the case of a nearest neighbor estimate, if one sets K = C’tUa, ,9 > 0, the 
optimal rate of decay of the mean square error of the estimate is obtained with 
B = (4)/(~ + 4) and ~I-I e rate of decay is then again g n-4/(4+p). The constant 
multiplying the rate of decay of the mean square error in the case of a kernel 
estimate is minimized by taking 

C = (pf(x) f w”(u) du[b(n)4 Q(~)(x)~]-~/~“~~), 
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and it is found to be 

[f(*) J Wz(u) du]4’(4+p)[l ~(f~(x~]“““4+“’ $ “(4+x0 + ($r”““)/. 
I( ) 

(27) 

The constant multiplying the rate of decay of the mean square error of the 
nearest neighbor estimate is minimized by taking 

C’ = 

(  i 

r  ( ; ;  2) p’2 (f(x)2+4jP 1 W”(U) du/(Q~)(x))“)p’(4+p), 

and is found to be (27) again. We then find that to the first order the mean 
square error is the same for both estimates. However, this is something of an 
illusion since we don’t know f(x) and Q(f)(x) and if we did would not have 
recourse to density estimates. 

Notice that whenf(x) is large the variance of the kernel estimate appears to be 
smaller than that of the nearest neighbor estimate while the bias of the kernel 

estimate appears to be larger than that of the nearest neighbor estimate. Exactly 
the opposite appears to happen whenf(x) is small. In this discussion it is assumed 

that b(n) and (K/n)‘/” are comparable. So even though the variance of the nearest 

neighbor estimate is appreciably smaller than the variance of the kernel estimate, 
the bias of the nearest neighbor estimate 

vF)l’r 
27rf (x)2/D 

Q(f)( ) (k)e/P 
X 

n 

looks as if it can be much larger than that of the kernel estimate 

because of the factor f(~)~/p in the denominator. We shall see that in the case 
of a large class of densities, the bias is the main term whenf(x) is small and that 
contrary to hopes expressed (see [I, 9, 121) th e nearest neighbor estimate may be 
much worse than the kernel. This is illustrated by looking at densities having a 
simple exponential form or inverse polynomial decay in the tail. Just the one- 
dimensional case is considered. We can assume that b(n), (k/n) N n-lj4. First 
consider f(x) = CI-Q*’ with c, a, b > 0. Then 

f”(X)= 
f"@> 

c-1ea~*{a2b2x2’b-1) - ab(b - 1)&-a& 

ho if f(x) = CL@, c, b > o, for x large, then f”(~)lfz(x) = (b(b + 1)/c) xb--2, 
and this expression becomes large as x -+ cc if 6 > 2. 
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