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Abstract We evaluated the ability of a-tocopheryl succinate (a-
TOS) to sensitise TRAIL-resistant malignant mesothelioma
(MM) cells to TRAIL-induced apoptosis. We show that a-
TOS activates expression of DR4/DR5 in a p53-dependent man-
ner and re-establishes sensitivity of resistant MM cells to
TRAIL-mediated apoptosis, as documented in p53wt MM cells
but not in their p53null counterparts. MM cells selected for
TRAIL resistance expressed low cell surface levels of DR4 and
DR5. Treatment with sub-lethal doses of a-TOS restored
expression of DR4 and DR5. The ability of a-TOS to modulate
expression of pro-apoptotic genes may play a role in sensitisation
of tumour cells to immunological stimuli.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

a-Tocopheryl succinate (a-TOS), an analogue of vitamin E,

is a potent inducers of apoptosis and inhibits proliferation of

several malignant cells [1–4]. a-TOS induces a variety of con-

centration-dependent cellular events. More specifically, it mod-

ulates signalling pathways in various in vitro models, in

general in the 10–30 lM range, while its cytotoxic effect be-

comes prominent at higher concentrations [5]. Studies have

shown that a-TOS induces cancer cells to undergo apoptosis

via at least three pathways, i.e., the transforming growth fac-

tor-b (TGF-b), the c-jun N-terminal kinase (JNK) mitogen-

activated protein kinase (MAPK), and the tumour necrosis

factor (TNF) signalling pathway [6–8]. Upregulation of Fas
Abbreviations: DR, death receptor; FLIP, FLICE inhibitory protein;
MM, malignant mesothelioma; ActD, actinomycin D; Q-PCR, quan-
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ligand expression was observed in Fas-insensitive human

breast cancer cells followed by a-TOS treatment sensitising

them to the immunological agent [8].

Among the TNF ligand members, TNF-related apoptosis-

inducing ligand (TRAIL) has recently drawn considerable

interest as a potential effective anti-tumour therapeutic agent,

in particular since, in contrast to the Fas ligand toxic to nor-

mal cells, TRAIL appears largely selective for malignant cells

[9,10]. TRAIL, present on the surface of immune cells as a type

II membrane protein or secreted in a soluble form, mediates

apoptosis in sensitive cells by binding to their cognate death

receptors (DRs), DR4 and DR5 [11,12]. Although both DRs

are widely expressed in human tissues, some cancer cells are

insensitive to TRAIL-mediated killing [13–15].

Heterogeneous sensitivity of tumour cells to TRAIL-

induced apoptosis has been observed in malignant mesotheli-

oma (MM) [16], which may lead to a persistent growth of

TRAIL-resistant cells, and may limit successful treatment of

the neoplastic disease by TRAIL. Notably, MM is an aggres-

sive and treatment-resistant tumour with currently only pallia-

tive cure [17].

Here, we investigated the ability of a-TOS to ‘convert’

TRAIL-resistant MM cells to TRAIL-responsive ones by

inducing trans-activation of DR4 and DR5. In order to evalu-

ate the involvement of p53, MM cell lines differing in their p53

status were used. a-TOS exerted differential effects on p53wt

and p53null cells, and activated p53 that, in turn, induced

expression of DRs, leading to increased sensitivity to

TRAIL-induced apoptosis. Our data suggest that upregulation

of cell surface DR expression induced by a-TOS may contrib-

ute to a shift in the anti- and pro-apoptotic signals in favour of

the latter, triggering apoptotic signals.
2. Materials and methods

2.1. Reagents
a-Tocopheryl succinate (a-TOS), actinomycin D (ActD), and annex-

in V–FITC were purchased from Sigma (St. Louis, MO, USA). Soluble
human recombinant TRAIL (hrTRAIL) was prepared as described
elsewhere [18]. Anti-DR4 and anti-DR5 monoclonal IgGs were
obtained from Alexis Biochemicals (Lausen, Switzerland). Anti-
phospho-p53 (Ser-20) IgGs were from Cell Signalling Technology,
blished by Elsevier B.V. All rights reserved.
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Inc. (Beverly, MA, USA). Anti-p53 (Ab-6) IgG was obtained from
Calbiochem (San Diego, CA, USA). All primers for RT-PCR were ob-
tained from Sigma Genosys (St. Louis, MO, USA). Foetal bovine ser-
um was obtained from EuroClone (Paignton, UK).

2.2. Cell culture
The wild-type p53 (p53wt) MM-B1, Meso-2, and Ist-Mes human

MM cell lines [19] and the p53-deficient (p53null) REN human MM
cells were used. REN cells were a generous gift from Steven Albelda,
University of Pennsylvania Medical Centre, Philadelphia, PA, USA.
Cells were cultured in the RPMI-1640 medium supplemented with
2 mM LL-glutamine, 100 U/ml penicillin, 100 lg/ml streptomycin, and
10% FBS.

2.3. Apoptosis detection
Apoptosis was quantified using the annexin V–FITC method, which

detects phosphatidyl serine (PS) externalised in the early phases of
apoptosis [20]. Briefly, cells were plated at 105 per well in 24-well
plates. After an overnight incubation, cells were treated with a-TOS
(30 lM) or hrTRAIL (10 ng/ml) alone or in combination. Floating
and attached cells were collected, washed twice with PBS, re-suspended
in 0.1 ml binding buffer (10 mM HEPES, 140 mM NaCl, 5 mM CaCl2,
pH 7.4), incubated for 20 min at room temperature with 2 ll annexin
V–FITC, supplemented with 10 ll of propidium iodide (PI) (10 lg/
ml), and analysed by flow cytometry (FACScalibur), using channel 1
for annexin V–FITC binding and channel 2 for PI staining.

2.4. Selection of TRAIL-resistant MM cells
Selection of TRAIL-resistant cells was performed as previously de-

scribed [21]. The p53wt MM-B1 cells were seeded in a 6-well plate at
the concentration of 2 · 105 cells/well (60% of confluence) and treated
with 200 ng/ml TRAIL for 24 h resulting in �30–40% cell death. The
apoptotic cells were removed and surviving cells were fed every day
for 5–6 weeks with culture medium containing TRAIL (200 ng/ml) un-
til they reached 70–80% confluence. The resulting cells were then cul-
tured in the presence of TRAIL (10 ng/ml) and subsequently
examined for expression of apoptosis modulators including DR4,
DR5, FLIP and caspases, as well as for their sensitivity to TRAIL-in-
duced cell death by the annexin V–FITC assay.

2.5. Western blot analysis
Cells were treated as indicated and lysed in a buffer containing

250 mM NaCl, 25 mM Tris–HCl (pH 7.5), 5 mM EDTA (pH 8), 1%
Nonidet P-40, and a cocktail of protease inhibitors (2 lg/ml aprotinin,
2 lg/ml leupeptin, 1 mM phenylmethyl-sulfonyl fluoride and 2 lg/ml
proteinin) and stored at �80 �C until analysis. Protein level was quan-
tified using the Bradford assay (Sigma). Protein samples (80 lg per
lane) were boiled for 5 min and resolved using 12.5% SDS–PAGE,
and transferred to a nitrocellulose membrane. The membrane was
blocked (PBS containing 0.1% Tween and 5% skimmed milk) for
1 h, and incubated overnight with anti-DR4, anti-DR5, anti-p21,
anti-p53 or anti-phospho-p53 (ser-20) IgG. After incubation with an
HRP-conjugated secondary IgG (Amersham, London UK), the blots
were developed using the ECL kit (Pierce, Rockford, IL, USA). Pro-
tein loading was corrected for using anti-b-actin IgG.
2.6. Small interfering RNA (siRNA) transfections
siRNA duplex oligonucleotides, sense 5 0-GCA UGA ACC GGA

GGC CCA-3 0-dTdT, anti-sense 5 0-AUG GGC CUC CGG UUC
AUG C-3 0-dTdT, corresponding to the target sequence CGG CAU
GAA CCG GAG GCC CAU of p53, were used to inhibit p53 protein
expression. As a negative control, a non-silencing (NS) RNA was used:
sense 5 0-UUC UCC GAA CGU GUC ACG U-30-dTdT, anti-sense 5 0-
ACG UGA CAC GUU CGG AGA A-3 0-dTdT (all siRNAs from Qia-
gen, Hilden, Germany). The oligonucleotide pairs were dissolved in the
suspension buffer (100 mM potassium acetate, 30 mM HEPES-KOH,
2 mM magnesium acetate, pH 7.4) and annealed by incubation for
2 min at 95 �C. MM-B1 cells were seeded into 6-well plates at 105

per well and transfected with the oligonucleotides according to the
manufacturer’s instructions. Briefly, 10 ll of siRNA (5 lg) was dis-
solved in 100 ll of the cell culture medium and supplemented with
15 ll of RNAiFect (Qiagen). The solution was incubated for 30 min
at room temperature and added to each well containing 1.9 ml of med-
ium. Cells were incubated for 6 h prior to the addition of 2 ml of fresh
medium. After 48 h of incubation, p53 expression was evaluated by
Western blotting.

2.7. RT-PCR and quantitative real-time mRNA analysis
Total RNA was isolated from 106 MM cells before and after treat-

ment with 30 lM a-TOS using Trizol (Life Technologies, Rockville,
MD, USA) according to the manufacturer’s protocol. The first-strand
cDNA was synthesized using the GeneAmp RNA PCR kit (Perkin–El-
mer Life Sciences, Boston, MA, USA). PCR analyses were performed
in the final volume of 20 ll of buffer containing 1 ll of the retro-tran-
scription product, dNTPs (150 lM each), MgCl2 (2 mM), 1 U of Taq
Gold polymerase (Roche Molecular Biochemicals, Basel, Switzerland),
and each primer at 1 lM. The house-keeping gene b-actin was used as
a loading control.

Relative quantification of mRNA expression was achieved by quan-
titative real time-PCR (Q-PCR). The technique is based on the detec-
tion of a fluorescent signal produced by incorporation of the
fluorescent dye SYBR-green (DyNamo�HS, Finnzymes, Espoo, Fin-
land) during PCR amplification (Chromo 4tm Detector, MJ Research,
Waltham, MA, USA). The sequences of the primers were published
elsewhere [22]. Expression of DR4 and DR5 was normalized to b-ac-
tin. The increase of DR mRNA in a-TOS-treated cells with respect
to the control (untreated cells) was determined using the formula:
X ¼ 2�DDct ; DDct = dE � dC; dE = n� cycles of DR gene – n� cycles
of house-keeping gene in the treated cells; dC = n� cycles of DR gene
�n� cycles of house-keeping gene in the control cells.

2.8. Flow cytometric detection of DR expression
Expression of DR4 and DR5 was evaluated by flow cytometry be-

fore and after treatment with a-TOS (30 lM). MM cells were seeded
24 h before the treatment in 6-well plates at 3 · 105 per well. After
16 h of incubation, floating and attached cells were collected, washed
twice with PBS, incubated at 4 �C with antibodies against DR4 and
DR5 followed by a secondary FITC-conjugated IgG, and then ana-
lysed by flow cytometry. Cytoplasm expression of TRAIL receptors
was assessed after cell permeabilisation. Briefly, cells were fixed in
4% formaldehyde in PBS for 30 min, washed, permeabilised with a sap-
onine solution (0.2% saponine in PBS plus 1% FCS) for 30 min, incu-
bated with the antibodies as described above, and assessed by flow
cytometry.
2.9. Immunocytochemistry
Parental MM-B1 cells and their TRAIL-resistant (TR-1) counter-

parts were placed overnight in 35-mm dishes on poly-LL-lysine-coated
glass cover-slips. After 6 h of incubation with a-TOS (30 lM), the cells
were washed 2-times with PBS, fixed with 4% formaldehyde in PBS,
and incubated with (permeabilised cells) or without (intact cells) a sap-
onine solution (0.05% saponine and 2% FCS in PBS). Cells were then
incubated with mouse anti-human phospho-p53 (Ser-20), DR4 or DR5
IgG for 1 h at room temperature. FITC-conjugated, anti-mouse sec-
ondary IgG was added. The cover-slips were mounted on glass slides
with VectaShield plus DAPI (Vector Laboratories, Burlingame, CA,
USA) and inspected in a confocal microscope (BioRad, MRC 1024,
Hercules, CA, USA).
2.10. Transcriptional inhibition and cytotoxicity analysis
For the inhibition experiments the MM cells were incubated with

actinomycin D (ActD) which is generally used as an inhibitor of tran-
scription [23].

MM cells were plated in 96-well flat-bottom tissue culture plates at
104 per well. The cells were incubated overnight with ActD at final con-
centration of 5 lM dissolved in DMSO (0.5%) or DMSO alone (0.5%).
To remove unincorporated ActD, the treated cells were washed three
times with RPMI-1640 and then incubated for 24 h with a-TOS and
TRAIL at 30 lM and 10 ng/ml, respectively, alone or in combination.
DR4 and DR5 gene expression was evaluated by RT-PCR performed
as described above. Cytotoxicity was determined by using the MTT as-
say [24]. Briefly, following cell treatment, 10 ll of MTT (5 mg/ml in
PBS) was added, and after incubation for 4 h at 37 �C, the medium
was removed and combined with 200 ll of 1% SDS. Absorbance was
read at 550 nm using an ELISA plate reader with control absorbance
set at 100%.
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2.11. Statistical analysis
All experiments were conducted at least three times, and data are

shown as means ± S.D. Significance was evaluated by the ANOVA re-
peated measure test. Data were considered statistically significant at
P < 0.05.
3. Results and discussion

The p53 protein is a key component of the cellular ‘emer-

gency-response’ mechanism [25,26]. The most studied function

of p53 is its role as a transcription factor that can activate tran-

scription of an ever-increasing number of target genes [27,28].

A recent paper reported that p53 can also act as an anti-

oxidant protein [29]. A variety of stress-associated signals

activate p53 that induces growth arrest or apoptosis, thereby

eliminating damaged and potentially dangerous cells [30].

Here, we assessed the ability of a-TOS to induce transcrip-
Fig. 1. Effect of a-TOS exposure on the level of p53. (A) MM-B1 cells
(as representative of p53wt MM cells), were incubated with a-TOS at
sub-apoptotic doses (20 and 30 lM) for 24 h. Cell lysates were
subjected to Western blotting using p53, phospho-p53 (Ser-20), p21
and b-actin antibodies. (B) MM-B1 cells were grown on cover-slips,
and treated for 6 h with a-TOS (30 lM). Cells were then incubated
with anti-phospho-p53 (Ser-20) IgG, and after incubation with FITC-
conjugated secondary IgG, the cover-slips were mounted on glass
slides with Vectashield plus DAPI and observed in a confocal
microscope. Results shown are representative of three independent
experiments.
tional activation of the pro-apoptotic genes DR4 and DR5

by a p53-dependent route. Exposure of p53wt MM cells to

sub-toxic doses of a-TOS induced expression and activation

of p53. The level of p53 phosphorylated on Ser-20 increased

in a dose-dependent manner (Fig. 1A and B). Activation of

p53 was associated with expression of DR4 and DR5 as re-

vealed by Q-PCR. Notably, such expression of DRs was not

observed in the p53null REN cells and was abrogated in

p53wt MM cells when p53 expression was partially silenced

by siRNA (Fig. 2A). The flow cytometric analysis, performed

on both intact and permeabilised cells, and the Western blot

assay revealed that sub-lethal doses of a-TOS increased expres-

sion of the DR4 and DR5 protein, which was not observed in

MM cells lacking normal expression of p53 (Table 1, Fig. 2B).

DR5 and, more so, DR4 play a critical role in mediating

TRAIL-induced apoptosis. It has been recently reported that

siRNA targeting of DR5 was ineffective at blocking TRAIL-

induced apoptosis, whereas siRNA-mediated knock-down of

DR4 conferred protection against TRAIL-induced cell killing

[31]. Further, MM cells exert heterogeneous sensitivity to

TRAIL-induced cell death, even though both DR4 and DR5

are endogenously expressed on their cell surface [16]. By pro-

longed exposure to TRAIL, we generated TRAIL-resistant

MM cells (TR-1). The TRAIL-resistant population was
Fig. 2. Effect of a-TOS treatment on the level of TRAIL death
receptors in MM-B1 and REN cells. (A) DR4 and DR5 were evaluated
in p53wt MM-B1, MM-B1siRNA (p53 siRNA was used to inhibit p53
protein expression), and p53null REN cells as mRNA expression by Q-
PCR before and after treatment with 30 lM a-TOS for 4 h. (B) DR4
and DR5 protein expression in p53wt MM-B1 and p53null REN cells
before and after treatment with a-TOS (0, 20, and 30 lM) for 24 h. b-
Actin was used as a loading control. Results are representative of three
independent experiments.



Table 1
Evaluation of cytoplasmic and cell surface expression of TRAIL death receptors before and after a-TOS treatment in MM-B1 and REN cells

Cell type Intact Permeabilised

DR4 DR5 DR4 DR5

Ctrl a-TOS Ctrl a-TOS Ctrl a-TOS Ctrl a-TOS

MM-B1 1.9 ± 0.2 2.2 ± 0.3 8.1 ± 0.4 10.1 ± 0.5* 3.4 ± 0.1 5.2 ± 0.2* 15.0 ± 0.6 17.1 ± 0.4*

REN 1.8 ± 0.3 1.8 ± 0.2 8.4 ± 0.6 8.6 ± 0.4 1.9 ± 0.1 2.2 ± 0.2 10.4 ± 0.4 11.3 ± 0.3

Expression of DR4 and DR5 was evaluated by flow cytometry before (Ctrl) and after treatment with a-TOS (30 lM, 16 h) in p53wt MM-B1 and
p53null REN cells. The values represent fluorescence intensity of the receptors normalized for a blank incubated with an irrelevant primary antibody.
Data are expressed as means ± S.D. from three independent experiments and statistical differences between controls versus a-TOS treatment are
marked with the � symbol, P < 0.05.
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deficient in expression of DR4, whereas relatively low expres-

sion of DR5 was observed when compared to their parental

counterparts (Fig. 3A, top panel). Interestingly, exposure to

a-TOS (30 lM) significantly enhanced both cytosolic and cell

surface expression of both DR4 and DR5 in TRAIL-resistant

cells as evaluated by cytometry (Fig. 3A, lower panel) and con-

focal microscopy (Fig. 3B).

Elevated expression of the TRAIL DRs resulted in a syner-

gistic and cooperative a-TOS/TRAIL effect, which was ob-

served only in MM cells and in selected TRAIL-resistant

MM cells (TR-1) with functional p53 (Fig. 4A). Thus, p53-
Fig. 3. Expression of DR4 and DR5 in selected TRAIL-resistant cells an
Expression of DR4 and DR5 in parental p53wt MM-B1 and selected TRAIL-
TRAIL-resistant (TR-1) cells before and after a-TOS (30 lM) exposure (bot
then labelled with anti-DR4 or anti-DR5 antibody followed by labelling wit
confocal microscopy (B). Images representative of three independent experim
dependent up-regulation of TRAIL’s DRs is required for sen-

sitisation of MM cells to TRAIL-induced apoptosis. It has

been demonstrated that activation of p53 is a prerequisite for

restoration of TRAIL sensitivity in colon carcinomas [32],

and p53-dependent upregulation of DR4 and DR5 expression

has been observed [33,34]. Moreover, it has been reported that

p53 directly regulates transcription of the DR4 gene via an in-

tronic sequence-specific p53 binding-site [35].

To investigate whether the synergistic and cooperative a-

TOS/TRAIL effect was related to the transcriptional activation

of the TRAIL’s DR genes as a response to a-TOS treatment,
d their parental counterpart before and after a-TOS exposure. (A)
resistant (TR-1) cells (top panel). DR4 and DR5 expression in selected
tom panel). The cells were or were not permeablised (intact cells) and

h FITC-conjugated antibody and analysed by flow cytometry (A), and
ents are shown.



Fig. 4. (A) Cytotoxic effect of hrTRAIL and a-TOS alone and their combination in p53wt/p53null MM cell lines. MM cells were seeded into 24-well
tissue culture plates (105 per well) and treated for 24 h with hrTRAIL (10 ng/ml) and a-TOS (30 lM) alone or in combination. Apoptosis induction
was evaluated by annexin-V–FITC. (B) Cytotoxic effect of hrTRAIL and a-TOS alone and their combination in p53wt MM cells incubated with and
without actinomycin D (ActD, right panel). MM cells were plated in 96-well flat-bottom tissue culture plates at 104 per well. The cells were incubated
overnight with ActD at final concentration of 5 lM (dissolved in DMSO) or DMSO alone. Unincorporated ActD was removed by washing the cells
with RPMI-1640, and the cells were then incubated for 24 h with a-TOS (30 lM) and TRAIL (10 ng/ml) alone or in combination. DR4 and DR5
mRNA transcripts were evaluated by RT-PCR performed as described under Section 2 (left panel). Cytotoxicity was determined using the MTT
assay. *The combined effect was significantly greater than the effects of individual agents, P < 0.05. Results are expressed as means ± S.D. from three
independent experiments.
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p53wt MM cells were pre-treated with the transcriptional inhib-

itor actinomycin D (5 lM), then incubated with a-TOS and

TRAIL alone or in combination. DR4 and DR5 gene expres-

sion and cytotoxicity were evaluated. As shown in Fig. 4B (left

panel), a-TOS-exposed cells pre-treated with actinomycin D

failed to accumulate TRAIL’s DR transcripts, whereas levels

in untreated cells were increased over the control for both

DR4 and DR5 at 4 h of a-TOS treatment. Thus, inhibition

of TRAIL’s DR gene expression suppresses the cooperative

TRAIL/a-TOS effect as observed in Fig. 4B (right panel).

Apoptosis induced by death receptors can be modulated at

several levels. Intracellular anti-apoptotic molecules can block

the apoptotic signalling pathway or divert them towards alter-
native responses. Such molecules include the cellular FLICE-

like inhibitory protein (c-FLIP), which competes with cas-

pase-8 for binding to FADD [36], or XIAP, cIAP-1 and

cIAP-2, that directly inhibit caspase activity. A role of FLICE

inhibitory protein (FLIP) in inhibiting TRAIL-induced cell

death has been previously observed in MM cells [15]. Upregu-

lation of TRAIL death receptors by a-TOS may contribute to

a shift in the anti- and pro-apoptotic signals in favour of the

latter, triggering apoptotic signals, which may then be

amplified by the intrinsic pathway. Kinetics of analysis of

TRAIL-induced signalling revealed a transient activation of

caspase-8, which resulted in induction, albeit low, of apoptosis.

Caspase-8 activation was less pronounced in the presence of
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TRAIL plus a-TOS. Under this setting, activation of the mito-

chondria-dependent apoptotic pathway, including Bid cleav-

age, cytochrome c cytosolic mobilisation and, finally,

caspase-9 activation, was observed [16]. Bid cleavage may lead

to mitochondrial translocation of Bax, as shown for a-TOS in

other cancer models [37,38]. Thus, the elevation of p53 in re-

sponse to a-TOS could facilitate TRAIL-induced apoptosis

by inducing transcription of TRAIL death receptors, whose

engagement by the ligand causes activation of caspase-8,

releasing both Bid and Bax from their sequestration by Bcl-

xL, promoting mitochondrial-dependent apoptosis.

In the present study, we demonstrate the ability of a-TOS, a

redox-silent analogue of vitamin E, to enhance or restore

TRAIL sensitivity by upregulating its death receptors in

MM cells. We show that a-TOS upregulated DR4 and DR5

in p53wt MM cells but not in MM cells lacking functional

p53 and that the effect was more evident in TRAIL-resistant

MM cells deficient in DR4 and DR5 as compared to the paren-

tal p53wt MM cells.

Reversal of TRAIL resistance in cancers like mesothelioma

by a-TOS appears to be a viable strategy and is expected to im-

pact on the future on anti-cancer therapeutic approaches, in

particular taking into consideration strong anti-mesothelioma

activity of the vitamin E analogue [39,40] and the current lack

of other than palliative treatment of MM [17].
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