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Mitochondria–cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-
beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes βII-tubulin is associated with
mitochondrial outer membrane (MOM). βI-tubulin demonstrates diffused intracellular distribution, βIII-
tubulin is colocalized with Z-lines and βIV-tubulin forms microtubular network. HL-1 cells are characterized
by the absence of βII-tubulin, by the presence of bundles of filamentous βIV-tubulin and diffusely distributed
βI- and βIII-tubulins. Mitochondrial isoform of creatine kinase (MtCK), highly expressed in cardiomyocytes, is
absent in HL-1 cells. Our results show that high apparent Km for exogenous ADP in regulation of respiration
and high expression of MtCK both correlate with the expression of βII-tubulin. The absence of βII-tubulin
isotype in isolated mitochondria and in HL-1 cells results in increased apparent affinity of oxidative
phosphorylation for exogenous ADP. This observation is consistent with the assumption that the binding of
βII-tubulin to mitochondria limits ADP/ATP diffusion through voltage-dependent anion channel of MOM and
thus shifts energy transfer via the phosphocreatine pathway. On the other hand, absence of both βII-tubulin
and MtCK in HL-1 cells can be associated with their more glycolysis-dependent energy metabolism which is
typical for cancer cells (Warburg effect).
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1. Introduction

Recent advances in studies of cellular energetics show that the
mechanisms of regulation of energy fluxes and respiration in cells in
vivo can be understood only in the framework of molecular system
bioenergetics, which considers energy metabolism not only as a
network of biochemical reactions, but also takes into account the
spatial organization and temporal dynamics of intracellular interac-
tions [1–4]. Interactions between cellular components result in
appearance of new, system level properties such as macro- and
micro-compartmentation of metabolites, metabolic channeling and
functional coupling [3–7]. Thus, they give rise to specific mechanisms,
such as energy transfer from the mitochondria to the cytoplasm
through phosphotransfer networks [3–9].

Among the factors, most important for regulation of mitochondrial
function in the cells in vivo, are the interactions of these organelles
with other cellular structures, such as the cytoskeleton [10–13].
Among the cytoskeleton structures, one of the most important roles is
attributed to the tubulin–microtubular system. Interactions of
mitochondria with tubulin have been observed by many authors
[14–18]. The most detailed and pioneering study of the structural
interactions performed by Saetersdal et al. in 1990 demonstrated the
presence of immunogold anti-β-tubulin labeling at the mitochondrial
outer membrane (MOM) in cardiomyocytes, as well as in fibers in
close apposition to this membrane [18]. For 20 years, this important
observation was left almost unnoticed and unexplained. A possible
functional role of this mitochondria-associated tubulin was found in
extensive studies of the respiration regulation in permeabilized cells
(i.e. in situ mitochondria [19]), when it has been shown that the
apparent Km for ADP in oxidative muscle cells (cardiomyocytes,
skeletal m. soleus) is 20–30 times higher than in isolated mitochon-
dria [8,20–23]. In addition, the high apparent Km for ADP was found to
be decreased by addition of creatine to activate MtCK [21,22], or by
proteolytic treatment [23]. The apparent Km for exogenous ADP is
indicative of the availability of ADP for the adenine nucleotide
translocase (ANT) in the mitochondrial inner membrane (MIM) and
was proposed to be dependent on the permeability of the voltage-
dependent anion channel (VDAC) located in the (MOM) [11,12]. The
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strong decrease of the apparent Km for exogenous ADP induced by
trypsin pointed to the possible involvement of some cytoskeleton-
related protein(s) in the control of the VDAC permeability originally
referred to as “factor X” [11,12,24]. Using immunofluorescence
confocal microscopy Appaix et al. showed that tubulin and plectin
are among cytoskeletal proteins sensitive to the proteolytic treatment
[24]. The first established candidate for the role of “factor X” proved to
be αβ heterodimeric tubulin, which strongly modulated the VDAC
conductance upon binding to channel's protein reconstructed into a
planar lipid membrane [17]. Reconstitution experiments indicated
that the addition of the heterodimeric tubulin to isolated mitochon-
dria strongly increased the apparent Km for ADP [16].

The results of these experimental studies led to the assumption
that oxidative phosphorylation in cardiomyocytes is effectively
regulated by the mitochondrial interactosome (MI), a supercomplex
consisting of the ATP synthasome, mitochondrial creatine kinase
(MtCK), VDAC, tubulin controlling VDAC permeability, and possible
linker proteins localized in the contact sites of two mitochondrial
membranes [8,25,26].

Pedersen et al. have shown the existence of a similar super-
complex in cancer cells containing the ATP synthasome-VDAC-
Hexokinase 2 [27–29]. In contrast to the highly oxidative phenotype
of metabolism characteristic for adult cardiomyocytes, cancer cells
have a glycolytic phenotype characterized by the increased lactic acid
production even in the presence of sufficient amounts of oxygen to
support mitochondrial function [30–32]. This common metabolic
hallmark of malignant tumors was discovered by OttoWarburg and is
known as the “Warburg effect” [33,34]. Our earlier studies of mouse
cancerous HL-1 cells of cardiac phenotype have shown that the
apparent Km for exogenous ADP is very low and creatine has no effect
on their respiration [35,36]. These functional properties of HL-1 cells
appear related to alterations in the structure of the mitochondrial
interactosome [8,36,37].

In the present work, we continue this direction of research by
comparative study of the intracellular distribution of different
isotypes of tubulin in normal adult cardiomyocytes and HL-1 cells,
using confocal fluorescence and immunofluorescence microscopy and
Western blotting. We show that the localization and functional role of
β-tubulin isotypes are different in oxidative muscle tissues and HL-1
cells. Most importantly, in adult cardiomyocytes we identified an
isotype of tubulin which is associated with mitochondria–βII-tubulin.
The absence of this isotype in cancer cells appears to allow binding of
hexokinase 2 to VDAC and to be directly involved in development of
the Warburg effect.

2. Materials and methods

2.1. Cells preparation

For this study we used freshly isolated adult rat cardiomyocytes,
isolated rat heart mitochondria and non-beating cancerous HL-1 cells
of cardiac phenotype developed in Dr. W.C. Claycomb laboratory
(Louisiana State University Health Science Center, New Orleans, LA,
USA).

2.2. Isolation of adult cardiac myocytes

Adult cardiomyocytes were isolated after perfusion of the rat heart
with collagenase using modified technique described previously [21].
Wistar male rats (300–350 g) were anaesthetized with pentobarbital
and blood was protected against coagulation by injection of 500 U of
heparin. The heart was quickly excised preserving a part of the aorta
and placed into isolation medium (IM) of the following composition:
117 mM NaCl, 5.7 mM KCl, 4.4 mM NaHCO3, 1.5 mM KH2PO4, 1.7 mM
MgCl2, 11.7 mM glucose, 10 mM creatine, 20 mM taurine, 10 mM PCr,
2 mM pyruvate and 21 mM HEPES, pH 7.1. The excised rat heart was
cannulated by the aorta and suspended in a Langendorf system for
perfusion andwashed for 5 minwith a flow rate of 15–20 ml/min. The
collagenase treatment was performed by switching the perfusion to
circulating isolation medium supplemented with 0.03 mg/ml colla-
genase (Roche) and BSA 2 mg/ml at the flow rate of 5 ml/min for 20–
30 min. The end of the digestion was determined following the
decrease in perfusion pressure measured by a manometer. After the
digestion, the heart was washed with IM for 2–3 min and transferred
into IM containing 20 μM CaCl2, 10 μM leupeptin, 2 μM soybean
trypsin inhibitor (STI) and 2 mg/ml fatty acid free BSA. The
cardiomyocytes were then gently dissociated using forceps and
pipette suction. Cell suspension was filtered through a crude net to
remove tissue remnants and let to settle for 3–4 min at room
temperature. After 3–4 min the initial supernatant was discarded,
pellet of cardiomyocytes resuspended in 10 ml of IM containing 20 μM
CaCl2 and the protease inhibitors. This resuspension–sedimentation
cycle with calcium-tolerant cells was performed twice, after that
cardiomyocytes were gradually transferred from 20 μM Ca2+ IM into
free calcium Mitomed (supplemented with protease inhibitors and
BSA) and washed 5 times. Each time, slightly turbid supernatant was
removed after 4–5 min of the cells' sedimentation. Isolated cells were
re-suspended in 1–2 ml of Mitomed solution [19] for the labeling with
MitoTracker fluorophore or in paraformaldehyde 4 % for fixation.

2.3. Isolation of mitochondria from cardiac muscle

Heart mitochondria were isolated from adult white Wistar rats
300 g body weight, as described by Saks et al. 1975 [58]. The rats were
anesthetized with intraperitoneal injection of Pentobarbital (50 mg/
kg body weight). Hearts were removed and placed into ice-cold
isolation medium containing 300 mM sucrose, 10 mM HEPES, pH 7.2,
and 0.2 mM EDTA. Atriums and vessels were cut off and the ventricles
finely minced by scissors. After a brief mild homogenization in a glass
potter with teflon pestle (clearance 0.7–0.8) at 200 rpm, during
30 sec, tissue underwent proteolytic digestion in the presence of
0.125 mg/ml trypsin for 15 min at 4 °C. The proteolysis was stopped
by addition of 0.5 mg/ml soybean trypsin inhibitor (STI). The sample
was carefully and briefly homogenized in a glass-teflon homogenizer
(clearance 0.7–0.8) at 250 rpm and 4 °C. This homogenization was
followed by a second one (300 rpm, 4 °C) using the potter with
smaller clearance. After, the homogenate was centrifuged at 1250g for
10 min at 4 °C. The supernatant was carefully separated and
centrifuged at 6300g for 10 min at 4 °C. Mitochondrial pellet obtained
was re-suspended in 15 ml of ice-cold extraction medium, supple-
mented with 1 mg/ml fatty acid free bovine serum albumin, BSA, and
washed three times applying the principle of differential centrifuga-
tion (3800g at 4 °C for 10 min each time), always carefully removing
the upper layer of light fraction of damagedmitochondria in the pellet
if it was present [38]. The final pellet containing mitochondria was re-
suspended in 1 ml of the same isolation medium.

2.4. Cell culture

Cardiac muscle cell line, designated as HL-1 cells were derived in
the Claycomb laboratory from the AT-1 mouse atrial cardiomyocyte
tumor lineage [35–37]. Non-beating HL-1 cells (NB HL-1) were
obtained from the HL-1 line developed by W. Claycomb by growing
them up in different serum (Gibco fetal bovine serum) [35–37]. NB
HL-1 cells do not beat spontaneously. These cells maintain cardiac
properties characterized by immunolabeling actin, tubulin, desmin,
connexin 43, myosin (developmental isoform), dihydropyridine
receptors, by the presence of a sodium–calcium exchanger [36,37].
These cells are devoid of sarcomere structures and possess randomly
organized filamentous dynamic mitochondria. NB HL-1 possess the
electrophysiological characteristics and ionic currents of cardiac cells



Fig. 1. Western Blot analysis of various tubulin isotypes (A) and MtCK (B) in different
cells and tissues. LV—rat heart left ventricle. Numbers above the gel images show the
amount of added total protein (in μg). Mixture of purified tubulins obtained from brain
was used as a reference. The tubulin bands in reference samples correspond to the
molecular mass of 55 kDa. (C) Creatine effect on the respiration of permeabilized
cardiomyocytes and non-beating HL-1 cells. The rates are expressed as % of themaximal
values (Vmax) observed in the presence of ADP, 2 mM.
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(cardiac potassium current), but do not display electrical pacemaker
activity and do not show spontaneous depolarization [36].

HL-1 cells were cultured in fibronectin (12.5 mg/l)–gelatine
(0.02%) coated flasks containing Claycomb medium (Sigma) supple-
mented with 10% foetal bovine serum (PAN Biotech GmbH), 2 mM L-
glutamine (PAN Biotech GmbH), 0.1 mM norepinephrine (Sigma),
ascorbic acid 0.3 mM (Sigma), 100 U/ml penicillin and 100 μg/ml
streptomycin (Sigma) in a humid atmosphere of 5% CO2 / 95% air at
37 °C. Cells were cultured in Lab-Tek® chambered coverglass,
chamber volume 0.5 ml.

2.5. Sample preparation for Western blot analysis

Male Wistar rats (300–350 g) were anesthetized with pentobar-
bital, de-coagulated using 500 U heparin and decapitated. Approxi-
mately 50 mg samples of the brain tissue were quickly removed,
weighed in cryovials and frozen in liquid nitrogen. At the same time,
heart was quickly excited, ca. 50 mg samples of the left ventricle
weighed and frozen. The samples were stored at−80 °C for not more
than 1 month. For the sample preparation the tissues were crashed in
liquid nitrogen, calculated amount (10 μl per mg tissue) of the buffer
(10 mMTris, 1 mMMgCl2, 1 mM EDTA, 0.2 μMSTI, 2 μM leupeptin, pH
7.4) added, homogenized at room temperature for 1 h with short
shaking (Vortex in every 10–15 min, centrifuged at 15,000g for 4 min
and the solid residual discarded. The obtained homogenate was
supplemented by one-half (50 μl per 100 μl) of the sample buffer
(0.2 M tris, 16% SDS, 1% DDT, 0.04% bromophenol blue, pH 6.8) and
one-half of 50 % glycerol and incubated at 95 °C for 5 min. The HL-1
nonbeating cells were washed three times with 1 ml ice-cold
phosphate buffered saline (PBS, 0.1 M KH2PO4, 0.15 M NaCl, pH 7.2)
and lysed on ice with the Tris/Triton X-100 buffer (10 mM tris,
100 mMNaCl, 1 mM EDTA, 1 mMEGTA, 1% Triton X-100, 10% glycerol,
0.1% SDS, 0.5% sodium deoxycholate, pH 7.4), concentrated on 500 μl
Vivaspin (10 000MWCO PES) columns (Sartorius Stedim Biotech S.A.)
up to approximately 100 μl, and supplemented by the sample buffer
and treated as described above.

The protein concentration was routinely determined using the
Pierce BCA Protein Kit as suggested by the manufacturer. Heating of
the samples was performed at 60 °C for 30 min.

2.6. Western blotting

Electrophoresis was performed on the Mini Protean II from BioRad
on 10% polyacrylamide gels in the Tris-tricine buffer solution
developed by Schrägger and von Jagow [39] by applying of 0.5 μg
(tubulin mixture) up to 300 μg of the tissue protein (tissue and cell
lysates) as described in Fig. 1. The gels were fixed in 40%methanol and
5% phosphoric acid and, if required, stained with colloidal Coomassie
G-250.

Blotting of the unstained gels was performed on the Trans-Blot SD
Semi-Dry Transfer Cell (BioRad) using PVDF membranes (Millipore)
according to the manufacturer's instructions. The blotting buffer
contained 48 mM Tris, 39 mM glycine, 1% SDS and 20% methanol. The
membranes were blocked for 1 hr with the skimmed milk/TBS
solution (0.2 M Tris, 1.5 M NaCl, 0.1% Tween-20, 5% skimmed milk,
pH 7.5) with gentle shaking and washed three times for 10 min with
the same solution (without skimmed milk) and once in TBS solution
lacking both the skimmed milk and Tween-20. Primary antibodies
were diluted in the skimmed milk/TBS solution. Primary antibodies
and used dalutions are shown in Table 1. Secondary antibodies were
IgG and HRP-conjugated preparations. The membranes were exposed
using the CL-X Posure film and SuperSignal West Dura Extended
Duration substrate (SuperSignalWest Dura Stable Peroxide Buffer and
SuperSignal West Dura Luminol/Enhancer Solution).

Rabbit α-actinin antibody was obtained from Abcam (Abcam,
ab82247). Mouse α-actinin antibody was obtained from Sigma
(A7811). VDAC antibody was obtained from the Laboratory of Physics
and Structural Biology, National Institute of Child Health and Human
Development, National Institute of Health, USA. Purified mixture of
tubulin obtained as described before [16] was used as reference. They
were kindly supplied by D. Sackett, Laboratory of Integrative and
Medical Biophysics, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health,
Bethesda, USA

2.7. Immunofluorescence

Freshly isolated cardiomyocytes and cultured cells were fixed in
4% paraformaldehyde at 37 °C for 15 min. After rinsing with PBS
solution containing 2% BSA (bovine serum albumin) cells were
permeabilized with 1% Triton X-100 at 25 °C for 30 min. Finally cells
were rinsed repeatedly and incubated with primary antibody as
described above for immunoblotting using concentrations indicated
into the Table 1 (in 2% BSA containing PBS solution). The next day



Table 1
Primary antibodies.

Commercial name Dilution for
Western blot

Dilution for
immunofluorescence

Immunogen

Mouse monoclonal βI Tubulin antibody, (Abcam ab11312) 1/20000 1/1000 Peptide corresponding to the C-terminal sequence
anti-tubulin βII(β2), (Abcam ab28036) 1/1000 1/1000 Amino acids CEEEEGEDEA at the C terminus
Rabbit polyclonal TUBB2A antibody, (Abnova PAB0379) 5 μg/ml Amino acids DLVSEYQQYQDATADEQGE (417–435) at the C terminus
Rabbit monoclonal βIII Tubulin antibody, 5 (Abcam, ab52901 1/1000 1/50 Peptide corresponding to the C-terminal sequence
Mouse monoclonal βIV Tubulin antibody, (Abcam ab11315) 1/400 1/1000 Peptide corresponding to the C-terminal sequence
Rabbit polyclonal β Tubulin antibody, (Cell signalling 2146) 1/1000 1/50 Recognizes all tubulin isotypes
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sampleswere rinsed and stained for 30 min at room temperature with
secondary antibody. Secondary antibodies: CyTM 5-conjugated Affini-
Pure goat anti-mouse IgG (Jackson Immunoresearch 115-175-146),
Goat polyclonal secondary antibody to mouse IgG-FITC (Abcam
ab6785), goat anti-rabbit IgG, F(ab′)2-FITC (Santa Cruz sc3839)
were used respecting concentrations recommended by the providers.
For co-staining the sequential protocol was applied. Two primary
antibodies (one overnight at 4 °C and another for 2 h at room
temperature) and two secondary antibodies were used to stain fixed
samples with repeated rinsing procedures between every staining
step. When the immunofluorescence was supplemented with
mitochondria labeling, the fixed and immunostained cells (with
primary and secondary antibodies) were incubated for 30 min at
37 °C in the presence of 2500 fold dilution of Mito-ID™ Red detection
reagent (Mito-ID™ Red detection kit Enabling Discovery in Life
Science, Enz-51007-500). For sharper image these cells were
visualized immediately after labeling.

For the study of mitochondria arrangement in cardiomyocytes and
HL-1 cells, freshly isolated or cultured cells were preloaded with
mitochondria-specific fluorescent probe 0.2 μM MitoTracker Red™
and Green™ (Molecular Probes, Eugene, OR) for 2 h at 4 °C for
cardiomyocytes and 15 min at 37° for HL-1 cells. Images were then
analyzed using Volocity softwere (Improvision, France)

2.8. Confocal imaging

The fluorescence images were acquired with a Leica TCS SP2 AOBS
inverted laser scanning confocal microscope (Leica, Heidelberg,
Germany) equipped with a 63× water immersion objective (HCX PL
APO 63.0×1.20 W Corr). Laser excitation was 488 nm for FITC and
MitoTracker™ Green, 543 nm for Mito-ID™, and 633 nm for Cy 5,
MitoTracker™ Red.

2.9. Measurements of oxygen consumption

The rates of oxygen uptake were determined with high-resolution
respirometer Oxygraph-2K (OROBOROS Instruments, Austria) in
Mitomed solution [25] containing 0.5 mM EGTA, 3 mM MgCl2,
Fig. 2. Fluorescent microscopy imaging of mitochondria fluoroprobes, respectively. A: Mitoc
shows separated individual organelles arranged in the regular lines. Scale bar 10 μm. B: M
mitochondrial network. Scale bar 6 μm.
60 mM K-lactobionate, 3 mM KH2PO4, 20 mM taurine, 20 mM
HEPES, 110 mM sucrose, 0.5 mM dithiothreitol (DTT), pH 7.1, 2 mg/
ml fatty acid free BSA, complemented with 5 mM glutamate and
2 mM malate as respiratory substrates. Respiration was activated by
addition of creatine to final concentration of 10 mM in the presence of
ATP (2 mM). Maximal respiration rate was measured in the presence
of ADP, 2 mM. Measurements were carried out at 25 °C; solubility of
oxygen was taken as 240 nmol/ml [25].
2.10. Data analysis

The experiments were carried out independently in two different
laboratories by using cardiomyocytes isolated from 10 animals.
Functional data were expressed as means±SE.
3. Results

In this study we analyze the distribution and possible functional
roles of four isotypes of β-tubulins: βI (gene TUBB or TUBB5), βII
(gene TUBB2A and TUBB2B), βIII (gene TUBIII), and βIV (gene TUBB4
and TUBB2C) in adult rat cardiomyocytes and mouse HL-1 cells (the
classification of tubulin isotypes is based on recommended official
names (http://www.ncbi.nlm.nih.gov/gene). Brain tissue samples and
a mixture of tubulins purified from brain were used as a reference for
each separate Western blot. Purified tubulins were obtained as
described before (see Materials and methods) and were earlier used
in the reconstitution experiments with isolated mitochondria [16].
Western blot analysis revealed the presence of all studied β-tubulin
isotypes in rat left ventricular muscle tissue, as well as in brain and the
reference mixture sample; in contrast, βII-tubulin was not detected in
HL-1 cells (Fig. 1A). The distribution of the sarcomeric isoform of
MtCK follows the same pattern of significant abundance in left
ventricular muscle tissue and complete absence in cancer cells
(Fig. 1B). This result is consistent with earlier data by Eimre et al.
[36] who showed that in non-beating HL-1 cells the creatine kinase is
presented by BB isozyme only. These results are in agreement with
the observation that creatine maximally activates the respiration only
hondria in cardiomyocytes visualized by fluorescent probe 0.2 μMMitoTrackerTM Green
itochondria in HL-1 cells 0.2 μM MitoTrackerTM Red shows disorganized, filamentous

http://www.ncbi.nlm.nih.gov/gene
image of Fig.�2
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in permeabilized cardiomyocytes and has no effect on respiration in
permeabilized HL-1 cells (Fig. 1C).

The regular arrangement of individual mitochondria in adult
cardiomyocytes imaged by MitoTracker green (Fig. 2A) dramatically
contrasts with the disorganized thread-like mitochondrial reticulum
Fig. 3. Immunofluorescent confocal microscopy imaging of various β-tubulin isotypes in fixe
labeled with anti-β-tubulin antibody and FITC. Scale bar 24 μm. B: Tubulin labeled with a
obliquely oriented microtubules. Scale bar 21 μm. C: Diffusive intracellular distribution of tu
anti-βIII-tubulin antibody and FITC demonstrates clearly distinguishable prevalent arrange
Regularly arranged tubulins labeled with anti-βII-tubulin antibody and secondary antibodi
longitudinally oriented parallel lines similarly to the mitochondrial arrangement (see Fig. 2
of continuously dividing cancerous, highly glycolytic HL-1 cells
(Mitotracker red, Fig. 2B). The striking differences observed in
mitochondrial arrangement can obviously be related to the specific
structural organization and mitochondria–cytoskeleton interactions
in these cells [40].
d cardiomyocytes. A: Longitudinally, obliquely and diffusely distributed total β-tubulins
nti-βIV-tubulin antibody and Cy5. βIV-tubulin shows polymerised longitudinally and
bulins labeled with anti-βI-tubulin antibody. Scale bar 10 μm. D: Tubulin labeled with
ment in transversal lines colocalized with sarcomeric Z-lines. Scale bar 6 μm. E: and F:
es: Cy5 (E) and FITC (F). In both cases, separate fluorescent spots organized in distinct
A) in cardiomyocytes. Scale bar 14 μm (E) and scale bar 12 μm (F).

image of Fig.�3
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In order to further analyze the localization of β-tubulin isotypes,
fixed cells were labeled first with primary antibodies against the
proteins studied and then with fluorescent secondary antibodies
(described in Materials and methods) and visualized by fluorescent
confocal microscopy (Fig. 3). In control experiments without specific
primary antibodies no binding of secondary fluorescent antibodies
was seen (results not shown). Total β-tubulin forms tortuous
microtubular structure with longitudinally and obliquely orientated
crossed filaments in adult cardiomyocytes (Fig. 3A). The contribution
of each individual tubulin isotype to these structures was analyzed by
isotype-specific immunolabeling (Fig. 3B–F). The characteristic
structure of β-tubulin appears to be mainly formed by polymerization
of βIV-tubulin (Fig. 3B), whereas βI-tubulin is associated with a rather
scattered distribution of fluorescent spots typical of its usual short
polymerized fragments (Fig. 3C). βIII-tubulin is characteristically
arranged in transversal lines demonstrating colocalization with
sarcomeric Z-lines (Fig. 3D). This is very similar to earlier observation
made using the immunogold labeling technique [18]. Thus both βIV-
tubulin and βIII-tubulin appear at least partially responsible for the
formation of the typical rod-like shape of adult cardiomyocytes.

The most interesting and exciting results of this study are related to
the arrangement of βII-tubulin as revealed by differential immunoflu-
orescent labeling (Cy5, Fig. 3E and FITC, Fig. 3F). In both cases, βII-
tubulin is very regularly localized in rows along the long axis of the cell
in an arrangement which is very similar to that of mitochondria
(Fig. 2A). This observation is in a good agreement with the earlier
findings of an association of β-tubulin with mitochondrial membranes
using immunogold labeling [18]. Double-staining with anti-βII-tubulin
and an anti-VDAC antibody against epitope 102–120, involved in the
protein binding site, revealed an incomplete overlap of fluorescence
(results not shown). This can be explained by the difficulties in
immunolabeling VDAC, most probably due to presence of the bound
tubulin resulting in a low accessibility of VDAC in cardiomyocytes.

Importantly, immunofluorescent labeling detects only traces of β-
tubulin II in isolated mitochondria (Fig. 4A) in contrast to immuno-
labeled VDAC which is clearly detected in isolated mitochondria
(Fig. 4B). This apparent contradiction can be explained by the fact that
all cytoskeleton proteins associated with mitochondria are removed
through trypsin proteolysis during their isolation.

By contrast with the results observed in cardiomyocytes, fluorescent
immunolabeling of fixed HL-1 cells revealed the absence of βII-tubulin
(Fig. 5A), confirming the results of Western blot analyses (Fig. 1). The
clear colocalization of βIII-tubulin with α-actinin in Z-lines in
cardiomyocytes is replaced by a rather diffusive distribution in HL-1
cells (Fig. 5B), which can be explained by the absence of the sarcomere
structure in HL-1 cells. It is well known that overexpression of βIII-
tubulin represents a valuable prognostic factor for the patients with
aggressive evolution of ovarian, lung, pancreas, breast cancer and
melanoma, and, at the same time, a poor probability of benefiting from
Fig. 4. Immunofluorescent confocal microscopy imaging of βII-tubulin and VDAC co-immun
tubulin (and Cy5) antibodies in isolated mitochondria. B: Strong immunofluorescent label
tubulin is removed by proteolysis with trypsin). C: The overlap of co-immunolabeling (βII-
the standard first-line platinum/taxane chemotherapy [41,42]. This
suggests some interdependence between intracellular βIII-tubulin
distribution and cancer metastasis. In addition, βI-tubulin labeling
appears similar in cancerous HL-1 cells as in adult cardiac cells (Fig. 5C).
The filamentous, bundle-like arrangement of βIV-tubulin in cancerous
HL-1 cells (Fig. 5D) and the absence of a polymerized microtubular
network could explain that they acquire a spherical shape in suspension
and spread in culture.

The intracellular localization of βII-tubulin and βIII-tubulin
isotypes was investigated by direct colocalization with Z-lines and
mitochondria (Figs. 6 and 7). The Z-lines were labeled by α-actinin
antibodies (Figs. 6A and 7A) for imaging of the sarcomere limits in
cardiomyocytes. Labeling α-actinin with red fluorescence (Fig. 6A)
and βIII-tubulin with green fluorescence (Fig. 6B) revealed signifi-
cantly overlapping structures (Fig. 6C), suggesting that the previously
observed specific transversal localization of β-tubulin is due to βIII-
tubulin binding close to the Z-lines of the sarcomere.

Co-staining of α-actinin, labeled this time with a green fluores-
cence antibody (Fig. 7A) and mitochondria labeled by a specific red
fluorescence probe Mito-IDTM (Fig. 7B) shows that mitochondria are
localized very regularly between Z lines at the level of sarcomeres
(see merged image in Fig. 7C). The absence of overlap of α-actinin at
Z-lines and mitochondria-specific fluorescence reflects the absence of
mitochondrial fusion. βII-tubulin labeling with green fluorescent
antibodies shows its very regular localization in rows parallel to the
long axis of the cell (Fig. 7D) orientated perpendicularly to Z-lines, an
arrangement similar to that of mitochondria (Fig. 7E), and their
full colocalization in cardiomyocytes (Fig. 7F). Comparison of the
results displayed in Fig. 3E and F, and Fig. 7D and F indicates that all
mitochondria are covered by βII-tubulin, which can therefore be
used as an excellent natural intrinsic mitochondrial marker in adult
cardiomyocytes.

In contrast, double labeling of HL-1 cells with antibodies against
βII-tubulin (Fig. 8A) and with Mito-IDTM (Fig. 8B) as well as their
overlap (Fig. 8C) clearly demonstrates the complete lack of βII-tubulin
in cancerous HL-1 cells.

4. Discussion

Detailed comparative analysis of structure-function relationship in
the regulation of energy fluxes in adult cardiomyocytes and cancerous
HL-1 cells of cardiac phenotype described in our previous works
[8,35–37] and in this study have yielded a wealth of information
concerning the role of mitochondria–cytoskeleton interactions in
shaping the specific pathway of energy transfer by the creatine kinase
network in heart cells, as well as about the intracellular arrangement
of mitochondria and complete prevention of their fusion in adult
cardiomyocytes. These studies also show alteration of the mitochon-
drial dynamics, energy transfer pathways andmetabolic phenotype in
olabeling in isolated rat heart mitochondria. A: Absence of immunolabeling by anti-βII-
ing of VDAC in isolated heart mitochondria (the interaction of mitochondria with βII-
tubulin and VDAC). Scale bar 29 μm.
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Fig. 5. Immunofluorescent confocal microscopy imaging of β-tubulin isotypes in fixed
HL-1 cells. A: Tubulins labeled with mouse anti-βII-tubulin antibody and Cy5 are
practically absent in HL-1 cells. Scale bar 14 μm. B: Tubulins labeled with anti-βIII-
tubulin antibody and C: diffuse distribution of tubulins labeled with anti-βI-tubulin
antibody. Scale bar 10 μm. D: Immunofluorescence imaging of polymerized tubulin
microtubules labeled with anti-βIV-tubulin antibody and Cy5. The filaments show
radial distribution from nucleus to cell periphery, creating also inter-connections
between branches. Scale bar 18 μm.
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cancerous cells that may help to understand the mechanism of the
Warburg effect. In this study we found that different isotypes of
tubulin have different intracellular distribution and therefore may
play different roles in the control of energy fluxes and mitochondrial
respiration in cardiac muscle cells. We have identified in adult
cardiomyocytes the isotype of tubulin which is colocalized with
mitochondria and is connected to the mitochondrial outer membra-
ne–βII-tubulin. It is co-expressed with MtCK and by structural
interactions with VDAC and ATP synthasome they form the mito-
chondrial interactosome [8,25,26]. This supercomplex, localized at
contact sites of two mitochondrial membranes, is a key structure of a
specific pathway of energy transport from mitochondria into the
cytoplasm by phosphotransfer networks which effectively supply
energy for contraction and ion pumps by local regeneration of ATP
pools in myofibrils and at cellular membranes [8,25]. This prevents
from wasting mitochondrial ATP in glycolytic reactions in spite of
the presence of hexokinase-2 in the cytoplasm. βII-tubulin binding to
Fig. 6. Co-immunofluorescent labeling of α-actinin and βIII-tubulin in fixed cardiomyocyte
and Cy5. B: Tubulins labeled with anti-βIII-tubulin antibody and FITC. C: The overlap of α-
the MOM may also protect the heart from apoptosis. On the contrary,
in cancer cells of cardiac phenotype structural changes in the
mitochondrial interactosome—lack of βII-tubulin, which is replaced
by hexokinase-2, and lack of MtCK contribute to the mechanism of
the Warburg effect by making possible the direct utilization of
mitochondrial ATP for increased glucose phosphorylation and lactic
acid production under aerobic conditions.
4.1. βII-tubulin isotypes in oxidative cardiomyocytes and glycolytic
cancer HL-1 cells

Tubulin is one of the most representative proteins of cytoskeleton
which among its other functions has a direct role in energy
metabolism participating in the structuring of intracellular micro-
compartments, formation of dissipative metabolic structures [43,44]
and thus in the regulation of metabolic fluxes [45–49]. Under in vivo
conditions cytoskeletal protein tubulin is highly dynamic and undergo
rapid assembly/disassembly turnover by exchange of subunits.
Building block of microtubules is a αβ-tubulin heterodimer [50]. In
cardiomyocytes, about 70% of total tubulin is present in the
polymerized form as microtubules whereas 30% occurs as non-
polymerized cytosolic heterodimeric protein [51–54]. Interestingly,
after complete dissociation of microtubular system by colchicine
tubulin is still present in permeabilized cardiomyocytes, obviously
because of its association with other cellular structures [55]. In higher
vertebrates there are eight α-tubulin and seven β-tubulins encoded
by different genes [50]. The majority of differences between tubulin
isotypes are concentratedwithin the last 15 residues of the C-terminal
(also called as isotype defining region) which is a main site for various
alterations by post-translational modifications (PTMs) including
tyrosinylation, acetylation, phosphorylation, polyglutamylation, and
polyglycylation. In addition to that, C-terminal end has been identified
to be a main target for numerous microtubule-associated proteins
(MAPs) [56–58]. Differences in the C-terminal composition of tubulin
isotypes determine the nature of PTM and affect their interactions
with different cellular factors and the pattern of localization, thus
explaining observations of this study. Recently, Rostovtseva et al. have
proposed a mechanism of interaction between tubulin and VDAC,
according to which the negatively charged carboxy-terminal tail
(CTT) of tubulin penetrates into the cannel lumen interacting with a
positively charged domain of VDAC [17,59]. For our experiments we
used anti-βII-tubulin antibody against the CEEEEGEDEA amino acids
of the CTT. The labeling of all mitochondria by this antibody shows
that the negatively charged CTT of βII-tubulin is located on the outer
mitochondrial membrane surface, very probably in close contact with
positively charged region of the VDAC also located on this surface
when it is in the closed conformation [60,61]. This explains also the
decreased permeability of this channel for adenine nucleotides, as
described below.
s. A: Characteristic sarcomeric transversal Z-lines labeled with anti-α-actinin antibody
actinin and βIII-tubulin. Both proteins are arranged at Z-lines. Scale bar 18 μm.
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Fig. 7. Immunofluorescent imaging of α-actinin, β-tubulin II proteins and fluorescent staining of mitochondria. A: Green immunofluorescence of proteins labeled with anti-α-actinin
antibody and FITC, demonstrating the characteristic sarcomeric transversal Z-lines. B: Typical regular arrangement ofmitochondria labeledwithMito-IDTMRed. C:Merge image of A andB.
Mitochondria (red) are localized exclusively between Z-lines (green). Scale bar 5 μm.D: Tubulins labeledwith anti-βII-tubulin antibody and FITC. Fluorescent spots are regularly arranged
(similarly tomitochondria). E:Mito-IDTMRed labeledmitochondria in cardiomyocyte. F: The overlap ofD and E.β-tubulin class II (green) is arrangedbetweenZ-lines and fully co-localised
with mitochondria. Scale bar 5 μm.
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In contrast, we did not find βII-tubulin in cancer HL-1 cells of
cardiac phenotype (Fig. 8). This observation matches well with
previous finding of Hiser et al. [62]. Authors reported the absence of β-
tubulin class II protein in 8 from 12 studied human cancer cell lines.

Mitochondria–cytoskeletal interactions, particularly the connec-
tion of βII-tubulin to the MOM may also prevent in significant degree
the association of pro-apoptotic proteins to this membrane [63]. This
may explain why apoptosis is rare in normal human hearts [64].
Possible alteration of mitochondria–tubulin interactions in dilated
and ischemic cardiomyopathiesmay explainwhy the rate of apoptosis
can increase several hundred folds in these diseases [64]. This is one of
interesting problems for further study.

The presence of βII-tubulin at the outer mitochondrial membrane
explains the very high value of apparent Km for free exogenous ADP in
adult permeabilized cardiomyocytes which is an order of magnitude
higher than in isolatedmitochondria (370 μM compared to 10–15 μM,
respectively) [8,20–25]. Complete kinetic analysis of regulation of
respiration by mitochondrial creatine kinase (MtCK) reaction in
permeabilized cardiomyocytes confirmed the conclusions made in
experiments with tubulin binding to VDAC [16,17,59] and uncovered
specific restrictions of VDAC permeability by tubulin [25]. These
experiments showed significant decrease of the apparent affinity for
Fig. 8. The immunofluorescence of anti-βII-tubulin antibody (A) of rabbit source (and FITC) a
merge image (C) shows the absence βII-tubulin labeling in HL-1 cells, scale bar 14 μm.
extramitochondrial ATP of MtCK localized on the outer surface of
innermitochondrial membrane in the intermembrane space in vivo in
comparison with isolated mitochondria. This appears to be due to the
diffusion restrictions created by interactions of VDAC in MOM with
the tubulin αβ heterodimer [17,25,26,59]. Direct measurements of
energy fluxes in permeabilized cardiomyocytes and in perfused hearts
using the 18O isotope tracer coupled with 31P-NMR spectrometry
showed that the ratio of the rates of PCr production to oxygen
consumption (VPCr/VO2) is close to 6, meaning that almost all energy
is carried out of mitochondria by phosphocreatine molecules [26,65].
The results of these experimental studies showed that oxidative
phosphorylation in cardiomyocytes is effectively regulated by
creatine via MtCK in the mitochondrial interactosome (MI) [8,26].

In cancer HL-1 cells the apparent Km for exogenous ADPwas found
to be in the range of 8–20 μM, which is similar to that of isolated
mitochondria [35]. Moreover, in cancer cells creatine did not induce
change of the respiration rates due to the absence of MtCK [35,36], but
it was increased in cancer HL-1 cells in response to the addition of
glucose showing its phosphorylation by hexokinase 2 [36].

Previous observations and results of the present study show that
the two events—high apparent Km for exogenous ADP and expression
of MtCK correlate with the expression of βII-tubulin. The absence of
ndmitochondria labeled with Mito-IDTM Red fluoroprobe (B) in HL-1 cells. Image A and
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Fig. 9. Different pathways of intracellular energy transfer from mitochondria to cytoplasm in adult cardiomyocytes and HL-1 cells. A: Bessman–Wallimann–Saks pathway of energy
transfer via creatine kinase phosphotransfer network in normal adult cardiomyocytes. Tubulin βII isotype is co-expressed with MtCK in Mitochondrial Interactosome and energy is
channelled into cytoplasm by PCr which regenerate the local pools of ATP (phosphocreatine shuttle). Figure A represents adult cardiac cell (scheme at the left). Free fatty acids (FFA)
are taken up by a family of plasma membrane proteins (FATP1), esterified to acyl-CoA which enters the β-oxidation pathway resulting in acetyl-CoA production. Glucose (GLU) is
taken up by glucose transporter-4 (GLUT-4) and via the phosphorylation by hexokinase (HK) (depicted as soluble enzyme) with production of glucose-6-phosphate (G6P), enters
the Embden–Meyerhof pathway. Pyruvate produced from glucose oxidation is transformed by the pyruvate dehydrogenise complex (PDH) into acetyl-CoA. G6P inhibits HK
decreasing the rate of glucolysis. Acetyl-CoA is further oxidized to CO2 in the tricarboxylic acids (TCA) cycle with the concomitant generation of NADH and FADH2 which are oxidized
in the respiratory chain (complexes I, II, III and IV) with final ATP synthesis. These pathways occur under aerobic conditions. Under anaerobic conditions, pyruvate can be converted
to lactate. The insert shown in right panel illustrates functioning of Mitochondrial Interactosome (MI), a key system in energy transfer from mitochondria to cytoplasm. MI a
supercomplex, formed by ATP synthase, adenine nucleotides translocase (ANT), phosphate carriers (PIC), mitochondrial creatine kinase (MtCK), voltage-dependent anion channel
(VDAC) and bound cytoskeleton protein tubulin (specifically β-tubulin II selectively controlling VDAC permeability) and some linker proteins (LP), is responsible for recycling of ATP
and ADP within mitochondria coupled to direct phosphorylation of creatine (Cr) into phosphocreatine (PCr). PCr is then transferred via cytosolic Cr/PCr shuttle to be used by
functionally coupled CK with ATPases (acto-myosin ATPase and ion pumps) for regeneration of local ATP pools. B: Warburg–Pedersen pathway of energy transfer in cancer cells.
Structure of mitochondrial interactosome is significantly modified: protein β-tubulin class II is replaced by HK, and the absence of MtCK allows all oxidative ATP to be exported
directly from mitochondria. As the result, VDAC-bound HK is protected from the Glucose-6-P product inhibition, and uses mitochondrially produced ATP for phosphorylation of
glucose and stimulation of glycolytic lactate production. The Glucose-6-P and glycolytic ATP synthesized during lactate production are used in biosynthetic pathways for cell growth
and proliferation.
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the βII-tubulin isotype both in isolatedmitochondria and in HL-1 cells
results in increase of the apparent affinity of oxidative phosphoryla-
tion for free ADP. This observation is consistent with the assumption
that the binding of βII-tubulin to VDAC limits ADP/ATP diffusion
through MOM.

The increased restriction of diffusion of adenine nucleotides
through the MOM and the presence of MtCK functionally coupled to
ANT in the MI are the most important mechanisms in the pathway of
intracellular energy transport by phosphoryl transfer via the creatine
kinase–phosphocreatine (PCr) network [3,8,9,66]. The system of
compartmentalized creatine kinase isoenzymes and notably mito-
chondrial CK (MtCK) is the prerequisite condition for the efficient
intracellular phosphotransfer [3]. The functioning of MI and its role in
the energy transfer from mitochondria into the cytoplasm in
cardiomyocytes with respiratory phenotype are represented sche-
matically in Fig. 9A. In these cells, energy is transferred from
mitochondria by the phosphotransfer PCr-CK circuit or shuttle. This
pathway of energy transfer was in details described in Bessman
[67,68], Wallimann [9,66] and Saks [3–8,21–26] laboratories and
many others. In order to acknowledge the contribution of these three
laboratories in the identification of energy transfer via creatine kinase
phosphotransfer network it is named the Bessman–Wallimann–Saks
pathway.

Analysis of the compartmentalized energy transfer by mathemat-
ical modelling [69] showed, in agreement with experimental data,
that not more that 6–10% of ATP formed in oxidative phosphorylation
is directly transferred out of mitochondria [70]. This, by maintaining
local ATP pools, prevents the wasteful use of mitochondrial ATP for
glucose phosphorylation by hexokinase-2, and ensures availability of
an energy supply matching the specific cell needs (see Fig. 9A).

4.2. The lack of βII-tubulin and increased hexokinase-2 open the way to
the Warburg effect

One of possible mechanisms triggering the Warburg effect is
overexpression of hexokinase-2 [28,29,32,71–73]. In cancer cells,
hexokinase-2 is bound to the VDAC and this interaction enhances its
affinity for ATP by ~5-fold, and protects the enzyme from the
inhibition by its byproduct glucose-6 phosphate [74]. In HL-1 cells
hexokinase-2 is also overexpressed and its activity is increased by a
factor of 5 in comparison with that observed in adult cardiomyocytes
[36,37]. Thus, according to Pedersen's explanation of the Warburg
mechanism, hexokinase-2 bound to VDAC actively phosphorylates
glucose using mitochondrially synthesized ATP, redirecting it actively
through the glycolytic pathway [28,75].

Hexokinase-2 is also prevalent in cardiac muscle cells [36,37,76].
However, it is only in cancer HL-1 cells which lack βII-tubulin, that
hexokinase-2 binds toVDAC, altering cellularmetabolism. Thus, binding
of βII-tubulin to VDAC in normal cells prevents the wasting of
mitochondrial ATP for increased lactate production that occurs in
cancers cells through its binding of hexokinase-2 made possible by the
absence of βII-tubulin. A comparative study of enzyme profiles in HL-1
cells and cardiomyocytes showed an increased activity of several
glycolytic enzymes, particularly hexokinase-2 in HL-1 cells [37]. The
decrease or absence of MtCK and the downregulation of its mRNAwere
previously reported in human sarcoma, gastric and colonic adenocar-
cinoma [77], indicating that these cells are unable to retain their
intracellular creatine pool in the formof phosphocreatine because of the
intrinsic low level of MtCK [77].

Thus, themitochondrial interactosome in cancerHL-1 cells of cardiac
phenotype is lacking of βII-tubulin and MtCK and significantly differs
from that of healthy adult cardiac muscle cells incorporating ATP
synthase, ANT, PiC, VDAC and HK-2 bound to VDAC. The absence of βII-
tubulin andMtCK in theMI of HL-1 cells allows hexokinase-2 to bind to
VDAC through its N-terminal hydrophobic domain [73]. The functioning
of the MI in HL-1 cells is represented schematically in Fig. 9B. This
pathway of energy transfer may be called the Warburg–Pedersen
pathway to recognize the contribution of these distinguished investi-
gators in its identification. In the absence of MtCK, mitochondrial ATP is
directly carried out from mitochondria and used by VDAC-bound
hexokinase-2 for glucose phosphorylation. Glucose-6P produced in this
reaction enters the glycolytic and pentose-phosphate pathways,
sustaining cellular growth and proliferation.

In conclusion, the remodelling of MI, namely the lack of βII-tubulin
protein that makes possible hexokinase binding may be considered as
the structural basis of the Warburg effect, explaining the switch from
the energy transfer supporting the respiratory phenotype in normal
cardiac cells to the more glycolytic phenotype of cancerous cells (see
Fig. 9A and B). To verify this hypothesis, detailed further studies of
distribution of hexokinase and tubulin isoforms in different cancer
cells are needed.
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