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ARF Is Not Required for Apoptosis
in Rb Mutant Mouse Embryos

1F, 1I, and 3). These results are broadly consistent with
the report of Pomerantz et al. (1998) [30] using Rb/
Ink4aex2,3 double mutants, which concluded that ARF
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their individual contributions, in this earlier analysis. Theand Technology

Cambridge, Massachusetts 02139 mice used in our study contain an ARF-specific mutation
that leaves p16Ink4a intact [27].3Howard Hughes Medical Institute

Chevy Chase, Maryland 20815 We also examined the requirement for ARF in apo-
ptosis in the Rb-deficient CNS, a process also strongly
p53- and E2f-1-dependent [7, 9]. Low levels of ARF can
be detected by RT-PCR analysis in the wild-type CNSSummary
tissue at E13.5, but expression levels were not signifi-
cantly elevated in Rb�/� samples (data not shown). More-The retinoblastoma (RB) tumor suppressor gene occu-
over, there was no functional requirement for ARF inpies central roles in cell cycle control and tumor sup-
apoptosis in the Rb�/� CNS as assessed by TUNEL-pression [1]. Homozygous mutant (Rb�/�) embryos die
staining mid-sagittal sections through the hindbrain ofat E13.5–E15.5 [2–4], exhibiting extensive apoptosis
E13.5 Rb/ARF double mutant embryos. Levels of apo-and inappropriate S phase entry in the central and
ptosis were indistinguishable from those observed in Rbperipheral nervous systems, liver, and ocular lens [2–
mutant embryos (Figures 2B and 2C), and ARF mutant6]. Mice simultaneously mutant for Rb and other genes
samples exhibited only background levels comparablecan be generated to assess the requirement for these
to those in wild-type controls (Figures 2A and 3A andgenes in cell cycle control and apoptosis. Using such
data not shown). As in the ocular lens, ARF loss had noanalysis, E2f-1, E2f-3, p53, and Id2 have been identified
effect on inappropriate S phase entry observed in Rb-as important regulators of cell cycle control and apo-
deficient CNS (Figures 2E, 2F, and 3).ptosis in Rb�/� embryos [7–10]. Because unrestrained

E2F activity in the absence of Rb function contributes
to p53-dependent apoptosis in many systems [7, 9, The p53 Pathway Is Activated in Rb/ARF Double
11–14], we wished to identify genes linking deregu- Mutant CNS
lated E2F activity to p53 activation and subsequent Because it was expected that ARF would be important
apoptosis. As a transcriptional target of E2F-1 [15–18], for p53-dependent apoptosis in the CNS and lens, it
a regulator of p53 [19–21], and an important mediator was necessary to establish that the p53 pathway was
of apoptosis [20–26], ARF was a strong candidate for still activated and functional in the Rb/ARF double mu-
such a role, especially since it can be upregulated in tants. Western blot analysis confirmed that p21 expres-
the absence of Rb [21]. From the analysis of Rb/ARF sion is significantly upregulated in Rb mutant brain ex-
compound mutants we demonstrate that ARF is not tracts relative to wild-type controls [9] (Figure 4A, lanes
an obligatory link between Rb inactivation and p53- 1–3) in a p53-dependent manner (Figure 4A, lane 6).
dependent apoptosis. Importantly, this upregulation persisted in Rb/ARF dou-

ble mutants (Figure 4A, lanes 4 and 5), while p21 levels
in ARF mutants were comparable to those in wild-typeResults and Discussion
controls. (Figure 4A, lanes 1 and 7). Furthermore, p53
DNA binding activity continues to be elevated in theARF Is Not Required for Apoptosis
Rb/ARF double mutants and is comparable to levelsor Inappropriate S Phase Entry
observed in Rb mutants (Figure 4B, compare lanes 7in Rb-Deficient Lens or CNS
and 8 to 11 and 12). This evidence demonstrates thatIn normal wild-type E13.5 embryos, epithelial fiber cells
the p53 pathway is activated in Rb/ARF double mutantof the ocular lens are postmitotic and exhibit negligible
animals, indicating that ARF is dispensable for p53 acti-levels of apoptosis (Figures 1A, 1D, and 1G) [6]. Accord-
vation in the context of Rb deficiency in vivo.ingly, levels of TUNEL and BrdU staining in wild-type

and ARF mutant samples were comparable (data not
shown). Rb mutant embryos exhibited intense incorpo- Apoptosis and Excessive S Phase Entry Are
ration of BrdU indicating inappropriate S phase entry Exacerbated in Rb-Deficient PNS Ganglia
(Figure 1H), and TUNEL staining revealed the presence by Inactivation of ARF
of apoptotic cells (Figures 1B and 1E). While E2f-1 and While apoptosis in Rb-deficient lens and CNS is p53
p53 are required for apoptosis in Rb mutant lens [6, 7], dependent, Rb mutants exhibit phenotypes that are p53
ARF loss suppressed apoptosis by only 18% and had independent as well, such as the embryonic lethality
no effect on inappropriate S phase entry (Figures 1C, of Rb/p53 double mutant embryos and the extensive

apoptosis and excessive S phase entry observed in tri-
geminal and dorsal root PNS ganglia [9]. Indeed, in this4 Correspondence: tjacks@mit.edu
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Figure 1. Effects of ARF Mutation on Apo-
ptosis and S Phase Entry in the Rb-Deficient
Ocular Lens

Transverse sections through the ocular lens
(L) and retinas (R) of E13.5 embryos were
stained for apoptosis (TUNEL protocol) in (A)–
(F) or for S phase (BrdU incorporation) in (G)–
(I). (A–C) TUNEL-stained sections through oc-
ular lens (L) and retina (R) at 40�. (D–F)
TUNEL-stained sections through ocular lens
and retina at 100� magnification. Note the
presence of darkly stained apoptotic cells
(arrows) in Rb mutant lens (B and E) which
persist in Rb/ARF double mutant samples (C
and F). Wild-type controls exhibit negligible
background staining (A and D). (G–I) BrdU
immunohistochemistry on similar sections at
40�. Both Rb mutant (H) and Rb/ARF double
mutant samples (I) show similarly extensive
aberrant S phase entry in the lens fiber cell
compartment (arrows), but only background
staining is observed in wild-type controls (G).

tissue, increased apoptosis and inappropriate S phase we were also not able to demonstrate transcriptional
induction of ARF in Rb�/� CNS. However, in a choroidentry were observed in Rb/p53 embryos compared to

Rb mutant embryos [9]. Similarly, we observed that both plexus brain tumor model in which apoptosis occurs in
an E2f-1- and p53-dependent manner [12, 13], Tolbertapoptosis and inappropriate S phase entry were exacer-

bated in the PNS ganglia of Rb/ARF double mutants et al. [33] have shown that ARF is transcriptionally in-
duced but dispensable for apoptosis. Importantly, inrelative to Rb mutant tissues (Figure 3, see also the

Supplementary Material available with this article on- both our studies and those of Tolbert et al., p53 is acti-
vated and is transcriptionally competent as assessedline). Apoptosis was increased �1.5-fold, whereas S

phase entry was increased �1.4-fold (Figure 3). It may by target gene induction and DNA binding activity in the
absence of ARF function (Figure 4 and [33]).be that ARF functions primarily to restrict cell cycle

progression in Rb-deficient PNS ganglia, and the resul- In our studies, ARF loss modestly suppressed apo-
ptosis in the lens (Figure 3A), which is consistent withtant elevation of S phase entry in Rb/ARF double mu-

tants causes higher levels of apoptosis. Furthermore, the results of Pomerantz et al. (1998) [30], who used Rb/
Ink4aex2,3 double mutant embryos lacking both p16Ink4athe fact that these phenotypes were exacerbated in both

Rb/p53 and Rb/ARF embryos may indicate that ARF and ARF. While the suppression of apoptosis observed
by Pomerantz et al. was quantitatively larger (50%–60%functions upstream of p53 in this context.
versus 18%), the difference may be explained by the
observation that Rb/Ink4aex2,3 double mutant lens haveConclusions
25% more nuclei, whereas our samples of Rb/ARF dou-The complexity of the Rb pathway makes it surprising
ble mutant lens averaged 25% fewer nuclei than Rbthat a handful of proximal genes, such as p53, E2f-1,
mutant controls (data not shown). This implies thatand E2f-3, have been identified as critical mediators of
p16Ink4a loss might have conferred a growth advantageapoptosis in the absence of Rb [7–9]. Here we evaluated
to these cells even in the absence of Rb. Our results,the possibility that ARF would directly link deregulated
using animals with an ARF-specific mutation that retainsE2F activity to p53-dependent apoptosis. Because ARF
wild-type p16Ink4a [27], indicate that ARF plays a minorcan be transcriptionally regulated by E2F-1 [15–18, 28]
role in regulating apoptosis, an effect that may haveand is important for the stabilization of p53 in response
been overestimated in the Rb/Ink4aex2,3 embryos [30]. Allto oncogenic signals [16, 17, 20, 21, 29], it seemed plau-
of these results indicate that ARF-independent path-sible that deregulated E2F activity resulting from Rb
ways downstream of aberrant E2F activity are responsi-inactivation would upregulate ARF expression, leading
ble for p53 activation and subsequent apoptosis in theto p53 stabilization and apoptosis. Furthermore, multi-
developing Rb mutant embryo.ple tumor models [22–26] and cell culture systems [20,

While the nonequivalence of ARF inactivation and p5321] support the notion that ARF plays a pivotal role in
inactivation has been demonstrated in mice heterozy-p53-dependent apoptosis.
gous for Patched (Ptch) [31], our results are the firstOur data instead demonstrate that ARF is not required
demonstration in vivo that ARF is not a required activatorfor the p53-dependent apoptosis in Rb-deficient mouse
of p53-dependent apoptosis in Rb-deficient animals.embryos (Figures 1–3). We conclude that ARF does not

We have also demonstrated that loss of ARF exacer-form an obligatory link between Rb inactivation and p53-
bates the apoptosis and excessive S phase entry in Rb-dependent apoptosis in vivo. Perhaps due to the very

low levels of ARF expression in the developing embryo, deficient PNS ganglia, indicating that ARF might nega-
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Figure 2. Effects of ARF Mutation on Apoptosis and S Phase Entry
in the Rb-Deficient CNS

Mid-sagittal cross-sections through the fourth ventricle and hind-
brain of E13.5 embryos stained for apoptosis (TUNEL protocol) in

Figure 3. Quantitative Analysis of Apoptosis and S Phase Entry in(A)–(C) or for S phase entry (BrdU incorporation) in (D)–(F). (A–C)
the Ocular Lens, CNS, and PNS Ganglia of Wild-Type, Rb Mutant,TUNEL-stained sections though hindbrain at 40� magnification.
and Rb/ARF Double Mutant E13.5 EmbryosNote the presence of darkly stained apoptotic cells (arrows) in Rb
(A) Loss of ARF does not significantly affect apoptosis in the Rb-mutant samples (B) which are minimally changed in Rb/ARF double
deficient ocular lens or CNS but exacerbates it in PNS ganglia. Rbmutant samples (C) and absent in wild-type controls (A). (D–F) BrdU
mutant lens exhibit high levels of apoptosis (normalized to 1) thatimmunohistochemistry on CNS sections at 40�. Wild-type tissue
are minimally affected (18%) by further loss of ARF. Apoptosis indemonstrates S phase entry only in cells in the ventricular zone (V).
the Rb mutant CNS is unaffected by further inactivation of ARF. EvenIn contrast, Rb mutant tissues (E) and Rb/ARF tissues (F) both show
though Rb mutant samples exhibit significantly increased levels ofexcessive and ectopic S phase entry into the intermediate zone (I)
apoptosis above wild-type background in PNS, Rb/ARF samples(arrows), indicating that loss of ARF does not affect this phenotype.
show a further increase, by �1.5-fold, in the level of apoptosis.
(B) Mutation of ARF minimally affects inappropriate S phase entry
in Rb-deficient ocular lens and CNS but significantly exacerbatestively regulate proliferation in this context. The increased it in PNS ganglia. Rb mutant lens and CNS tissue show excessive

apoptosis might be a consequence of this increased and ectopic S phase entry far above background wild-type levels.
proliferation. Furthermore, because this exacerbation This is significantly increased in Rb/ARF double mutant PNS ganglia

by �1.4-fold. Note that counts in the CNS and PNS were normalizedwas also observed in Rb/p53 embryos [9], it may be
to the area of the tissues within each section; however, counts inthat ARF is an upstream regulator of p53 in this tissue.
ocular lens were normalized to the total number of nuclei within theEstablishing the pathways that link defects in prolifer-
tissue of each section to facilitate comparison with Pomerantz etation and differentiation that accompany disruption of al. (1998) [30].

the Rb pathway to the activation of p53-dependent apo-
ptosis are critical for our understanding of normal devel-
opment, tumorigenesis, and the response of tumor cells tion was considered E0.5. Pregnant females were labeled for 1 hr
to many anticancer agents. Thus, it will be important to with 30 �g/kg body weight BrdU and 3 �g/kg body weight FdU.

Embryos were harvested and fixed in 10% formalin (3.7% formalde-elucidate the pathway leading to p53 induction and cell
hyde solution in PBS) for 48 hr. Tissues were processed and imbed-death in Rb�/� embryos.
ded in paraffin blocks from which 4–6 �m sections were cut.

Experimental Procedures
TUNEL and Immunohistochemistry
Apoptosis was assessed using the TUNEL assay [32]. Sections wereMice

Rb/ARF compound mutant animals were generated by breeding rehydrated, blocked in 3% H2O2, processed in proteinase K, and
incubated with rTdT (GIBCO) and biotin-16-dUTP (Boehringer-Rb�/� mice to ARF�/� mice to generate compound mutants. Rb�/�;

ARF�/� and Rb�/�; ARF�/� mice were intercrossed to generate the Mannheim). A mixture of BrdU (5-bromo-2�-deoxyuridine; Sigma)
and FdU (5-fluoro-2�-deoxyuridine; Sigma) was injected intraperito-Rb/ARF double mutants (Rb�/�; ARF�/�). The morning of plug detec-
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another 30 min in the presence of radiolabeled probe at 4�C. For
some samples, a 100� excess of unlabeled wild-type or mutant
(AGCTGGATCGCCCCGGGCATGTCC) competitor oligonucleotide
was introduced at this second incubation. Protein-DNA complexes
were resolved on 4.5% polyacrylamide gels (0.38 M glycine, 2 mM
EDTA, 50 mM Tris-HCl,[pH 8.5]) for 4–6 hr at 160V, dried, and ex-
posed to film.

Western Blot Analysis
Protein extracts were isolated by either lysing tissues in buffer (1%
NP-40, 100 mM NaCl, 100 mM Tris-HCl [pH 8.0], Complete Protease
Inhibitor Cocktail [Roche]) for 30 min at 4�C and collecting the super-
natant following centrifugation or by extraction from TRIZOL Re-
agent (GIBCO BRL) as per the manufacturer’s protocols into 1%
SDS. Total protein was electrophoretically separated by SDS-PAGE
(10%–12.5%), transferred to PVDF membrane (Immobilon P, Milli-
pore), and probed with the following antibodies to the following
proteins at the indicated dilutions: p21 (clone F-5) (1:2000, Santa
Cruz) and actin (1:4000, Santa Cruz). HRP-conjugated anti-mouse
secondary antibody was used at 1:5000 (Jackson Immunochemi-
cals), anti-goat secondary was used at 1:10,000 (Santa Cruz), and
blots were subjected to enhanced chemiluminescence (ECL�,
Amersham) and exposed to film (Kodak X-OMAT).

Supplementary Material
Supplementary Material including a figure that shows that loss of
ARF exacerbates apoptosis and excessive S phase entry in the Rb-
deficient PNS ganglia is available at http://images.cellpress.com/

Figure 4. The p53 Pathway Is Activated in Rb/ARF Double Mutant supmat/supmatin.htm.
CNS
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