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Abstract Matching 3D objects by their similarity is a fundamental problem in computer vision, computer
graphics and many other fields. The main challenge in object matching is to find a suitable shape represen-
tation that can be used to accurately and quickly discriminate between similar and dissimilar shapes. In this
paper we present a new volumetric descriptor to represent 3D objects. The proposed descriptor is used to
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Shape matching match objects under rigid transformations including uniform scaling. The descriptor represents the object
by dividing it into shells, acquiring the area distribution of the object through those shells. The computed
areas are normalised to make the descriptor scale-invariant in addition to rotation and translation invariant.
The effectiveness and stability of the proposed descriptor to noise and variant sampling density as well as
the effectiveness of the similarity measures are analysed and demonstrated through experimental results.
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Introduction

With recent advances in technologies designed for the digital acqui-
sition of 3D models there has been an increase in the availability and
usage of 3D objects in a variety of applications. Examples of such
applications include database models searching, industrial inspec-
tion, autonomous vehicles, surveillance and medical image analysis.
As a result, there is a large collection of 3D objects available. This
motivates the need to be able to retrieve 3D objects that are similar
in shape to a given 3D object query. The accuracy of a 3D object
retrieval system largely depends on finding a good descriptor that

is able to represent the local and global characteristics of the 3D
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bject. Many descriptors have been provided in the research com-
unity. Surveys of such descriptors are available in the literature

1–4]. The descriptors can be categorised according to the way we
hink about the 3D object as:

Image descriptors: The object is projected onto one or several
image planes producing renderings corresponding to depth maps
[5], silhouettes [6], and others, from which descriptors can be
derived. The effectiveness of the image based descriptors depends
on the number of views taken of the object.
Surface descriptors: Surface descriptors regard the object as an
ideal surface, infinitely thin, with precisely defined properties
of differentiability. The descriptor is generated from the trian-
gles on the surface. All computations are based on the relation
between points or triangles on the surface. Examples of surface
descriptors are curve fitting [7], geometric 3D moments [8], and
pose-oblivious signature [9]. In the pose-oblivious signature, the

object is described by a rectangular histogram generated by com-
bining two histograms of the diameter function and the centricity
function. The diameter function is defined for a vertex on the
boundary of the object as a statistical averaging of the diameter in a
cone around the direction opposite to the normal of the point. The
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Table 1 Generation of Area Distribution Descriptor.

Input: 3D triangles mesh
Output: Feature Vector
Step 1: Get the boundary sphere whose
centre is the object’s centre of gravity
Step 2: Compute surface area distribution.
Divide the sphere into shells and compute
the area participation in each shell.
Step 3: Normalise the shells area by dividing
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centricity function is defined for a vertex as the average geodesic
distance to all other vertices. The descriptor is invariant to transfor-
mation and surface sampling in addition to being pose invariant.
In general, surface based descriptors are naturally scale-invariant
and compact in terms of amount of data, but they are complex to
manipulate.
Volumetric descriptors: The object is considered as a thickened
surface that occupies some portion of volume in 3D space, or
for watertight models as a boundary of a solid volumetric object.
The descriptors are generated by cutting the volume into segments,
which could be shells or sectors inside a boundary sphere, or cubes
inside the boundary box [10–16]. The origin point of the boundary
volume could be the centre of mass (in case of full matching) or a
point on the object’s surface (in case of partial matching). A good
descriptor is characterised by being invariant to translation and
surface sampling. In general, volumetric descriptors are simple
to construct. They approximate the object and make it simple to
manipulate.

In this paper we present a descriptor that falls in the category of
olumetric descriptors for full matching. We use spherical shells as
artitions and the area inside each shell as the function to compute
cross the shells as we go from the centroid of the object to the far-
hest point on its surface. The proposed descriptor has the following
dvantages:

It does not require any preprocessing to be generated.
It is based on the area inside the shell, so it is surface sampling
independent.
It is normalised, so it is scale independent.
Based on spherical shells makes it rotation independent.

The rest of this paper is organised as follows. First we discuss
xisting volumetric descriptors. Then we describe our descriptor’s
eneration algorithm. Finally, we explain and analyse the results
rom our experiments and provide a summary and suggestions for
uture work.

elated work

n volumetric descriptors, the volume occupied by the model is parti-
ioned into cubes, shells or sectors. A selected function is computed
cross each partition. The function to be computed could be the
umber of vertices, length between the centroid and the vertices in
he partition or area inside the partition.

Kazhdan et al. [12] proposed the Spherical Harmonic Repre-
entation tool as a means to transform rotation dependent shape
escriptors into rotation independent ones. The key idea behind this
ool was to describe a spherical function in terms of the amount of
nergy it contains at different frequencies. Since these values do
ot change when the function is rotated, the resulting descriptor is
otation invariant.

Mian et al. [13] proposed a cubes grid model with a cube size half
he mean resolution of the models in the library. In this method the
urface area is then computed inside each cube in the grid (including
nly polygons with normals making an angle < 90 with the z-axis).

his descriptor is transformation and surface sampling invariant. It
lso supports partial matching, but does require registration of the
bjects to complete the matching process.

Frome et al. [14] chose a point and considered it as a centre of a
phere that is divided into bins that are generated by equally spaced

R

A

the area in each shell by the total area of the
object surface

oundaries in the azimuth Φ, equally spaced boundaries in the ele-
ation dimension θ, and logarithmically spaced boundaries along
adial dimension R. For each bin the number of vertices is computed
nd divided by the volume of the bin to compensate for large vari-
tion in bin sizes with radius and elevation. The cube root is taken
o leave the descriptor robust to noise which causes points to cross
ver bin boundaries. The descriptor is invariant to transformation,
ut it is not surface sampling invariant.

Papadakis et al. [15] decomposed the 3D model into a set of
pherical functions which represent not only the intersections of the
orresponding surface with rays emanating from the origin, but also
oints in the direction of each ray which are closer to the origin
han the furthest intersection point. The descriptor is invariant to
ransformation, but is not surface sampling invariant.

Ankerst et al. [16] represented the 3D shapes by using shape
istograms for which several partitions of the space are possible.
artitions represent the bins that could be shells, sectors, or spider
eb. For each bin the number of vertices inside the bin is com-
uted. The descriptor is invariant to transformation, but it is not
urface sampling invariant. In general, most of the available vol-
metric descriptors are transformation invariant, but they miss the
urface sampling invariance and require some preprocessing.

ethodology

n this paper we present a surface Area Distribution Descriptor.
e generate a boundary sphere whose centre is the object’s centre

f mass, and divide this sphere into shells. We then compute the
articipated triangles areas in each shell. The descriptor is generated
y the algorithm shown in Table 1.

omputing the object’s centre of gravity

he centre of gravity of a 3D object having N triangular faces
ith vertices (v1, v2, v3) is given by Eq. (1) [17], where Ri is the

verage of the vertices of the face (see Fig. 1), and Ai is twice
he area of the face. The cost of computing the object’s centre of
ravity is O(N), as it depends on the number of faces N in the
bject.

=
∑N

i=1AiRi∑N

i=1Ai

(1)
i = v1 + v2 + v3

3
(2)

i = ‖(v2 − v1) × (v3 − v1)‖ (3)
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Surface Area Distribution Descriptor for object matching

Computing surface area distribution

To generate the descriptor we start by finding the maximum distance
from the object’s centre of gravity to the farthest point on the object’s
surface. This distance represents the radius of the boundary sphere
for the object. By dividing the radius by the number of required

shells, we generate a number of spheres whose centre is the object’s
centre of gravity. The volume between every two successive spheres
represents a shell. For each shell we compute the area of intersection
between the faces and the shell.

d

C
o

Table 2 Intersection area shown rounded by orange border (top view).

Cases Diagram Inte

3 In
0 Out

0

2 In
1 Out

2

1 In
2 Out

2

1 In
2 Out

3

0 In
3 Out

0

0 In
3 Out

0

0 In
3 Out

1

0 In
3 Out

2

0 In
3 Out

3
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The maximum distance between the object’s centre of gravity
nd the farther point on the object is computed using Eq. (4), where
ist is the Euclidian distance and is given in Eq. (5).

Max = {Max(dist(C, vi)); i = 1 . . . N} (4)√

ist(v1, v2) = (v2x − v1x) + (v2y − v1y) + (v2z − v1z) (5)

onsidering the object as surrounded by a sphere whose centre is the
bject’s centre of gravity and a radius equal to Dmax, we decompose

rsected edges count Area inside the sphere

Triangle area
Eq. (7)

Intersection polygon area
Eq. (8)

Intersection polygon area
(triangle)
Eq. (7)

Intersection polygon area
Eq. (8)

Zero

Circle area
Eq. (12)

Circular segment area
Eq. (13)

Intersection polygon area
Eq. (8)

Intersection polygon area
Eq. (8)
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Fig. 1 Face’s vertices.

his sphere into shells. Let the shell count be NS. Dividing the radius
y NS, we generates NS shells cutting the faces of the object. Each
hell has an outer and inner sphere. The cost of generating the shells
s equal to the cost of finding the maximum distance plus the cost
f dividing the maximum distance by the number of required shells.
hus the cost of generating the shells is O(N).

The feature vector FV is computed by aggregating the intersec-
ion area of every face Fi with every shell Sj (see Fig. 2), where NS
s the number of shells and N is the number of faces. This generates
feature vector with length equal to the number of shells. The cost
f generating the feature vector depends on the number of faces and
he number of shells which is O(N*NS).

V =
{

FVj =
(

N∑
i=1

Area(Sj ∩ Fi)

)
; j = 1 . . . NS

}
(6)

or each vertex in the triangle face we acquire the container shell.
e then find the intersection areas between the face and the shell’s

nner and outer spheres. By subtracting these two areas, we compute

he participated area in each shell.

To find the intersection area of a sphere and a face, we compute
he intersection points between the sphere and every face’s edges.
able 2 shows the possible cases for the sphere and the triangle

ig. 2 The intersection between surface triangle and the shells.

a

T
C
c
(

d

r

T
c

A

A

T
b
s
g
v

N

T
t
f

ig. 3 Left: The radius of the circle resulting from the intersection of
he plane and the sphere. Right: The circular segment is hashed.

ntersection and the area computation for each case. We assign each
ertex of the face a label to describe its location in relation to the
phere. The labels are In and Out. Based on the labels count for the
riangle and the number of edges that intersect with the sphere we
ompute the area.

The area of the intersection region can be computed according
o Eqs. (7)–(13). The area of a triangle with vertices v0, v1, v2 is
omputed using Eq. (7) and the area of the planar polygon with
ertices v0 . . . vn−1 and a normal N can be computed using Eq. (8)
18].

= 1

2
|(v1 − v0) × (v2 − v0)| (7)

= N

2
·

n−1∑
i=0

vi × vi+1 (8)

o compute the area of the circle and the circular segment we need
o compute the radius of the circle. First we compute the distance
etween the sphere’s centre and the triangle’s plane. To find the
riangle’s plane we use the three vertices to generate the equation of
he plane using Eq. (9) [19].

x + by + cz + d = 0 (9)

he perpendicular distance (see Fig. 3) between the sphere’s centre
and the plane can be computed using Eq. (10). The radius of the

ircle r can then be easily computed using Pythagorean Theorem
Eq. (11)).

ist =
∣∣aCx + bCy + cCz + d

∣∣
√

a2 + b2 + c2
(10)

=
√

sphere radius2 − dist2 (11)

he area of the circle is computed using Eq. (12) and the area of the
ircular segment [20] using Eq. (13).

= πr2 (12)

= r2

2
(θ − sin(θ)) (13)

he participated triangle’s area in each shell is the difference
etween the area inside the outer shell and the area inside the inner
hell. The feature vector is the summation of the participated trian-
le’s areas in each shell. The algorithm used to compute the feature
ector is shown in Table 3.
ormalisation

o support scaling independency we normalise the feature vec-
or. We divide the feature vector by the total area of the object’s
aces. The normalised feature vector (NFV) is computed using Eq.
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Table 3 Participation area computation.

PA is participated area
For each shell sj in shells

For each face Fi in mesh faces
Ao = Intersection area with the outer sphere
Ai = Intersection area with the inner sphere

PA = A − A

p
f
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FVj+ = PA
Next face

Next shell

(14), where FV is the feature vector and A is the object’s total area
computed as the summation of all faces of the object.

NFV = FV

A
(14)

A =
N∑

i=1

Ai (15)

The cost for computing the normalised feature vector depends on the
number of shells, which means it is O(NS). The cost of computing
the total area is ignored as it has been computed while computing the
centre of gravity of the object. From the computation steps discussed
previously, we can state that these steps can be used in manifold and
non-manifold triangle meshes.

The merits of the Area Distribution Descriptor can be sum-
marised as follows:

1. Translation independent: Because it takes the centre point of the
object as the origin of the shells.

2. Rotation independent: Because it divides the object into spherical
shells.

3. Scaling independent: Because it normalises the vector based on
the total surface area.

4. Surface sampling independent: Because it takes the area distri-
bution, not the points’ distribution.

Object recognition
The proposed surface Area Distribution Descriptor can be used for
describing and recognising 3D models in a library. Fig. 4 shows the
block diagram of the object recognition process. This can be bro-
ken into two phases: the learning phase (offline) and the recognition

o
r
p
t
b

Table 4 Models used in the experiments.

Model
Name Deinonyc Dino P
Vertices count 13695 23984 8
faces count 26894 47903 1

Model
Name Nessyb Pthi D
Vertices count 4920 3098 5
Faces count 9552 6170 1
Fig. 4 The block diagram for the recognition process.

hase (online). In the learning phase, we compute the feature vector
or the object and store it in the library of known objects. In the recog-
ition phase, we compute the feature vector for the query object and
hen compare it to the feature vectors of the known objects. The
omparison is based on the distance function. The known object
ith the smallest distance is considered to be the best match for the
uery object. A survey of the distance functions that can be used to
ompare feature vectors is presented by Cha [21]. In our experiments
e compare different methods to compute the distance (Euclidian,
hi-Square, Intersection, TaniMoto).

The recognition phase is considered a k-NN search problem
with k = 1) where the unknown object is compared to all known
bjects. The recognition computation time in this case is O(N),
here N is the number of known objects. Thus, this approach is

pplicable in the case of a small number of known objects. It will
e more efficient if we consider higher values for k when the num-
er of objects increases. In this case, nearby objects (based on k)
re clustered in one class. In this case, the recognition process is
erformed in two steps; getting the nearest class to the unknown
bject then getting the nearest object from within this class. The

ecognition computation time in this case is O(k) + O(N/k). In this
aper, we focus more on presenting the developed descriptor. Thus
he selection of k and analysing the recognition process time are
eyond the scope of this paper.

lateosaurus Raptor Dino1043
306 12794 554
6062 25601 1023

ragon2 Vp4009-dragon Dinopet
4319 4922 8047
08588 9831 15945
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Fig. 5 Distance between models and model Deinonyc.

esults and discussion

n our experiments we used dinosaurs’ models from the INRIA
amma research dataset [22] and dinosaurs models from the Prince-

on Shape Benchmark [23]. Table 4 shows some objects from INRIA
ataset. In these experiments we studied the stability of the descrip-
or against noise, variant sampling density, rotation and scale. We
lso studied the effectiveness of the distance computation methods
or measuring the similarity between the models’ descriptors.

istance computation

n this experiment we compared each model with all other mod-
ls. For each comparison we computed the distance using four

ifferent methods (Chi-Square, Euclidian, Intersection, TaniMoto).
he following are the formulas for computing these distances

21]:

Table 5 Applying noise on given mesh.

P is percentage of the edge length
GetRandom(μ,σ) is a method that returns a
random number based on Gaussian
distribution with mean μ and deviation σ

L is edge length
Lnew is the new edge length after applying
noise
v1, v2 are start and end point of the edge

P = 0
Do

P = P + 0.1
For each face in mesh faces

For each edge in face
Lnew = GetRandom(L, P*L)
v2 = v1 + Lnew(v2 −

v1) //move the second vertex
Next edge

Next face
While P ≤ 1
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Euclidian distance

dist(FV1, FV2) =
NS∑
j=1

(FV1j − FV2j)2 (16)

Chi-Square distance

dist(FV1, FV2) =
NS∑
j=1

(FV1j − FV2j)2

(FV1j + FV2j)
(17)

Intersection distance

dist(FV1, FV2) = 1 −
NS∑
j=1

Min(FV1j, FV2j) (18)

TaniMoto distance

dist(FV1, FV2)=
∑NS

j=1(Max(FV1j, FV2j)−Min(FV1j, FV2j))∑NS

j=1Max(FV1j, FV2j)
(19)

n this experiment we considered the shell numbers to be 25. Fig. 5
hows the results for model “Deinonyc” compared to the other 10
odels. By comparing the slope of the “Chi-Square” line with other

ines, we can find that it changes more sharply between models. That
eans it is the most distinguishable distance computation method

or the given experimental data. After “Chi-Square” comes “Tani-
oto”, as it has a higher distance between the model and others. The

onclusion of this experiment is that “Chi-Square” is the best dis-
ance computation method for the “Area Distribution Descriptor”.

escriptor stability

everal experiments were conducted to analyse the stability of the
escriptor to different factors; noise level, sampling density, object
otation and object scaling. The details and the analysis of these
xperiments are discussed below. Since the proposed descriptor is
ffected by the number of shells, we have shown the results for
ifferent shells count (5, 25, 55, 75 and 105). The selection of the
umber of shells is determined by the density and the size of the mesh
riangles. A larger number of shells means a longer computation time
nd lower tolerance to noise. On the other hand, a smaller number of
hells means less computation time but less discriminating power
ince most of the object details are lumped together in the large
hells. In our experiments, we found that 25 shells are good enough
or the size of objects that we considered in our experiment.

Noise effect: In this experiment we added Gaussian noise to the
odel with different deviations. For the applied Gaussian noise we

et the mean value μ to be the length of the edge. For the deviation
alue σ we changed it in the range [0,1] with increasing steps equal
o 0.1. Table 5 shows the algorithm used to apply noise on a model.

We used different shells counts, from 5 to 125 with an increasing
tep of 10. Fig. 6 shows the results for the “Chi-Square” method
nd shells count (5, 25, 55, 75, and 105). As can be seen in the
gure, when the deviation is less than 0.5 the effect of the noise on

he distance is small: the distance from the original object ranges
etween [0,0.02]. Staring from deviation 0.5, a small shells count

ives better results than a high shells count. The conclusion of this
xperiment is that increasing the shells more than 25 makes the noise
ffect increase if the deviation is more than 0.4.

Sampling density effect: The sampling density in 3D models is
epresented by the number of faces. In our experiment, we acquired
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faces count greater than 10,000. For shells count 25 the descriptor
generation time is less than 10 s for faces count up to 10,000. The
Fig. 6 Noise deviation vs. distance.

one model and generated models with different sampling densities
from it. The generated models’ faces count is a percentage of the
original model’s faces count, ranging from 0.1 to 2. We compared the
original model with the generated models. Fig. 7 shows the results
for “Chi-Square” method and shells count (5, 25, 55, 75, and 105).
As can be seen in the figure, the effect of surface sampling change
(in the period [0.1, 2.0]) is very small for all the shells count. It is
less than 0.01 except for the sampling percentage 0.1 of the original
object, and the distance is still less than 0.07 which is still a small
value. The conclusion of this experiment is that the descriptor can
be considered sampling density independent.

Rotation effect: In this experiment we rotated the object from 0
to 360◦ (with an increasing step of 10◦), comparing it to the original
object. Fig. 8 shows the results for the “Chi-Square” method and
shells count (5, 25, 55, 75, and 105). As can be seen, the effect of
rotation is negligible. The distance between the rotated object and
the original object for any rotation degree is less than 1.40E−26,
which can be considered 0. The conclusion of this experiment is
that the descriptor is rotation independent.
Scaling effect: In this experiment we scaled the object 0.1 to 3
times the original object (with an increasing step of 0.1), comparing
in each case with the original object. Fig. 9 shows the results for
the “Chi-Square” method and shells count (5, 25, 55, 75, and 105).

Fig. 7 Sampling density vs. distance.

c
2

Fig. 8 Rotation angle vs. distance.

s can be seen in the figure, the effect of scaling is negligible.
he distance between the scaled object and the original object for
ny scale ration is less than 3.00E−26, which can be considered
. The conclusion of this experiment is that the descriptor is scale
ndependent.

omputation time

n this experiment we studied the time required to generate the
escriptor for models with different numbers of faces, ranging from
0 faces to 108,588 faces. In our experiments we used a laptop with
ntel Core 2 CPU 2.0 GHz and 2 GB memory, running Windows
008 Server 32 bit operating system. The application was built on
he .Net framework 3.5 with C# language. Fig. 10 shows the results
or models with faces count less than 50,000 with shells counts
5, 25, 55, 75, and 105). As can be seen, increasing the shells to
ore than 25 makes the descriptor’s generation time increase for
onclusion of this experiment is that using shells count more than
5 is time consuming.

Fig. 9 Scaling percentage vs. distance.
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Fig. 10 Computation time vs. faces count.

To estimate the computation time of the descriptor generation
lgorithm, we list the algorithm along with the step number in
able 6. Here number of faces is N and number of shells is NS.
he algorithm computation time can be computed as follows. The
omputation time of the descriptor is in O(N*NS).

Time to compute the centre of gravity

Step 1 = T (N) = O(N) (20)

Time to generate shells

Step 2 = T (N) = O(N) (21)

Time to compute participated area

Step 3, 4, 5, 6, 7, 8, 9, 10 = T (N ∗ NS ∗ 4) = O(N ∗ NS) (22)

Time to normalise the feature vector
Step 11 = T (NS) = O(NS) (23)

In summary, the “Area Distribution Descriptor” is indepen-
ent of scaling, rotation and sampling density. The most effective

Table 6 Feature vector generation.

Input: 3D triangles mesh
Output: Feature vector (FV)
1 Get the boundary sphere whose centre is the
object’s centre of gravity

C =
∑N

i=1
AiRi∑N

i=1
Ai

2 Find the radius of the bounding sphere and divide
this sphere into shells
3 For each shell sj in shells
4 For each face Fi in mesh faces
5 AO = Intersection area with the outer sphere
6 Ai = Intersection area with the inner sphere
7 PA = Ao − Ai

8 FVj+ = PA
9 Next face
10 Next shell
11 Normalise the shells area by dividing the area in
each shell by the total area of the object surface

[

[

[

M.F. Gafar and E.E. Hemayed

istance computation method to compare the descriptor is “Chi-
quare”. The descriptor is less sensitive to Gaussian noise with
eviation up to 0.4 of the edge length. Using more than 25 shells
ould be time consuming for computation and comparison of the
escriptor.

onclusions

n this paper we have presented a new volumetric descriptor based
n the surface area distribution. The proposed descriptor is used
o match objects under rigid transformations including uniform
caling. The descriptor represents the object by dividing it into
hells and acquiring the area distribution of the object through those
hells. The computed areas are normalised to make the descrip-
or scale-invariant in addition to rotation and translation invariant.
he descriptor construction process can be used in manifold and
on-manifold triangle meshes. The experimental results demon-
trate the effectiveness and stability of the descriptor to noise and
ariant sampling density. Results also showed that the descriptor is
ess sensitive to Gaussian noise with deviation up to 0.4 of the edge
ength. The most effective distance computation method to compare
he descriptor is “Chi-Square”. The results also showed that using

ore than 25 shells would be time consuming for computation and
omparison of the descriptor. In this paper, we considered only full
bject matching and will address partial object matching in future
ork.
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