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We derive a formula for expressing free cumulants whose entries are products of
random variables in terms of the lattice structure of non-crossing partitions. We
show the usefulness of that result by giving direct and conceptually simple proofs
for a lot of results about R-diagonal elements. Our investigations do not assume the
trace property for the considered linear functionals. � 2000 Academic Press

INTRODUCTION

Free probability theory, due to Voiculescu [17, 18], is a non-com-
mutative probability theory where the classical concept of ``independence''
is replaced by a non-commutative analogue, called ``freeness.'' Originally
this theory was introduced in an operator-algebraic context for dealing with
questions on special von Neumann algebras. However, since these beginnings
free probability theory has evolved into a theory with a lot of links to quite
different fields. In particular, there exists a combinatorial facet: main
aspects of free probability theory can be considered as the combinatorics of
non-crossing partitions.

There are two main approaches to freeness:

v the original approach, due to Voiculescu, is analytical in nature and
relies on special Fock space constructions for the considered distributions.

v the approach of Speicher [14�16] is combinatorial in nature and
describes freeness in terms of so-called free cumulants��these objects are
defined via a precise combinatorial description involving the lattice of non-
crossing partitions; a lot of questions on freeness reduce in this approach
finally to combinatorial problems on non-crossing partitions.
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The relation between these two approaches is given by the fact that the free
cumulants appear as coefficients in the operators constructed in the Fock
space approach. This connection was worked out by Nica [6].

Here, we will investigate one fundamental problem in the combinatorial
approach and show that there is a beautiful combinatorial structure behind
this.

In the combinatorial approach to freeness one defines, for a given linear
functional . on a unital algebra A, so-called free cumulants kn (n # N), where
each kn is a multi-linear functional on A in n arguments. The connection
between . and the kn is given by a combinatorial formula involving the lattice
of non-crossing partitions. (The name ``cumulants'' comes from classical
probability theory; there exist analogous objects with that name, the only
difference is that there all partitions instead of non-crossing partitions
appear.) It seems that many problems on freeness are easier to handle in
terms of these free cumulants than in terms of moments of .. In particular,
the definition of freeness itself becomes much handier for cumulants than
for moments. Since cumulants are multi-linear objects this implies that for
problems involving the linear structure of the algebra A cumulants are
quite easily and effectively to use. For problems involving the multiplicative
structure of A, however, it is not so clear from the beginning that cumulants
are a useful tool for such investigations. Nevertheless in a lot of examples
it has turned out that this is indeed the case. In a sense, we will here present
the unifying reason for these positive results. Namely, dealing with multi-
plicative problems reduces on the level of cumulants essentially to the problem
of understanding the structure of cumulants whose arguments are products
of variables. Here, in Section 2, we will show that this can be understood
quite well and that there exists a nice and simple combinatorial description
for such cumulants.

That this formula is also useful will be demonstrated in Section 3. We
will reprove and generalize a lot of results around the multiplication of free
random variables. In particular, we will consider an important special class
of distributions, so-called R-diagonal elements. These were introduced by
Nica and Speicher in [8]. However, the investigations and characteriza-
tions in [8, 9] were not always straightforward and used a lot of ad hoc
combinatorics. Our approach here will be much more direct and concep-
tually clearer. Furthermore, we will get in the same spirit direct proofs of
results of Haagerup and Larsen [2, 5] on powers of R-diagonal elements.

An important point to make is that all earlier investigations on R-diagonal
elements were always restricted to a tracial frame, i.e., . was assumed to satisfy
the trace condition .(ab)=.(ba) for all a, b # A. In contrast, our approach
does not rely on this assumption, so all our results are also valid for non-
tracial .. Thus we do not only get simple proofs for known results but also
generalizations of all these results to the general, non-tracial case. (That
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non-tracial R-diagonal elements appear quite naturally can, e.g., be seen in
[13], where such elements arise in the polar decomposition of generalized
circular elements).

Our Propositions 3.5 and 3.9 were inspired by and prove some conjec-
tures of the recent work [10]. There the notion of R-diagonality is also
treated in the non-tracial case and some of our results of Section 3 are
proved there for the general case, too. However, the approach in [10] is
quite different from the present one and relies on Fock space representa-
tions and freeness with amalgamation.

The paper is organized as follows. In Section 1, we give a short and self-
contained summary of the relevant basic definitions and facts about free
probability theory and non-crossing partitions. In Section 2, we state and
prove our main combinatorial result on the structure of free cumulants
whose arguments are products and, in Section 3, we apply this result to
derive various statements about R-diagonal elements.

1. PRELIMINARIES

In this section we provide a short and self-contained summary of the
basic definitions and facts needed for our later investigations.

1.1. Non-commutative Probability Theory. (1) We will always work in
the frame of a non-commutative probability space (A, .). This is, by defini-
tion, a pair consisting of a unital V-algebra A and a unital linear functional
.: A � C. (. unital means that .(1)=1.)

The elements a # A are called non-commutative random variables, or just
random variables in (A, .).

Let a1 , ..., an be random variables in a non-commutative probability
space (A, .). Let C (X1 , ..., Xn) denote the algebra of polynomials in n
non-commuting indeterminants, i.e., the algebra generated by n free gener-
ators. Then the linear functional

+a1 , ..., an
: C (X1 , ..., Xn) � C

given by linear extension of

Xi(1) } } } Xi(m) [ .(ai(1) } } } ai(m)) (m # N, 1�i(1), ..., i(m)�n)

is called the joint distribution of a1 , ..., an .
The joint distribution of a and a* is also called the *-distribution of a.

Consider random variables ai and bi (1�i�n) in (A, .). Then a1 , ..., an
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and b1 , ..., bn have the same joint distribution, if the following equation
holds for all m # N, 1�i(1), ..., i(m)�n:

.(ai(1) } } } a i(m))=.(bi(1) } } } bi(m)).

(2) Note that all our considerations will be on the algebraic (or
combinatorial) level, thus we will not require that . is a positive functional.
However, it is well known that freeness��the crucial structure in our
investigations��is compatible with positivity properties. The requirement
that our probability space should be a V-algebra and not just an algebra is
only for convenience, since, in Section 3, we will need the V for dealing with
Haar unitaries and R-diagonal elements. In all statements where no V
appears we could also replace the requirement ``V-algebra'' by ``algebra.''

(3) Most of the questions which we will investigate in Section 3 were
up to now only considered for tracial linear functionals. We stress that all
our considerations do not use the trace property; i.e., we will not use the
equation .(ab)=.(ba).

1.2. Partitions. (1) Fix n # N. We call ?=[V1 , ..., Vr] a partition of
S=(1, ..., n) if and only if the Vi (1�i�r) are pairwisely disjoint, non-void
tuples such that V1 _ } } } _ Vr=S. We call the tuples V1 , ..., Vr the blocks
of ?. The number of components of a block V is denoted by |V |. Given two
elements p und q with 1�p, q�n, we write pt? q, if p and q belong to the
same block of ?.

We get a linear representation of a partition ? by writing all elements
1, ..., n in a line, supplying each with a vertical line under it and joining the
vertical lines of the elements in the same block with a horizontal line.

Example. A partition of the tuple S=(1, 2, 3, 4, 5, 6, 7) is

1 2 3 4 5 6 7

?1=[(1, 4, 5, 7), (2, 3), (6)] � .

If we write a block V of a partition in the form V=(v1 , ..., vp) then this
shall always imply that v1<v2< } } } <vp .

(2) A partition ? is called non-crossing, if the following situation does
not occur: There exist 1�p1<q1<p2<q2�n such that p1 t? p2 t3 ? q1 t? q2 :

1 } } } p1 } } } q1 } } } p2 } } } q2 } } } n
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The set of all non-crossing partitions of (1, ..., n) is denoted by NC(n). In
the same way as for (1, ..., n) one can introduce non-crossing partitions
NC(S) for each finite linearly ordered set S. Of course, NC(S) depends
only on the number of elements in S. In our investigations, non-crossing
partitions will appear as partitions of the index set of products of random
variables a1 } } } an . In such a case, we will also sometimes use the notation
NC(a1 , ..., an). (If some of the ai are equal, this might make no rigorous
sense, but there should arise no problems by this.)

If S is the union of two disjoint sets S1 and S2 then, for ?1 # NC(S1) and
?2 # NC(S2), we let ?1 _ ?2 be that partition of S which has as blocks the
blocks of ?1 and the blocks of ?2 . Note that ?1 _ ?2 is not automatically
non-crossing.

(3) Let ?, _ # NC(n) be two non-crossing partitions. We write _�?,
if every block of _ is completely included in a block of ?. Hence, we obtain
_ out of ? by refining the block-structure. For example, we have

[(1, 3), (2), (4, 5), (6, 8), (7)]�[(1, 3, 7), (2), (4, 5, 6, 8)].

The partial order � induces a lattice structure on NC(n). In particular,
given two non-crossing partitions ?, _ # NC(n), we have their join ?6 _,
which is the unique smallest { # NC(n) such that {�? and {�_.

The maximum of NC(n)��the partition which consists of one block with
n components��is denoted by 1n . The partition consisting of n blocks, each
of which has one component, is the minimum of NC(n) and denoted by 0n .

(4) The lattice NC(n) is self-dual and there exists an important
anti-isomorphism K: NC(n) � NC(n) implementing this self-duality. This
complementation map K is defined as follows: Let ? be a non-crossing
partition of the numbers 1, ..., n. Furthermore, we consider numbers 1� , ..., n�
with all numbers ordered like

1 1� 2 2� } } } n n� .

The complement K(?) of ? # NC(n) is defined to be the biggest _ # NC(1� , ..., n� )
�NC(n) with

? _ _ # NC(1, 1� , ..., n, n� ).

Example. Consider the partition ? :=[(1, 2, 7), (3), (4, 6), (5), (8)] #
NC(8). For the complement K(?) we get

K(?)=[(1), (2, 3, 6), (4, 5), (7, 8)],
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as can be seen from the graphical representation,

1 1� 2 2� 3 3� 4 4� 5 5� 6 6� 7 7� 8 8�

.

(5) Non-crossing partitions and the complementation map were intro-
duced by Kreweras [4]; for further combinatorial investigations on that
lattice, see, e.g., [1, 12].

(6) The main combinatorial ingredient of Theorem 2.2 will be joins
with special partitions _ whose blocks consist of neighbouring elements,
like ? 6 [(1), (2), ..., (l, ..., l+k), ..., (n)]. This is given by uniting the blocks
of ? containing the elements l, ..., l+k, and we say that we obtain ? 6 [(1),
(2), ..., (l, ..., l+k), ..., (n)] by connecting the elements l, ..., l+k.

Example. Considering the partition

1 2 3 4 5 6 7 8

?=[(1, 8), (2, 3), (4, 5, 7), (6)] �

we have

? 6 [(1, 2, 3, 4), (5), (6), (7), (8)]=[(1, 2, 3, 4, 5, 7, 8), (6)]

1 2 3 4 5 6 7 8

� .

1.3. Free Cumulants. Given a unital linear functional .: A � C we define
corresponding ( free) cumulants (kn)n # N

kn : An � C,

(a1 , ..., an) [ kn(a1 , ..., an)

indirectly by the system of equations

.(a1 } } } an)= :
? # NC(n)

k?[a1 , ..., an] (a1 , ..., an # A), (1)
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where k? splits multiplicatively in a product of cumulants according to the
block structure of ?, i.e.,

k?[a1 , ..., an] := `
r

i=1

k |Vi |
(a i, 1 , ..., a i, |Vi |

) (2)

for a partition ?=[V1 , ..., Vr] # NC(n) consisting of r blocks of the form
Vi=(ai, 1 , ..., ai, |Vi |

).
The defining relation (1) expresses the moment .(a1 } } } an) in terms of

cumulants, but by induction this can also be resolved for giving the cumulants
uniquely in terms of moments:

kn(a1 , ..., an)=.(a1 } } } an)& :
? # NC(n); ?{1n

k?[a1 , ..., an]. (3)

Since, by induction, we know all cumulants of smaller order, i.e., all
k? [a1 , ..., an ] for ? # NC(n) with ?{1n , this leads to an expression for kn

in terms of moments. Abstractly, this is, of course, just the Moebius inversion
of relation (1) and has the form

kn (a1 , ..., an)= :
? # NC(n)

+(?, 1n) .?[a1 , ..., an], (4)

where + is the Moebius function of the lattice of non-crossing partitions
and where .? is defined in the same multiplicative way as k? if we put
.n(a1 , ..., an) :=.(a1 } } } an).

Examples. Let us give the concrete form of kn(a1 , ..., an) for n=1, 2, 3.

v n=1.

k1(a1)=.(a1).

v n=2. The only partition ? # NC(2), ?{12 is I I. So we get

k2(a1 , a2)=.(a1 a2)&kI I[a1 , a2]

=.(a1a2)&k1(a1) k1(a2)

=.(a1a2)&.(a1) .(a2).

Using the notation .? we can also write this as

k2(a1 , a2)=.? [a1 , a2]&.I I[a1 , a2].
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v n=3. We have to take all partitions in NC(3) except 13 , i.e., the
partitions

, , , .

With this we obtain:

k3(a1 , a2 , a3)=.(a1a2 a3)&kI ? [a1 , a2 , a3]&k? I[a1 , a2 , a3]

&k?I [a1 , a2 , a3]&kI I I[a1 , a2 , a3]

=.(a1a2 a3)&k1(a1) k2(a2 , a3)&k2(a1 , a2) k1(a3)

&k2(a1 , a3) k1(a2)&k1(a1) k1(a2) k1(a3)

=.(a1a2 a3)&.(a1) .(a2a3)&.(a1a2) .(a3)

&.(a1 a3) .(a2)+2.(a1) .(a2) .(a3).

Again we can write this in the Moebius inverted form:

k3(a1 , a2 , a3)=.??[a1 , a2 , a3]&.I ? [a1 , a2 , a3]

&. ? I[a1 , a2 , a3]&. ?I [a1 , a2 , a3]

+2.I I I[a1 , a2 , a3].

1.4. Freeness. Freeness of subalgebras or random variables is the crucial
concept in free probability theory; it is a non-commutative replacement for
the classical concept of ``independence.''

(1) Let A1 , ..., Am /A be subalgebras with 1 # Ai (i=1, ..., m). The
subalgebras A1 , ..., Am are called free, if .(a1 } } } ak)=0 for all k # N and
ai # Aj(i) (1� j(i)�m) such that .(ai)=0 for all i=1, ..., k and such
that neighbouring elements are from different subalgebras, i.e., j(1){ j(2)
{ } } } { j(k).

(2) Let X1 , ..., Xm /A be subsets of A. Then X1 , ..., Xm are called free,
if A1 , ..., Am are free, where, for i=1, ..., m, Ai :=alg(1, Xi) is the algebra
generated by 1 and Xi .

(3) In particular, if the algebras Ai :=alg(1, ai) (i=1, ..., m) generated
by the elements a1 , ..., am # A are free, then a1 , ..., am are called free random
variables. If the *-algebras generated by the random variables a1 , ..., am are
free, then we call a1 , ..., am V-free.

(4) Freeness of random variables can be considered as a rule for
expressing joint moments of free variables in terms of the moments of the
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single variables. For example, if [a1 , a2] and b are free, then the following
identity holds,

.(a1ba2)=.(a1a2) .(b). (5)

(5) The basic fact which shows the relevance of the free cumulants in
connection with freeness is the following characterization of freeness in
terms of cumulants. We will only use this characterization of freeness in our
proofs. Thus, for the purpose of this paper, part (2) of the following
proposition could also be used as the definition of freeness.

1.5. Proposition [15]. Let (A, .) be a non-commutative probability
space and A1 , ..., Am /A subalgebras. Then the following statements are
equivalent :

(1) The subalgebras A1 , ..., Am are free.

(2) For all n�2 and all ai # Aj(i) with 1� j(1), ..., j(n)�m we have
kn(a1 , ..., an)=0 whenever there are some 1�l, k�n with j(l ){ j(k).

2. MAIN COMBINATORIAL RESULT

As mentioned in the Introduction we would like to understand the
behaviour of free cumulants with respect to the multiplicative structure of
our algebra. The crucial property in a multiplicative context is associativity.
On the level of moments this just means that we can put brackets
arbitrarily; for example, we have .((a1a2) a3)=.(a1(a2a3)). But the corre-
sponding statement on the level of cumulants is, of course, not true, i.e.,
k2(a1 a2 , a3){k2(a1 , a2a3) in general. However, there is still a treatable
and nice formula which allows to deal with free cumulants whose entries
are products of random variables. This formula is the main combinatorial
result of this paper and is presented in this section.

A special case of that theorem, where only one argument of the cumulant
has the form of a product, appeared in [14]. However, although our theorem
can be considered as an iteration of that special case, the structure of that
iteration is not clear from the presentation in [14]. The main observation
here is that this iteration really leads to a beautiful and useful combina-
torial structure. Our proof will not rely on the special case from [14]. It
is conceptually much clearer to prove the theorem directly in its general
form than to do it by iteration.

2.1. Notation. The general frame for our theorem is the following: Let
an increasing sequence of integers be given, 1�i1<i2< } } } <im :=n and
let a1 , ..., an be random variables. Then we define new random variables Aj
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as products of the given ai according to Aj :=a ij&1+1 } } } aij
(where i0 :=0).

We want to express a cumulant k{[A1 , ..., Am] in terms of cumulants
k?[a1 , ..., an]. So let { be a non-crossing partition of the m-tuple (A1 , ..., Am).
Then we define {̂ # NC(a1 , ..., an) to be that partition which we get from { by
replacing each Aj by aij&1+1 , ..., aij

, i.e., for ai being a factor in Ak and aj being
a factor in Al we have ai t{̂ aj if and only if Ak t{ Al .

For example, for n=6 and A1 :=a1 a2 , A2 :=a3 a4 a5 , A3 :=a6 and

A1 A2 A3

{=[(A1 , A2), (A3)] �

we get

a1 a2 a3 a4 a5 a6

{̂=[(a1 , a2, a3 , a4 , a5), (a6)] � .

Note also in particular, that {̂=1n if and only if {=1m .

2.2. Theorem. Let m # N and 1�i1<i2< } } } <im :=n be given. Consider
random variables a1 , ..., an and put Aj :=aij&1+1 } } } aij

for j=1, ..., m (where
i0 :=0). Let { be a partition in NC(A1 , ..., Am). Then the following equation
holds:

k{[a1 } } } a i1
, ..., aim&1+1 } } } aim

]= :
? # NC(n); ? 6 _={̂

k?[a1 , ..., an], (6)

where _ # NC(n) is the partition _=[(a1 , ..., ai1
), ..., (a im&1+1 , ..., a im

)].

Before we give the proof of our theorem, we want to make clear the
structure of the statement by an example.

For A1 :=a1 a2 and A2 :=a3 we have _=[(a1 , a2), (a3)]� ? I. Consider
now {=12=[(A1 , A2)], implying that {̂=13=[(a1 , a2 , a3)]. Then the
application of our theorem yields

k2(a1 a2 , a3)= :
? # NC(3); ? 6 _=13

k?[a1 , a2 , a3]

=k??[a1 , a2 , a3]+k I ? [a1 , a2 , a3 ]+k ?I [a1 , a2 , a3]

=k3(a1 , a2 , a3)+k1(a1) k2(a2 , a3)+k2(a1 , a3) k1(a2),

which is easily seen to be indeed equal to k2(a1a2, a3)=.(a1a2a3)&
.(a1a2) .(a3).

Proof. We show the assertion by induction over the number m of
arguments of the cumulant k{ .

276 KRAWCZYK AND SPEICHER



To begin with, let us study the case when m=1. Then we have _=
[(a1 , ..., an)]=1n={̂ and by the defining relation (1) for the free cumulants
our assertion reduces to

k1(a1 } } } an)= :
? # NC(n); ? 6 1n=1n

k?[a1 , ..., an]

= :
? # NC(n)

k?[a1 , ..., an]

=.(a1 } } } an),

which is true since k1=..
Let us now make the induction hypothesis that for an integer m�1 the

theorem is true for all m$�m.
We want to show that it also holds for m+1. This means that for

{ # NC(m+1), a sequence 1�i1<i2< } } } <im+1=: n, and random
variables a1 , ..., an we have to prove the validity of the equation

k{[A1 , ..., Am+1]=k{[a1 } } } ai1
, ..., a im+1 } } } a im+1

]

= :
? # NC(n); ?6 _={̂

k?[a1 , ..., an], (7)

where _=[(a1 , ..., a i1
), ..., (a im+1 , ..., aim+1

)].
The proof is divided into two steps. The first one discusses the case

where { # NC(m+1), {{1m+1 and the second one treats the case where
{=1m+1 .

Step 1%. The validity of relation (7) for all { # NC(m+1) except the
partition 1m+1 is shown as follows: Each such { has at least two blocks, so
it can be written as {={1 _ {2 with {1 being a non-crossing partition of an
s-tuple (B1 , ..., Bs) and {2 being a non-crossing partition of a t-tuple (C1 , ..., Ct)
where (B1 , ..., Bs) _ (C1 , ..., Ct)=(A1 , ..., Am+1) and s+t=m+1. With
these definitions, we have

k{[A1 , ..., Am+1]=k{1
[B1 , ..., Bs] k{2

[C1 , ..., Ct].

We will apply now the induction hypothesis on k{1
[B1 , ..., Bs] and on

k{2
[C1 , ..., Ct]. According to the definition of Aj , both Bk(k=1, ..., s) and

Cl (l=1, ..., t) are products with factors from (a1 , ..., an). Put (b1 , ..., bp) the
tuple containing all factors of (B1 , ..., Bs) and (c1 , ..., cq) the tuple consisting of
all factors of (C1 , ..., Ct); this means (b1 , ..., bp) _ (c1 , ..., cq)=(a1 , ..., an) (and
p+q=n). We put _1 :=_| (b1 , ..., bp ) and _2 :=_| (c1 , ..., cq) , i.e., we have
_=_1 _ _2 . Note that {̂ factorizes in the same way as {̂={̂1 _ {̂2 . Then we
get with the help of our induction hypothesis
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k{[A1, ..., Am+1]=k{1
[B1 , ..., Bs] } k{2

[C1 , ..., Ct]

= :
?1 # NC( p); ?1 6 _1={̂1

k?1
[b1 , ..., bp]

} :
?2 # NC(q); ?2 6 _2={̂2

k?2
[c1 , ..., cq]

= :
?1 # NC( p); ?1 6 _1={̂1

:
?2 # NC(q); ?2 6 _2={̂2

k?1 _ ?2
[a1 , ..., an]

= :
? # NC(n); ?6 _= {̂

k?[a1 , ..., an].

Step 2%. It remains to prove that Eq. (7) is also valid for {=1m+1 .
With (3), we obtain

k1m+1
[A1, ..., Am+1]=km+1(A1 , ..., Am+1)

=.(A1 } } } Am+1)& :
{ # NC(m+1);{{1m+1

k{[A1 , ..., Am+1].

(8)

First we transform the sum in (8) with the result of step 1%,

:
{ # NC(m+1); {{1m+1

k{[A1 , ..., Am+1]

= :
{ # NC(m+1); {{1m+1

:
? # NC(n); ? 6 _={̂

k?[a1 , ..., an]

= :
? # NC(n); ? 6 _{1n

k?[a1 , ..., an],

where we used the fact that {=1m+1 is equivalent to {̂=1n .
The moment in (8) can be written as

.(A1 } } } Am+1)=.(a1 } } } an)= :
? # NC(n)

k?[a1 , ..., an].

Alltogether, we get

km+1[A1 , ..., Am+1]= :
? # NC(n)

k?[a1 , ..., an]

& :
? # NC(n); ? 6 _{1n

k?[a1, ..., an]

= :
? # NC(n); ?6 _=1n

k?[a1 , ..., an]. K
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2.3. Remark. In all our applications we will only use the special case of
Theorem 2.2 where {=1m . Then the statement of the theorem is the follow-
ing: Consider m # N, an increasing sequence 1�i1<i2< } } } <im :=n and
random variables a1 , ..., an . Put _ :=[(a1 , ..., ai1

), ..., (aim&1+1 , ..., aim
)]. Then

we have

km[a1 } } } ai1
, ..., aim&1+1 } } } aim

]= :
? # NC(n); ? 6 _=1n

k?[a1 , ..., an]. (9)

The next proposition, which is from [7, Theorem 1.4], is the basic fact
on the multiplication of free random variables. We want to indicate that
our Theorem 2.2 can be used to give a straightforward and conceptually
simple proof of that statement.

2.4. Proposition [7]. For a positive integer n, let a1 , ..., an , b1 , ..., bn be
random variables such that [a1 , ..., an] and [b1 , ..., bn] are free. Then the
following equation holds,

kn(a1 b1 , ..., an bn)= :
? # NC(n)

k?[a1 , ..., an] kK(?)[b1 , ..., bn]. (10)

Proof. We only give a sketch of the proof.
Applying Theorem 2.2 in the form mentioned above in Eq. (9), we get

kn(a1 b1 , ..., an bn)=:
?

k?[a1 , b1 , ..., an , bn],

where we have to sum over

? # NC(2n) with ? 6 [(a1 , b1), ..., (an , bn)]=12n .

Because of the assumption ``[a1 , ..., an], [b1 , ..., bn] free'' we obtain with
Proposition 1.5 that all cumulants vanish with the exception of those which
have only elements from [a1 , ..., an] or only elements from [b1 , ..., bn] as
arguments. This means that all partitions ? contributing to the sum must
have the form ?=?a _ ?b with ?a being in NC(a1 , ..., an) and ?b being in
NC(b1 , ..., bn). Obviously, for each such ? we have

k?[a1 , b1 , ..., an , bn]=k?a
[a1 , ..., an] k?b

[b1 , ..., bn].

One can now convince oneself, that for each ?a # NC(a1 , ..., an) there exists
exactly one ?b # NC(b1 , ..., bn) such that ?=?a _ ?b fulfills the condition
?6 [(a1 , b1), ..., (an , bn)]=12n and that this ?b is nothing but the comple-
ment of ?a , i.e., we have to sum exactly over all ?=?a _ K(?a) with
?a # NC(n). This is the assertion. K
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2.5. Remark. In order to get an idea of the complications arising in the
transition from the tracial to the general non-tracial case let us consider the
following variant of the foregoing proposition. Let [a1 , ..., an] be free from
[b, c] and consider the cumulant kn(ba1 c, ba2 c, ..., banc). In the tracial case
this is the same as kn(a1cb, a2cb, ..., an cb) and since [a1 , ..., an] is free from
cb our above proposition yields

kn(ba1 c, ba2 c, ..., ban c)= :
? # NC(n)

k?[a1 , ..., an] kK(?)[cb, cb, ..., cb].

In the general situation the structure of the result��a summation over
? # NC(n) and terms given by a product of cumulants corresponding to
blocks of ? and blocks of K(?)��is the same, but now not always cb
appears as argument in the cumulants. Namely, a careful adaption of our
above proof for Proposition 2.4 reveals that we have the following result.

2.6. Proposition. For a positive integer n consider random variables
a1 , ..., an , b, c such that [a1 , ..., an] and [b, c] are free. Then we have

kn(ba1 c, ba2 c, ..., banc)

= :
? # NC(n)

k?[a1 , ..., an] k |Vr | (bc, bc, ..., bc)

_ `
r&1

i=1

k |Vi |
(&| c, bc, ..., bc, b |&),

where, for ? # NC(n), we have written K(?)=[V1 , ..., Vr] such that Vr is the
block of K(?) containing the last element n. Thus the cumulant corresponding
to the block of K(?) containing n has only bc as entries, whereas all the other
factors for K(?) are of the form km(&| c, bc, ..., bc, b |&), which is defined as

km(&| c, b1 , ..., bm&1 , b |&)

:= :
? # NC(m+1); ?6 [(1, m+1), (2), (3), ..., (m)]=1m+1

k?[c, b1 , ..., bm&1, b]

for arbitrary random variables c, b, b1 , ..., bm&1 .

2.7. Remarks. (1) Note that the cumulant km(&| c, b1 , ..., bm&1 , b |&)
is a cumulant of order m; c and b are to be thought of as the factors of one
argument. However, in the evaluation of the cumulant one has to take care
of the positions of c and b. For example,

k2(&| c, b1 , b |&)=.(cb1b)&.(cb) .(b1).
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(2) Proposition 2.6 suggests that one might consider also cumulants
of the form

k_(a1 , ..., an) := :
? # NC(n); ?�_

+(?, 1n) .?[a1 , ..., an] (12)

for arbitrary _ # NC(n). Note that k_ is not a product of cumulants like k? ,
but a cumulant of order |_|, where each block of _ corresponds to an
argument given by multiplication of the corresponding variables ai , but
with respectation of the nested structure of the blocks. If _ is of the special
form _=[(1, ..., i1), ..., (im&1+1, ..., im)], as in Theorem 2.2, then k_ is
nothing but

k[(1, ..., i1 ), ..., (im&1+1, ..., im )](a1 , ..., an)=km(a1 } } } ai1
, ..., aim&1+1 } } } aim

),

whereas km(&| c, b1 , ..., bm&1 , b |&) from Proposition 2.6 reads now as

km(&| c, b1 , ..., bm&1 , b |&)=k[(1, m+1), (2), (3), ..., (m)](c, b1 , ..., bm&1 , b).

One should, however, note that the structure of the formula for k_ in terms
of moments does not only depend on |_|, but on the concrete form of _
itself. For example, for _=[(1, 3), (2), (4)] we have

k_(a1 , b, a2 , c)=.(a1 ba2c)&.(a1ba2 ) .(c)

&.(a1a2 c) .(b)+.(a1 a2) .(b) .(c),

which should be compared with

k3(a, b, c)=.(abc)&.(ab) .(c)&.(ac) .(b)&.(a) .(bc)

+2.(a) .(b) .(c).

One can generalize Theorem 2.2 for k_ as follows: For _ # NC(n) and
random variables a1 , ..., an we have

k_(a1 , ..., an)= :
? # NC(n); ? 6 _=1n

k?[a1 , ..., an ]. (13)

The proof of this statement goes along the same lines as our proof of
Theorem 2.2. We will leave the details to the reader.

3. APPLICATIONS TO R-DIAGONAL ELEMENTS

3.1. Notation (Alternating). Let a be a random variable. A cumulant
k2r(a1 , ..., a2r) with arguments from [a, a*] is said to have alternating
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arguments, if there does not exist any ai (1�i�2r&1) with ai+1=ai . We
will also say that the cumulant k2r (a1 , ..., a2r) is alternating. Cumulants
with an odd number of arguments will always be considered as not alternating.

Example. The cumulant k6(a, a*, a, a*, a, a*) is alternating, whereas
k8(a, a*, a*, a, a, a*, a, a*) or k5(a, a*, a, a*, a) are not alternating.

3.2. Definition (R-diagonal ). A random variable a is called R-diagonal
if for all r # N we have that kr(a1 , ..., ar)=0 whenever the arguments
a1 , ..., ar # [a, a*] are not alternating in a and a*.

3.3. Definition (Haar unitary). We call an element u in a probability
space (A, .) Haar unitary if it has the following properties:

(1%) u is unitary, i.e., uu*=1=u*u.

(2%) .(uk)=0=.(u* k) for k=1, 2, 3, ... .

3.4. Remarks. (1) Due to the relation (1) between moments and free
cumulants, two tuples (a1 , ..., an) and (b1 , ..., bn) of random variables have
the same joint distribution if and only if all their cumulants are identical,
i.e., if km(a i(1) , ..., a i(m))=km(bi(1) , ..., bi(m)) for all m # N and all 1�i(1), ...,
i(m)�n. This implies, of course, that the property ``R-diagonality'' depends
only on the V-distribution of a.

(2) It was proved in [16] that a Haar unitary is R-diagonal. Indeed,
the examples of the Haar unitary and the circular element��which present
the two most important non-selfadjoint distributions in free probability
theory��provided the motivation for introducing the class of R-diagonal
elements as a kind of interpolation between these two elements.

(3) It is clear that all information on the V-distribution of an R-diagonal
element a is contained in the two sequences of its alternating cumulants :n :=
k2n(a, a*, a, a*, ..., a, a*) and ;n :=k2n(a*, a, a*, a, ..., a*, a). Another useful
description of the V-distribution of a is given by the distributions of aa*
and a*a. The next proposition connects these two descriptions of the *-dis-
tribution of a. The tracial case��in which :n=;n for all n��was treated in
[8], whereas the result in the general case proves a conjecture, Eq. (5.7),
from [10].

3.5. Proposition. Let a be an R-diagonal random variable in a non-
commutative probability space (A, .). Let

:n :=k2n(a, a*, a, a*, ..., a, a*),

;n :=k2n(a*, a, a*, a, ..., a*, a)
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be the non-vanishing cumulants of a. Then we have

kn(aa*, ..., aa*)= :
? # NC(n); ?=[V1 , ..., Vr]

: |V1 | ; |V2 | } } } ; |Vr | , (14)

where V1 denotes that block of ? # NC(n) which contains the first element 1.

Proof. Applying Theorem 2.2 in the particular form of Eq. (9) yields

kn(aa*, ..., aa*)= :
? # NC(2n); ? 6 _=12n

k?[a, a*, ..., a, a*] (15)

with

_=[(a, a*), ..., (a, a*)]�[(1, 2), ..., (2n&1, 2n)].

We claim now the following. The partitions ? which fulfill the condition
?6 _=12n are exactly those which have the following properties: the block
of ? which contains the element 1 contains also the element 2n, and, for
each k=1, ..., n&1, the block of ? which contains the element 2k contains
also the element 2k+1.

Since the set of those ? # NC(2n) fulfilling the claimed condition is in
canonical bijection with NC(n) and since k?[a, a*, ..., a, a*] goes under
this bijection to the product appearing in Eq. (14), this gives directly the
assertion.

So it remains to prove the claim. It is clear that a partition which has the
claimed property does also fulfill ? 6 _=12n . So we only have to prove the
other direction.

Let V be the block of ? which contains the element 1. Since a is R-diagonal
the last element of this block has to be an a*, i.e., an even number, let us
say 2k. If this would not be 2n then this block V would in ? 6 _ not be
connected to the block containing 2k+1, thus ? 6 _ would not give 12n .
Hence ? 6 _=12n implies that the block containing the first element 1
contains also the last element 2n.
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Now fix a k=1, ..., n&1 and let V be the block of ? containing the
element 2k. Assume that V does not contain the element 2k+1. Then there
are two possibilities: Either 2k is not the last element in V, i.e. there exists
a next element in V, which is necessarily of the form 2l+1 with l>k,

or 2k is the last element in V. In this case the first element of V is of the
form 2l+1 with 0�l�k&1,

In both cases the block V gets not connected with 2k+1 in ? 6 _, thus this
cannot give 12n . Hence the condition ? 6 _=12n forces 2k and 2k+1 to lie
in the same block. This proves our claim and hence the assertion. K

We are now going to prove a fundamental characterization of R-diagonal
elements as those random variables whose V-distribution remains invariant
under the multiplication with a free Haar unitary. This theorem has been
proven in [9] in the case when . is a trace. The treatment there used some
ad hoc combinatorics. In contrast to this, our approach here is more
straightforward and conceptually clearer. Another proof of the general
form of the theorem, relying on Fock space techniques, will appear in [10].
The main step in the proof of the theorem��the one in which we will
use our combinatorial Theorem 2.2��is the following proposition. This
appeared also, for the tracial case, in [8].

3.6. Proposition. Let a and x be elements in a probability space (A, .)
with a being R-diagonal and such that [a, a*] and [x, x*] are free. Then ax
is R-diagonal.
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Proof. We examine a cumulant kr(a1a2 , ..., a2r&1 a2r) with a2i&1a2i #
[ax, x*a*] for i # [1, ..., r].

According to the definition of R-diagonality we have to show that this
cumulant vanishes in the following two cases:

(1%) r is odd.

(2%) There exists at least one s (1�s�r&1) such that a2s&1a2s=
a2s+1a2s+2 .

By Theorem 2.2, we have

kr(a1a2 , ..., a2r&1a2r)= :
? # NC(2r); ? 6_=12r

k?[a1 , a2 , ..., a2r&1 , a2r], (16)

where _=[(a1 , a2 ), ..., (a2r&1, a2r)].
The fact that a and x are V-free implies, by Proposition 1.5, that only

such partitions ? # NC(2r) contribute to the sum each of whose blocks
contains elements only from [a, a*] or only from [x, x*].

Case (1%). As there is at least one block of ? containing a different
number of elements a and a*, k? vanishes always. So there are no parti-
tions ? contributing to the sum in (16) which consequently vanishes.

Case (2%). We assume that there exists an s # [1, ..., r&1] such that
a2s&1a2s=a2s+1a2s+2 . Since with a also a* is R-diagonal, it suffices to
consider the case where a2s&1a2s=a2s+1a2s+2=ax, i.e., a2s&1=a2s+1=a
and a2s=a2s+2=x.

Let V be the block containing a2s+1. We have to examine two situations:

(A) On the one hand, it might happen that a2s+1 is the first element
in the block V. This can be sketched in the following way:

In this case the block V is not connected with a2s in ? 6 _, thus the latter
cannot be equal to 12n .

(B) On the other hand, it can happen that a2s+1 is not the first
element of V. Because a is R-diagonal, the preceding element must be
an a*,
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But then V will again not be connected to a2s in ? 6 _. Thus again ? 6 _
cannot be equal to 12n .

As in both cases we do not find any partition contributing to the
investigated sum in Eq. (16) this has to vanish. K

3.7. Theorem. Let x be an element in a non-commutative probability space
(A, .). Furthermore, let u be a Haar unitary in (A, .) such that [u, u*] and
[x, x*] are free. Then x is R-diagonal if and only if (x, x*) has the same joint
distribution as (ux, x*u*):

x R-diagonal � +x, x*=+ux, x*u* .

Proof. (O) In order to show that the joint distributions of (x, x*)
and (ux, x*u*) are identical, we have to prove according to the Remark
3.4(1) that km(b1 , ..., bm)=km(c1 , ..., cm) for all m # N, bi # [x, x*] and

ci={ux
x*u*

for bi=x
for bi=x*.

In the cases when m is odd or when with even m the elements b1 , ..., bm do
not alternate, the cumulant km(b1 , ..., bm) vanishes because of the R-diagonality
of x. By Proposition 3.6 and the fact that u is R-diagonal, we get that ux
is R-diagonal, too, and therefore km(c1 , ..., cm) also vanishes.

Hence we have to consider the case where the arguments b1 , ..., bm

alternate (which implies alternating arguments c1 , ..., cm).
We inductively show the validity of

k2r(x, x*, ..., x, x*)=k2r(ux, x*u*, ..., ux, x*u*)

and

k2r(x*, x, ..., x*, x)=k2r(x*u*, ux, ..., x*u*, ux)

for any natural r.
First, consider r=1. On one hand, the equation

k2(ux, x*u*)=.(uxx*u*)&k1(ux) k1(x*u*)
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holds by definition of k2 . With both cumulants k1(ux) and k1(x*u*)
vanishing because of the R-diagonality of ux the second term of the sum is
equal to zero.

Since [u, u*] and [x, x*] are assumed to be free, we can write the
moment with the help of formula (5) as

.(uxx*u*)=.(uu*) .(xx*)=.(xx*).

So we get k2(ux, x*u*)=.(xx*).
On the other hand, with x being R-diagonal we obtain

k2(x, x*)=.(xx*)&k1(x) k1(x*)=.(xx*)=k2(ux, x*u*).

Induction Hypothesis. Assume the following to be true for any r$<r (r�2),

k2r$(x, x*, ..., x, x*)=k2r$(ux, x*u*, ..., ux, x*u*)

k2r$(x*, x, ..., x*, x)=k2r$(x*u*, ux, ..., x*u*, ux).

We have to show the validity of these equations for r$=r. It suffices to
consider the first equation.

According to definition of the free cumulants we have

k2r(ux, x*u*, ..., ux, x*u*)=.(uxx*u* } } } uxx*u*)

& :
? # NC(2r); ?{12r

k?[ux, x*u*, ..., ux, x*u*].

Because of the freeness of [u, u*] and [x, x*] and with the help of (5) we
get

.(uxx*u*ux } } } x*u*uxx*u*)=.(u[xx*]r u*)=.(uu*) .([xx*]r)

=.([xx*]r).

It follows that

k2r(ux, x*u*, ..., ux, x*u*)

=.([xx*]r)& :
? # NC(2r); ?{12r

k?[ux, x*u*, ..., ux, x*u*].

The only partitions ? # NC(2r), ?{12r contributing in the foregoing sum
are those where all blocks are alternating in ux and x*u*. According to our
induction hypothesis, we can then replace in all blocks the element ux by
x and the element x*u* by x*. So we finally obtain

k2r(ux, x*u*, ..., ux, x*u*)=k2r(x, x*, ..., x, x*).
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(o) We assume that +x, x*=+ux, x*u* . As, by Proposition 3.6, ux is
R-diagonal, x is R-diagonal, too. K

3.8. Remark. Proposition 3.6 implies in particular that the product of
two free R-diagonal elements is R-diagonal again. This raises the question
how the alternating cumulants of the product are given in terms of the
alternating cumulants of the factors. This is answered in the next proposi-
tion. In the tracial case this reproduces a result of [8], whereas in the
general case this proves the conjecture (5.8) from [10].

3.9. Proposition. Let a and b be R-diagonal random variables such that
[a, a*] is free from [b, b*]. Furthermore, put

:n :=k2n(a, a*, a, a*, ..., a, a*),

;n :=k2n(a*, a, a*, a, ..., a*, a),

#n :=k2n(b, b*, b, b*, ..., b, b*).

Then ab is R-diagonal and the alternating cumulants of ab are given by

k2n(ab, b*a*, ..., ab, b*a*)

= : : |V1 | ; |V2 | } } } ; |Vk | # |V $1 | } } } # |V $l |
, (17)

?=?a _ ?b # NC(2n)

?a=[V1 , ..., Vk ] # NC(1, 3, ..., 2n&1)

?b=[V $1 , ..., V $l ] # NC(2, 4, ..., 2n)

where V1 is that block of ? which contains the first element 1.

Proof. R-diagonality of ab is clear by Proposition 3.6. So we only have
to prove Eq. (17).

By Theorem 2.2, we get

k2n(ab, b*a*, ..., ab, b*a*)

= :
? # NC(4n); ? 6 _=14n

k?[a, b, b*, a*, ..., a, b, b*, a*], (18)

where _=[(a, b), (b*, a*), ..., (a, b), (b*, a*)]. Since [a, a*] and [b, b*]
are assumed to be free, we also know, by Proposition 1.5, that for a contri-
buting partition ? each block has to contain components only from [a, a*]
or only from [b, b*].

As in the proof of Proposition 3.5 one can show that the requirement
?6 _=14n is equivalent to the following properties of ?: The block con-
taining 1 must also contain 4n and, for each k=1, ..., 2n&1, the block
containing 2k must also contain 2k+1. (This couples always b with b* and
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a* with a, so it is compatible with the V-freeness between a and b.) The set
of partitions in NC(4n) fulfilling these properties is in canonical bijection
with NC(2n). Furthermore we have to take care of the fact that each block
of ? # NC(4n) contains either only elements from [a, a*] or only elements
from [b, b*]. For the image of ? in NC(2n) this means that it splits into
blocks living on the odd numbers and blocks living on the even numbers.
Furthermore, under these identifications the quantity k?[a, b, b*, a*, ..., a,
b, b*, a*] goes over to the expression as appearing in our assertion (17).

K

3.10. Remark. According to Proposition 3.6 multiplication preserves
R-diagonality if the factors are free. Haagerup and Larsen [2, 5] showed
that, in the tracial case, the same statement is also true for the other extreme
relation between the factors, namely if they are the same; i.e., powers of
R-diagonal elements are also R-diagonal. The proof of Haagerup and
Larsen relied on special realizations of R-diagonal elements. Here we will
give a short combinatorial proof of that statement. In particular, our proof
will��in comparison with the proof of Proposition 3.6��also illuminate the
relation between the statements ``a1 , ..., ar R-diagonal and free implies
a1 } } } ar R-diagonal'' and ``a R-diagonal implies ar R-diagonal.'' Further-
more, in contrast to the approach of [2, 5], our proof extends without
problems to the non-tracial situation.

3.11. Proposition. Let a be an R-diagonal element and let r be a positive
integer. Then ar is R-diagonal, too.

Proof. For notational convenience we deal with the case r=3. General
r can be treated analogously.

The cumulants which we must have a look at are kn(b1 , ..., bn) with
arguments bi from [a3, (a3)*] (i=1, ..., n). We write bi=bi, 1 bi, 2 bi, 3 with
bi, 1=bi, 2=bi, 3 # [a, a*]. According to the definition of R-diagonality we
have to show that for any n�1 the cumulant kn(b1, 1b1, 2b1, 3 , ..., bn, 1bn, 2bn, 3)
vanishes if (at least) one of the following things happens:

(1%) There exists an s # [1, ..., n&1] with bs=bs+1 .

(2%) n is odd.

Theorem 2.2 yields

kn(b1, 1b1, 2b1, 3 , ..., bn, 1bn, 2bn, 3)

= :
? # NC(3n); ?6 _=13n

k?[b1, 1 , b1, 2 , b1, 3 , ..., bn, 1 , bn, 2 , bn, 3 ],

where _ :=[(b1, 1 , b1, 2 , b1, 3), ..., (bn, 1 , bn, 2 , bn, 3)]. The R-diagonality of a
implies that a partition ? gives a non-vanishing contribution to the sum
only if its blocks link the arguments alternatingly in a and a*.
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Case (1%). Without loss of generality, we consider the cumulant
kn(..., bs , bs+1 , ...) with bs=bs+1=(a3)* for some s with 1�s�n&1. This
means that we have to look at kn(..., a*a*a*, a*a*a*, ...). Theorem 2.2
yields in this case

kn(..., a*a*a*, a*a*a*, ...)

= :
? # NC(3n); ? 6 _=13n

k?[..., a*, a*, a*, a*, a*, a*, ...],

where _ :=[..., (a*, a*, a*), (a*, a*, a*), ...]. In order to find out which
partitions ? # NC(3n) contribute to the sum we look at the structure of the
block containing the element bs+1, 1=a*; in the following we will call this
block V.

There are two situations which can occur. The first possibility is that
bs+1, 1 is the first component of V; in this case the last component of V
must be an a and, since each block has to contain the same number of a
and a*, this a has to be the third a of an argument a3. But then the block
V gets in ? 6 _ not connected with the block containing bs, 3 and hence the
requirement ? 6 _=13n cannot be fulfilled in such a situation,

The second situation that might happen is that bs+1, 1 is not the first com-
ponent of V. Then the preceding element in this block must be an a and
again it must be the third a of an argument a3. But then the block contain-
ing bs, 3 is again not connected with V in ? 6 _. This possibility can be
illustrated as
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Thus, in any case there exists no ? which fulfills the requirement ? 6 _=13n

and hence kn(..., a*a*a*, a*a*a*, ...) vanishes in this case.

Case (2%). In the case n odd, the cumulant k?[b1, 1 , b1, 2 , b1, 3 , ..., bn, 1 ,
bn, 2 , bn, 3] has a different number of a and a* as arguments and hence at
least one of the blocks of ? cannot be alternating in a and a*. Thus k?

vanishes by the R-diagonality of a.
As in both cases we do not find any partition giving a non-vanishing

contribution, the sum vanishes and so do the cumulants kn(b1 , ..., bn). K

3.12. Remark. Of course we are now left with the problem of describing
the alternating cumulants of ar in terms of the alternating cumulants of a.
We will provide the solution to this question by showing that the similarity
between a1 } } } ar and ar goes even further as in the Remark 3.10. Namely,
we will show that ar has the same V-distribution as a1 } } } ar if all ai

(i=1, ..., r) have the same V-distribution as a. The distribution of ar can
then be calculated by an iteration of Proposition 3.9. In the case of a trace
this reduces to a result of Haagerup and Larsen [2, 5]. The specical case
of powers of a circular element was treated by Oravecz [11].

3.13. Proposition. Let a be an R-diagonal element and r a positive integer.
Then the V-distribution of ar is the same as the V-distribution of a1 } } } ar where
each ai (i=1, ..., r) has the same V-distribution as a and where a1 , ..., ar are
V-free.

Proof. Since we know that both ar and a1 } } } ar are R-diagonal we only
have to see that the respective alternating cumulants coincide. By Theorem 2.2,
we have

k2n(ar, a*r, ..., ar, a*r)

= :
? # NC(2nr); ? 6 _=12nr

k?[a, ..., a, a*, ..., a*, ..., a, ..., a, a*, ..., a*]

and

k2n(a1 } } } ar , ar* } } } a1*, ..., a1 } } } ar , ar* } } } a1*)

= :
? # NC(2nr); ? 6 _=12nr

k?[a1 , ..., ar , ar*, ..., a1*, ..., a1 , ..., ar , ar*, ..., a1*],

where in both cases _=[(1, ..., r), (r+1, ..., 2r), ..., (2(n&1) r+1, ..., 2nr)].
The only difference between both cases is that in the second case we also
have to take care of the freeness between the ai which implies that only
such ? contribute which do not connect different ai . But the R-diagonality
of a implies that also in the first case only such ? give a non-vanishing
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contribution, i.e., the freeness in the second case does not really give an
extra condition. Thus both formulas give the same and the two distribu-
tions coincide. K
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