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The solutions of MCC theory are used to investigate larger-amplitude strongly nonlinear
internal soliton load on a small surface-piercing circular cylinder in two-layer fluids. By
comparing the wave profiles and instantaneous horizontal velocities calculated by MCC
theory with those of KdV theory and experimental data, we verify the validity of MCC the-
ory for larger-amplitude strongly nonlinear internal soliton. The accelerations are com-
puted, and then force and torque on a small cylinder are estimated based on Morison’s
formula for both MCC and KdV theories. Computed results show that the internal soliton
force and torque become more and more large and wide with the increase of amplitude
for MCC theory. The location of torque crest calculated by MCC theory departs from origin
(moving to the right) as the amplitude grows and whenever the inertial term is included or
not, the wave forces computed based on the two theories both have small discrepancies for
the same amplitude, but when the inertial term is included, the torque obtained by MCC
theory will be much larger and the torque obtained by KdV still have a small discrepancy.
The reasons are presented in detail. The internal wave force will be underestimated if the
traditional KdV theory is used. Therefore, ocean engineers should consider the large-ampli-
tude strongly nonlinear internal soliton load on marine construct carefully.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Wave-structure interaction has received a significant attention in the literature under the assumption of the linear theory
of water waves in the case of a single homogeneous fluid of constant density. Also some researches on nonlinear theory in a
single homogeneous fluid have been given. As to two-dimensional case in a single homogeneous fluid, some of the classical
investigations on wave interaction with rigid obstacles are given by [1–3]. In the three-dimensional situation, MacCamy and
Fuchs [4] obtained a closed form solution to evaluate the dynamic pressures, forces and moments on a single large vertical
circular cylinder subjected to linear plane waves being diffracted around a large vertical cylinder. The paper [5] carried out
the study on the diffraction of three-dimensional short-crested waves on a circular cylinder and found that wave loads in-
duced by short-crested waves on a circular cylinder are always less than those induced by plane waves with the same total
wave number. Jian et al. [6,7] studied the short-crested wave-current forces around a large vertical circular cylinder includ-
ing the effect of uniform currents and third order approximation to capillary gravity short crested waves with uniform cur-
rents, respectively. They found that with the increase of current speed, the water run-up on the cylinder, total wave loads,
. All rights reserved.
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the crests of wave profile and wave pressure will exceeds that of long crested plane wave and short-crested wave case with-
out currents even though the current speed is small.

All the aforementioned wave-structure interaction problems are analyzed in a single fluid domain of homogeneous den-
sity. However, waves can also exist at the interface of two immiscible liquids having two different densities. Such a sharp
density gradient can, for example, be generated in the ocean by solar heating of the upper layer, or in an estuary or a fjord
into which fresh less saline river water flows over oceanic water, which is more saline and consequently heavier [8]. Internal
solitons are usually generated by a tidally driven flow over sills, continental shelf edges, or other major variations in under-
water topography. Recent observations show that large-amplitude internal waves frequently occur, see for instance [9,10]. A
collection of synthetic aperture radar (SAR) images in different ocean basins shows that large-amplitude internal waves are a
common phenomenon in the oceans. In order to continue deep-sea drilling for oil in areas where these internal solitons
occur, the drilling rigs will have to be built to withstand these forces (see for example [11]). The paper [12] conducted
experimental investigations on internal solitary wave propagation and their reflection from a smooth uniform slope in a
two-layered fluid system with a free surface. The soliton perturbation theory is used in [13] to study the solitons that are
governed by the generalized KdV equation in the presence of perturbation terms.

Starting from the Euler system governing the motion of each fluid layer, the classical weakly nonlinear theories of long-
wave motion assume that the typical amplitude of the waves is small compared with both layer thicknesses, and the hor-
izontal length scale of the motion is large with respect to both layer thicknesses. Due to a balance between nonlinear and
dispersive effects, they retain their shape and speed during their propagation (see for example [14]). The typical represen-
tative includes well-known shallow water KdV equation, eKdV equation which is the extended form of KdV equation by add-
ing the cubic nonlinear term, deep water BO equation and intermediate long wave (ILW) equations. A useful extension of the
weakly nonlinear two-layer eKdV model was proposed by Miyath, Choi and Camassa, Helfrich and Melville called the exten-
sion as MCC equation, which was derived from their name’s acronyms (see for example [15–18]). They each derived equiv-
alent two-layer models with full nonlinearity, and no smallness assumption on the wave amplitude is made.

In the present work, our research interest is focused on the large-amplitude internal soliton load on a small vertical cir-
cular cylinder. The paper [19] put forward an empirical formula to compute the forces associated with surface waves on
piles. The Morison equation was formulated with the assumption that the presence of the object did not affect the charac-
teristics of the wave field. Therefore, once velocity field is known, the force and torque can be obtained. Basing on Morison’s
empirical formula the papers [20–22] used weakly nonlinear KdV equation to estimate the horizontal velocity and its accel-
eration in a vertical section for computing the force and torque on a supposed pile in a continuous stratified fluid. However,
no-one seems to have discussed, to the authors’ knowledge, the load of strongly nonlinear large-amplitude internal soliton
on a small vertical circular cylinder.

In this paper, the MCC equation and KdV equation were used to investigate wave profiles, horizontal velocity and accel-
eration distributions, respectively. Then the comparison of the above theoretical results was made with those of experiment
in [23]. Results show that for strongly nonlinear large-amplitude internal soliton, the MCC theory is more effective than the
KdV theory. Furthermore, we calculate the internal soliton force and torque for several typical amplitudes based on Mori-
son’s empirical formula. Detailed results are presented and discussed for the force and torque of a small cylinder produced
by strongly nonlinear large-amplitude internal soliton.

2. MCC equation and KdV equation

Since our study is based on the MCC equation, it is necessary to introduce this theory briefly (refer to [17,18]). Moreover,
we will illustrate the relationship between MCC theory and KdV theory.

Consider one-dimensional internal solitons propagating along the interface between two homogeneous incompressible
and inviscid fluid of different density. Fig. 1 shows a two-layer fluid system that is stably stratified. The origin of the axes
Fig. 1. Definition sketch of two-fluid system in appearance of a small vertical circular cylinder.
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will be located in the undisturbed interface such that oz points vertically downwards. We assume that the upper and lower
fluid have constant densities q1 and q2 (>q1) with constant depths h1 and h2, respectively. Interfacial displacement is des-
ignated as f(x, t). A small vertical circular cylinder is located at x = 0 and extends from the rigid-lid approximated free surface
to the horizontal bottom. We denote amplitude of the interfacial soliton as a, and its typical wavelength as L, then as we all
known, a = a/h, e = h1/L are the two important parameters to describe nonlinearity and dispersion.

Based on the above assumption, the velocity components in Cartesian coordinates (ui,wi) and the pressure pi satisfy the
continuity equation and the Euler equations
uix þwiz ¼ 0; ð1Þ
uit þ uiuix þwiuiz ¼ �pix=qi; ð2Þ
wit þ uiwix þwiwiz ¼ �piz=qi � g; ð3Þ
where g is the gravitational acceleration and subscripts with respect to space and time represent partial differentiation. In a
two-fluid system, i = 1 (i = 2) stands for the upper (lower) fluid (see Fig. 1).

The boundary conditions at the interface are the continuity of normal velocity and pressure:
ft þ u1fx ¼ w1; ft þ u2fx ¼ w2; p1 ¼ p2 at z ¼ fðx; tÞ ð4Þ
at the upper and lower rigid surfaces, the kinematics boundary conditions are given by
w1ðx;h1; tÞ ¼ 0; w2ðx; � h2; tÞ ¼ 0: ð5Þ
From the assumption that the thickness of each fluid layer is much smaller than the typical wavelength, the continuity
equation (1) yields the following scaling relation
w
u
¼ O

h
L

� �
¼ OðeÞ � 1 ð6Þ
for finite-amplitude waves, there is the following important scaling relation
ui=U0 ¼ Oðf=hiÞ ¼ OðaÞ ¼ Oð1Þ; ð7Þ
where U0 = (gh1)1/2 is the typical velocity. Under the assumption of (7), solving Eqs. (1)–(5) by layer-mean integration and
systematic asymptotic expansion method, we obtain the following strongly nonlinear internal wave equation, which is so-
called MCC equation
g1t þ ðg1u1Þx ¼ 0; g1 ¼ h1 � f; ð8Þ
g2t þ ðg2u2Þx ¼ 0; g2 ¼ h2 þ f; ð9Þ

�u1t þ �u1�u1x þ gfx ¼ �
Px

q1
þ 1

g1

1
3
g3

1G1

� �
x
þ Oðe4Þ; ð10Þ

�u2t þ �u2�u2x þ gfx ¼ �
Px

q2
þ 1

g2

1
3
g3

2G2

� �
x
þ Oðe4Þ; ð11Þ
where
u1ðx; tÞ ¼
1
g1

Z h1

f
u1ðx; z; tÞdz; u2ðx; tÞ ¼

1
g2

Z f

�h2

u2ðx; z; tÞdz;

Pðx; tÞ ¼ p2ðx; f; tÞ; Giðx; tÞ ¼ ui xt þ uiui xx � ðui xÞ2:
The MCC equations are gained through the finite-amplitude wave assumption (7). If we assume the amplitude is small
corresponding to (7), the following scaling relation
ui=U0 ¼ Oðf=hiÞ ¼ OðaÞ ¼ Oðe2Þ ð12Þ
is satisfied. Under this scaling relation, the nonlinear dispersive terms of O(e2) in the right-hand sides of (10) and (11) reduce
to
1
gi

1
3
g3

i Gi

� �
x
! 1

3
h2

i uixxt:
Thus the MCC equation (8)–(11) reduce to the weekly nonlinear internal wave equations
g1t þ ðg1u1Þx ¼ 0; g1 ¼ h1 � f; ð13Þ
g2t þ ðg2u2Þx ¼ 0; g2 ¼ h2 þ f; ð14Þ

�u1t þ �u1�u1x þ gfx ¼ �
Px

q1
þ 1

3
h2

1u1xxt þ Oðe4Þ; ð15Þ

�u2t þ �u2�u2x þ gfx ¼ �
Px

q2
þ 1

3
h2

2u2xxt þ Oðe4Þ; ð16Þ
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to look for waves of permanent form traveling from left to right with constant speed c, we make the analysis
fðx; tÞ ¼ fðXÞ; �uiðx; tÞ ¼ �uiðXÞ; X ¼ x� ct ð17Þ
simplify the MCC equation (8)–(11) using (17), the solution can be expressed by a nonlinear ordinary differential equation
ðfXÞ2 ¼
3gðq2 � q1Þ

c2ðq1h2
1 � q2h2

2Þ

" #
f2ðf� a�Þðf� aþÞ

ðf� a�Þ
; ð18Þ
where a� ¼ �h1h2ðq1h1 þ q2h2Þ=ðq1h2
1 � q2h2

2Þ, a�, a+ satisfy a� < a+ and are the two roots of the following quadratic equation
f2 þ q1fþ q2 ¼ 0; ð19Þ
where q1 = �c2/g � h1 + h2, q2 ¼ h1h2ðc2=c2
0 � 1Þ.

The expression (18) is an ordinary differential equation which does not explicitly contain X, after suitable transform and
elliptic integrals, its solution in the form of X = X(f) can be derived. From (19), the amplitude of the highest traveling waves is
am ¼
h1 � h2ðq1=q2Þ

1=2

1þ ðq1=q2Þ
1=2 : ð20Þ
If the amplitude goes beyond the limit, it will cause the Helmholtz instability (see Ref. [23]), and the solution expressed by
(18) does not exist.

Similarly, using (17), after simplifying the weakly nonlinear internal wave equations (13)–(16), we can get the KdV equa-
tion as follow
ft þ c0fx þ c1ffx þ c2fxxx ¼ 0; ð21Þ
where c2
0 ¼

gh1h2ðq2�q1Þ
ðq1h2þq2h1Þ

, c1 ¼ � 3c0
2

q1h2
2�q2h2

1

ðq1h1h2
2þq2h2

1h2Þ
, c2 ¼ c0

6
q1h2

1h2þq2h1h2
2

ðq1h2þq2h1Þ
.

The solitary wave solution is given by
fKdV ðXÞ ¼ a sec h2ðX=kKdVÞ; X ¼ x� ct; ð22Þ
where (kKdV)2 = 12c2/(ac1), c = c0 + a c1/3.
Now we have described the strongly nonlinear internal wave equation (8)–(11) and the weakly nonlinear internal wave

equation (13)–(16), and the solutions (18) and (22) correspond to them as well.

3. Internal soliton profile, instantaneous velocity and acceleration

As to large-amplitude internal waves, the paper [23] got wave profiles and instantaneous velocities by direct numerical
simulation for original Euler equations, and then compared with KdV theory and experimental data, respectively. Result
showed the method of direct numerical simulation for the strongly nonlinear large-amplitude internal wave is more reason-
able than that of KdV theory. In Ref. [24], Camassa et al. used the strongly nonlinear internal wave MCC equation to calculate
the wave profiles and instantaneous velocities, and compared with the experimental data collected by Grue et al. [23]. Com-
putational result has a good agreement with those of experiment for large-amplitude internal soliton, but the comparison of
the result of KdV theory with that of MCC theory and experiment has not been given in Ref. [24]. As we want to show the
MCC theory is much more reasonable than KdV theory, we think the comparison is needed to be given although there are
many similarities with the comparison of Grue and Camassa has done.

In this section, we compare the experimental data given by Grue [23] with those of MCC and KdV theoretical results.
Moreover, in order to calculate the load, the result of acceleration is computed.

In order to compare theoretical results with those of Grue’s experiment, we choose parameters h2/h1 = 4.13, q1 = 999 kg/
m3, q2 = 1022 kg/m3, which are the same as Grue’s experiment (If no special statement, the selection of these parameters is
the same as the above in the following computation.) By (20) we can calculate the maximum wave amplitude am = 1.55. So
the actually existed amplitude will less than am. In the Sections 3.1 and 3.2, we calculate wave profiles and velocities in the
case of several typical amplitudes and compare them with those of experimental data. In Section 3.3, we first give the var-
iation of maximum acceleration with amplitude, and then acceleration corresponding to the same several typical amplitudes
with which used to calculate wave profiles and velocities.

3.1. Wave profiles

Fig. 2 illustrates the MCC wave profiles calculated from (18) using forth-order Rouger–Kutta method for several typical
amplitudes. This figure is almost the same with that gained by Grue et al. [23], but the calculated method is different. What
we must say is that Fig. 2 is almost the same with what Camassa [24] has done except that the result of KdV theory has been
added in order that we can have a comparison. Initial condition at the location X = 0 was prescribed corresponding to the
above typical amplitudes. The KdV wave profiles can be obtained directly from (22).We can see from Fig. 2a and b that when
amplitude is small, both the MCC and KdV theoretical results have a good agreement with experimental data. However, with



Fig. 2. Wave profiles of MCC theory, KdV theory and experimental data for different amplitudes.
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the increase of the amplitude (see Fig. 2c and d), the weakly nonlinear KdV theory become invalid, and only the MCC results
have a good agreement with experimental data. After more careful analysis, we find that when a < 0.4, the KdV theory still
work well, but as the amplitude is larger than 0.4, the discrepancy begin to happen apparently. Moreover, the property of
being wider and wider of wave profiles can be found from Fig. 2c and d in the case of large-amplitude.

3.2. Instantaneous horizontal velocity

An approximate relation between layer-averaged velocities and instantaneous horizontal velocity obtained by particle
imaging velocimetry (PIV) measurement (In Ref. [24]) for the shallow-water configuration is
u2ðx; z; tÞ ¼ u2ðx; tÞ þ
ðg2ðx; tÞÞ

2

6
� ðzþ h2Þ2

2

 !
@2

x u2ðx; tÞ: ð23Þ
Substituting (17) into (8) and (9) and integrating once with respect to X gives
u2ðXÞ ¼ c 1� h2

g2ðXÞ

� �
: ð24Þ
Putting (24) into (23), we get the instantaneous horizontal velocity of lower fluid
u2ðX; zÞ ¼ c 1� h2

g2
þ g2

2

6
� ðzþ h2Þ2

2

 !
h2g002
g2

2

� 2h2ðg02Þ
2

g3
2

 !" #
: ð25Þ
Similarly, the instantaneous horizontal velocity for upper fluid can be written as
u1ðX; zÞ ¼ c 1� h1

g1
þ g2

1

6
� ðh1 � zÞ2

2

 !
h1g001
g2

1

� 2h1ðg01Þ
2

g3
1

 !" #
: ð26Þ



Fig. 3. Instantaneous horizontal velocities of MCC theory, KdV theory and experimental data for different amplitudes.
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After substituting the interfacial displacements (18) and (22) for MCC and KdV theory respectively into (25) and (26), the
value of instantaneous horizontal velocity can be gained. Fig. 3 gives the instantaneous horizontal velocity at wave-crest for
several different amplitudes. This figure is also almost the same with that gained by Grue et al. [23], but the calculated meth-
od used here is different too. Similar to the analysis of wave profiles in Fig. 2, we still can see that for small amplitude inter-
nal soliton, both MCC and KdV theories is valid (see Fig. 3a and b). However, for larger-amplitude internal soliton, only the
MCC theory behaves a good agreement with experimental data (see Fig. 3c and d).
3.3. Horizontal acceleration

From (25) and (26), horizontal acceleration of both upper and lower layer fluids can be calculated by differentiating the
velocity concerning the time. The results can be expressed as
@u1

@t
¼ �c

@u1

@X

¼ c �h1fX

g2
1

� g1fX

3
h1g001
g2

1

� 2h1ðg01Þ
2

g3
1

 !
þ h1

g2
1

6
� ðh1 � zÞ2

2

 !
g0001 g1 þ 2g001fX

g3
1

� 4g1g01g001 þ 6ðg01Þ
2fX

g4
1

 !" #
; ð27Þ
@u2
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h2fX

g2
2

þ g2fX

3
h2g002
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� 2h2ðg02Þ
2

g3
2

 !
þ h2

g2
2

6
� ðzþ h2Þ2

2

 !
g0002 g2 � 2g002fX

g3
2

� 4g2g02g002 � 6ðg02Þ
2fX

g4
2

 !" #
; ð28Þ
substituting wave profiles of MCC and KdV theory (18) and (22) into (27) and (28), we can get the acceleration for upper and
lower layer fluids, respectively.
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Fig. 4. The variations of maximum acceleration with different amplitudes.

Fig. 5. The acceleration at wave-crest for several different amplitudes.
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Fig. 4 illustrates the variations of maximum acceleration with amplitudes. From Fig. 4, we can see an apparently differ-
ence, that is, the maximum acceleration of KdV is always the trivial value, zero, but the maximum acceleration of MCC theory
changes continuously concerning amplitude, which is not zero, for both upper and lower layer fluids. This difference is agree-
ment with the assumption of the two theories, as the assumption (12) of KdV theory is that the relative scale of interfacial
amplitude is the order of O(e2) which leads to the local acceleration at the order of O(e2) then it can be canceled, while the
assumption (7) of MCC theory is that the relative scale of interfacial amplitude has the order of O(1) which leads to the local
acceleration at the order of O(e2) then it should be preserved. So we think the numerical result of maximum acceleration in
Fig. 4b calculated by (27) and (28) is reasonable.

Fig. 5 shows the acceleration at wave-crest for several different amplitudes. Seen from Fig. 5, an important property of
acceleration can be found, that is, both the acceleration in upper and in lower layer fluid are approximately negatively
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symmetric about the center (where the acceleration of KdV theory is zero). Thus the directions of the accelerations at the two
sides of the center are opposite and the magnitudes are equal approximately. This property is very important in calculating
the load of internal soliton on the small cylinder. In Section 4, we will give how this property has an influence to load.
4. Horizontal forces and torque

As we have known, when calculating the wave force on a small cylindrical structure, the empirical Morison’s formula is
always used. In this formula, the force F includes two parts: one is called drag force, which is noted as FD, the other is called
inertial force, which is noted as FI. In this section, we use MCC and KdV theories to compute the load on a small cylinder with
and without the inertial force.

From the Section 3.3, we can see that the inertial term is always small when the load of nonlinear internal wave is esti-
mated using the KdV theory. However, due to the scale of acceleration for MCC theory being the order of O(1), so the inertial
force need to be analyzed carefully.
4.1. Horizontal forces

For the upper fluid, inertial and drag forces are
FI1 ¼
Z h1

f
Cmq1p

D2

4
@u1ðX; zÞ

@t
dz; FD1 ¼

Z h1

f
Cdq1

D
2

u1ðX; zÞ u1ðX; zÞj jdz;
similarly, for the lower fluid, inertial and drag forces can be written as
FI2 ¼
Z f

�h2

Cmq2p
D2

4
@u2ðX; zÞ

@t
dz; FD2 ¼

Z f

�h2

Cdq2
D
2

u2ðX; zÞ u2ðX; zÞj jdz:
It is worth being noticed that as our main attention is focused on large-amplitude internal waves, the displacement of
interface can not be neglect. Different from those of KdV theory, where the integral limit of upper or lower is zero, the inte-
gral limit of upper or lower in the above expression of the force is f.

In the following computation, we choose Cm = 2.0, Cd = 1.2, D = 5 m, h1 = 50 m, which we want them to consist with most
of the practical computation. From Sections 3.1 and 3.2, it can be concluded that MCC theory may be more reasonable than
KdV theory in calculating the large-amplitude internal soliton. Thus we use MCC theory to estimate the force and torque for
different amplitudes, and compare the result with KdV theory.

Ignoring the inertial term, we express the total forces in upper and lower fluids as
F1 ¼
Z h1

f
Cdq1

D
2

u1ðX; zÞ u1ðX; zÞj jdz; ð29Þ

F2 ¼
Z f

�h2

Cdq2
D
2

u2ðX; zÞ u2ðX; zÞj jdz ð30Þ
if the inertial term is included, the total force can be written as
F1 ¼ q1

Z h1

f
Cd

D
2

u1ðX; zÞ u1ðX; zÞj j þ CmpD2

4
@u1ðX; zÞ

@t

 !
dz; ð31Þ

F2 ¼ q2

Z f

�h2

Cd
D
2

u2ðX; zÞ u2ðX; zÞj j þ CmpD2

4
@u2ðX; zÞ

@t

 !
dz: ð32Þ
Fig. 6 shows the variations of internal wave forces with X computed by (29)–(32) on a small cylinder for several different
amplitudes. Both MCC and KdV theories are used. It can be found from Fig. 6c and d that with the increase of the amplitude,
the wave forces obtained from MCC theory become larger and wider than those of KdV theory. These results consist with the
nature of the wave profiles in Fig. 2. Furthermore, we can see that the wave forces computed based on the two theories have
small discrepancies for the same amplitude whenever the inertial term is included or not. The main reason is that the accel-
erations have the property that the directions are opposite and the magnitudes are approximately equal at the two sides of
the center (see Fig. 5), so the inertial forces which are obtained from having an integral with acceleration term can be coun-
teracted approximately.
4.2. Torque

Similar to the wave forces, we study the torque based on MCC and KdV theories with and without inertial term.



Fig. 6. The variations of internal wave forces with X for several different amplitudes with and without inertial term.
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4.2.1. Torque without inertial term
If the inertial term is ignored, we call the total torque as drag force torque. When the fulcrum is located at the intersectant

point between the cylinder and the interface, the drag force torque is
MD ¼
Z h1

f
ðz� fÞCdq1

D
2

u1ðX; zÞ u1ðX; zÞj jdzþ
Z f

�h2

ðz� fÞCdq2
D
2

u2ðX; zÞ u2ðX; zÞj jdz: ð33Þ
Fig. 7 showed the internal wave torque on a small cylinder calculated by (33) based on MCC and KdV theories for several
different amplitudes. We can see from Fig. 7 that the torque obtained by MCC theory is larger than that of the KdV theory.
Similar to the force, the torque calculated from MCC theory also gets broader and broader as the amplitude grows.

After analyzing the drag force torque by MCC theory and the maximum drag force torque got from the KdV theory in de-
tail, we find an interesting phenomenon. Denote the horizontal location for soltion crest as O, from Fig. 7 we can get the max-
imum drag force torque at O for both MCC and KdV theories. These can be expressed as
max MDKdVðXÞ ¼ MDKdVðOÞ; ð34Þ
max MDMCCðXÞ ¼ MDMCCðOÞ; ð35Þ
we define the following ratio
MDMCCðXÞ �max MDKdVðXÞ
max MDKdVðXÞ

¼ RðX; aÞ; ð36Þ
which is a function of X and amplitude a. This ratio means the relative difference between the drag force torque by MCC the-
ory and the maximum drag force torque got from the KdV theory.

Fig. 8 gives the variations of the ratio R(X,a) with X from (36) for different amplitudes 0.22, 0.40, 0.91, 1.23, 1.51 and1.55.
The selection of other parameters in Fig. 8 is the same as the above. From Fig. 8, we can see that when X is fixed, then



Fig. 7. The variations of internal wave torque with X for several different amplitudes without inertial term.

Fig. 8. The variations of the ratio R(X,a) with X for different amplitudes.

2098 J. Xie et al. / Applied Mathematical Modelling 34 (2010) 2089–2101
RðX; aÞ < RðX; amÞ; ð37Þ
where am equal to 1.55. By (36) and (37) we can get the relation between actual torque M(X) and max MDKdV
MðXÞ < max MDKdVð1þ RðX; amÞÞ: ð38Þ
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Seeing from (38), we can conclude that when the maximum KdV solution max MDKdV is solved, the upper limit of the ac-
tual torque can be obtained. For example, in the situation of Fig. 8, we can get the ratio R(X,am) is 0.402, then
MðXÞ < 1:402 max MDKdV: ð39Þ
4.2.2. Torque with the inertial term
When the inertial term is included, the torque has the following formation
MD ¼ q1

Z h1

f
ðz� fÞ Cd

D
2

u1ðX; zÞ u1ðX; zÞj j þ CmpD2

4
@u1ðX; zÞ

@t

" #
dz

þ q2

Z f

�h2

ðz� fÞ Cd
D
2

u2ðX; zÞ u2ðX; zÞj j þ CmpD2

4
@u2ðX; zÞ

@t

" #
dz: ð40Þ
Fig. 9 gives the internal wave torque computed by (40) on a small cylinder for different amplitudes based on MCC and KdV
theories. From Fig. 9, we find the torque obtained by MCC theory is much larger about 1000 times than those by KdV theory,
and we think this is led by the assumption’s difference of the two theories. Moreover, the location of torque crest calculated
Fig. 9. The variations of internal wave torque with X for several different amplitudes with inertial term.



Fig. 9 (continued)
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by MCC theory departs from origin (moving to the right) as the amplitude grows. The reason is mainly due to the widening of
the large-amplitude internal wave profiles with the increase of the amplitude. The calculation of torque needs to consider
the product of the force and positional vector. Thus the widening of wave profiles will change the location of the largest tor-
que. The location of the largest torque should be where the product of force and positional vector is largest.

By comparing the numerical results in Fig. 9 based on MCC and KdV theories with those in Fig. 7 for the same amplitude,
we find that when the inertial term is included, the torque behaves small change by KdV theory, while the torque changes
greatly by MCC theory. The reason is that for MCC theory, due to the O(1) order acceleration, the inertial force is the order of
O(1), so the torque can become very large due to the larger positional vector although the directions of the accelerations at
the two sides of the center are opposite. While for KdV theory, the inertial force is the order of O(e2), so the torque change
little even for large positional vector.
5. Conclusions

The internal soliton force and torque on a single surface-piercing circular cylinder in a two-layer fluid are investigated.
Results obtained by comparing the wave profiles and instantaneous horizontal velocities calculated by MCC theory and
KdV theory with those of experimental data show that the MCC theory is very valid for large-amplitude strongly nonlinear
internal soliton. Then based on Morison’s formula, we calculate the force and torque for both MCC and KdV theories. The
main conclusions about load can be made as follows:

(1) With the increase of the amplitude, the wave forces and torque obtained from MCC theory become larger and wider
than those of KdV theory.

(2) The location of torque crest calculated by MCC theory departs from origin (moving to the right) as the amplitude
grows.

(3) Whenever the inertial term is included or not, the wave forces computed based on the two theories both have small
discrepancies for the same amplitude, but when the inertial term is included, the torque obtained by MCC theory will
be much larger and the torque obtained by KdV still have a small discrepancy.
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Therefore, ocean engineers should consider the large-amplitude strongly nonlinear internal soliton load on marine con-
struct carefully. Further, results of the strongly nonlinear internal soliton load on a large vertical circular cylinder will be
published in another paper.
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