
Applied Mathematics Letters 25 (2012) 1–5

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Speeding up the Floyd–Warshall algorithm for the cycled shortest
path problem
Asghar Aini a,1, Amir Salehipour b,∗
a School of Computer Engineering, Shahid Sattari Air University, 13846-37945, Iran
b School of Industrial Engineering, Islamic Azad University-South Tehran Branch, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 8 February 2011
Received in revised form 8 June 2011
Accepted 8 June 2011

Keywords:
The shortest path problem with a cycle
The Floyd–Warshall algorithm
The Rectangular algorithm

a b s t r a c t

On a network with a cycle, where at least one cycle exists, the Floyd–Warshall algorithm is
one of the algorithms most used for determining the least cost path between every pair of
nodes. In thiswork a newalgorithm for this problem is developed that requires less compu-
tational effort than the Floyd–Warshall algorithm. Furthermore, we show that the basis of
our algorithm is much easier to understand, which might be an advantage for educational
purposes. A small example validates our algorithm and shows its implementation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The shortest path problem is a fundamental and well-known problem in operations research related to finding a path
between two nodes (vertices) of a graph such that the sum of the weights (cost, distance, time etc.) of its connecting edges
is minimized [1–3]. The shortest path problem has many real-world applications, one common one being that of finding
the quickest path through a road network. In this example, the nodes represent locations and the edges represent parts of
a road that are weighted by the time (distance) required to travel each part. Fig. 1(a) depicts such a graph with four nodes
and five arcs. The node ‘1’ stands for the source (the depot), and the node ‘4’ stands for the sink (the destination). According
to Fig. 1(a) the shortest path from the source to the sink is through node ‘3’ and has a cost of 5.

Generally the shortest path problem is categorized into caseswithout cycle(s) (Fig. 1(a)) and caseswith cycle(s) (Fig. 1(b)).
There are algorithms for both cases where an optimal solution is guaranteed [4,5]. In the cases with cycles there is no source,
nor is there a sink (final destination). Thus, every node can be a source or sink.

In this work we study the shortest path problemwith cycles on a network; however the results can be simply applied to
cases on a graph.We review the Floyd–Warshall algorithm that finds both the shortest costs and the shortest routes between
every pair of nodes on this network, and develop a new efficient algorithm for this problem that reduces the required
computational effort of the Floyd–Warshall algorithm substantially. Besides, the understanding of our proposed algorithm
is much easier than that of the currently available algorithms, especially the Floyd–Warshall algorithm, which could be
beneficial for educational purposes. The remainder of this work is organized as follows. Section 2 provides a summary on
the Floyd–Warshall algorithm. Section 3 discusses our proposed algorithm. Section 4 validates our algorithm by illustration
with a small example. The work ends with the conclusion.

∗ Corresponding author. Tel.: +98 9102125091.
E-mail addresses: ainiasghar@yahoo.com (A. Aini), amir.salehipour@gmail.com (A. Salehipour).

1 Tel.: +98 9123240430.

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.06.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82551059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.06.008
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:ainiasghar@yahoo.com
mailto:amir.salehipour@gmail.com
http://dx.doi.org/10.1016/j.aml.2011.06.008

2 A. Aini, A. Salehipour / Applied Mathematics Letters 25 (2012) 1–5

a b

Fig. 1. Two simple networks, (a) without a cycle and (b) with cycles.

2. The Floyd–Warshall algorithm

Given a network N(V , A) with node set V = {1, 2, . . . , n} and arc set A = {(i, k) : i, k ∈ V , i ≠ k} where |V | = n, and at
least one cycle exists on the network, the Floyd–Warshall algorithm [6,7] is probably the most famous and one of the best
algorithms for finding the shortest path between every two nodes i and k in the network N . This algorithm is based on a
four-step procedure in which two square matrices Dj and Rj for j = 0, . . . , n are calculated, holding the shortest path costs
and the shortest routes (sources and sinks) between every two arbitrary nodes i and k, respectively. Although the algorithm
seems to be simple, it requires a lot of calculations. Given a network with n nodes, the Floyd–Warshall algorithm requires
the Dj and the Rj matrices to be calculated n + 1 times starting from D0 and R0, where each has n2

− n entities. Algorithm 1
below explains the Floyd–Warshall algorithm. Details of this algorithm can be found in [6,7].

Algorithm 1. The Floyd–Warshall algorithm
Step 1. Set Dj and Rj as two square n × nmatrices, where j is the stage number and n is the total number of nodes of
the network.
Step 2. For j = 0 calculate D0 and R0:
D0 = [dik], where

dik =

dik if there is a direct route connecting node i to the node k
∞ if there is no direct route connecting the node i to the node k
0 if i = k.

R0 = [rik], where

rik =

k if there is a direct route connecting node ito the node k
− if there is no direct route connecting the node ito the node k
− if i = k.

Step 3. For the remaining j = 1, . . . , n calculate the Dj and the Rj matrices as follows. Note that from now on we
derive the entities of the Dj and the Rj matrices on the basis of the entities of the most recent previous matrices,
i.e. the Dj−1 and the Rj−1 matrices:
Dj = [dik] where

dik =


dik if i = k, i = j, k = j
min(dik, dij + djk) otherwise.

Rj = [rik] where

rik =

k if i = k, i = j, k = j
k if dik ≤ dij + djk
j if dik > dij + djk.

Step 4. Repeat step 3 until the Dn and the Rn are yielded.

Now we introduce our new algorithm for the shortest path problem with cycles.

3. The Rectangular algorithm

In this section we present the major contribution of this work. This contribution is a new algorithm which reduces the
amount of calculation from that required by the Floyd–Warshall algorithm substantially. This algorithm benefits from a
rectangular graphical approach after which we named it. Besides requiring less computational effort and being easy to
implement, the Rectangular algorithm is simple to understand, which could be an advantage for educational purposes.
Algorithm 2 below explains the Rectangular algorithm. Note that the core idea of this algorithm is a set of rectangles, as
illustrated in Fig. 2.

A. Aini, A. Salehipour / Applied Mathematics Letters 25 (2012) 1–5 3

dj

didi

0

Fig. 2. Constructing a rectangle in the Rectangular algorithm. In figure, the ‘0’ corresponds to the diagonal’s zero of stage j.

Fig. 3. The computational performance of Floyd–Warshall algorithm and the Rectangular algorithm, accomplished by performing a simulation study.

Algorithm 2. The Rectangular algorithm
Step 1. Set Dj and Rj as two square n × nmatrices, where j is the stage number and n is the total number of nodes of
the network.
Step 2. Derive the D0 and the R0 matrices by following step 2 of the Floyd–Warshall algorithm (see Fig. 2).
Step 3. For the remaining j = 1, . . . , n calculate the Dj by applying one of the following rules.
(a) If an 8 exists in any row and/or in any column of the Dj matrix, the remaining entities of that row or that column,

respectively, next to it will not change. Thus they can be substituted with their values from the Dj−1 matrix for j ≥ 1
(Speed-Up Procedure 1).

(b) If applying rule (a) does not result in a complete Dj matrix, derive those remaining entities by drawing a set of
rectangles as Fig. 2 illustrates (in fact, for each dik, ∀i, k in the Dj matrix a rectangle will be formed).
(c) Derive the Rj matrix as follows. The Rj matrix is derived on the basis of the Dj matrix; thus if an entity in the Dj

matrix does not change, the Rj matrix will definitely not change (as we see by comparing min(dik, dij + djk) from the
Dj matrix to dij + djk < dik from the Rj matrix). On the other hand, if an entity changes in the Dj matrix, its associated
entity in the Rj matrix can be substituted with j (Speed-Up Procedure 2).
Step 4. Repeat step 3 until the Dn and the Rn are yielded.

Given stage j, j= 1, . . . ,n, for each dik (for the ith row and kth column) except the diagonal zeros, a rectangle is drawn
starting from the diagonal’s zero of stage j. This diagonal zero forms the upper left corner of the rectangle (see Fig. 2). Here
dik = min(dik, dij + djk) as in the Floyd–Warshall algorithm (see Algorithm 1).

Obviously, in stage j, we cannot construct a rectangle using the jth row and the jth column. This implies that this row and
this column will appear over stages (as in the Floyd–Warshall algorithm). Obviously, Speed-Up Procedure 1 and Speed-Up
Procedure 2 in the Algorithm 2 have substantial effects on the speed of the Rectangular algorithm. This can be understood
by considering the fact that the Floyd–Warshall algorithm requires n2

− n calculations for each matrix where a total of
2(n + 1) matrices are derived, while the Rectangular algorithm requires at most n2

− n calculations for each matrix, where
this number can be reduced substantially by the speed-up procedures. This implies that the worst case performance of the
Rectangular algorithm is similar to the normal performance of the Floyd–Warshall algorithm. A graphical explanation for
this is simulated in Fig. 3.

As this figure illustrates, in a set of 100 randomly generated instances with up to 100 nodes, the time taken by the
Floyd–Warshall algorithm increases rapidly. Note that, to prepare the figure for the simulation study, we have generated
the computational time for the Rectangular algorithm randomly according to the facts mentioned above.

4. An example

In this section we elaborate on the Rectangular algorithm by solving an example. Given the network N in Fig. 4, we
would like to derive the shortest paths between every pair of nodes of this network. First we solve the example using the

4 A. Aini, A. Salehipour / Applied Mathematics Letters 25 (2012) 1–5

Fig. 4. The network of the example.

Floyd–Warshall algorithm, and then we apply the Rectangular algorithm to solve the example. This example clarifies how
the Rectangular algorithm is more efficient than the Floyd–Warshall algorithm.

It is trivial to show that following the Floyd–Warshall algorithm, D4 and R4 would be

D4 =

0 3 5 7
4 0 7 4
6 3 0 5
9 6 3 0

 and R4 =

− 2 3 2
1 − 3 4
1 2 − 4
3 2 3 −

 .

However, a complete calculation for deriving only matrices D1 and R1 is as follows.
Applying step 3 of the Floyd–Warshall algorithm to deriveD1 would result in the following values. Note that the first row

and the first column (j = 1) would be the same. Furthermore, the diagonal also remains the same.

d23 = min(d23, d21 + d13) = min(7, 4 + 5) = 7
d24 = min(d24, d21 + d14) = min(4, 4 + ∞) = 4
d32 = min(d32, d31 + d12) = min(3, 6 + 3) = 3
d34 = min(d34, d31 + d14) = min(5, 6 + ∞) = 5
d42 = min(d42, d41 + d14) = min(6, ∞ + ∞) = 6
d43 = min(d43, d41 + d13) = min(3, ∞ + 5) = 3.

Thus D1 is

 0 3 5 ∞

4 0 7 4
6 3 0 5
∞ 6 3 0


. R1 is


− 2 3 −

1 − 3 4
1 2 − 4
− 2 3 −


and is calculated by deriving the following values:

r12 = k = 2
r13 = k = 3
r21 = k = 1
r23 = k = 3
r24 = k = 4
r31 = k = 1
r32 = k = 2
r34 = k = 4
r42 = k = 2
r43 = k = 3.

We showed how the Floyd–Warshall algorithmworks. Thiswas required, aswe believe our Rectangular algorithm generates
optimal solutions, of course in a fewer steps. Now we continue with the example by explaining the Rectangular algorithm.

As n = 4, we need two square 4 × 4 matrices Dj and Rj for five stages, starting from the stage ‘0’ and going to the stage
‘4’. The matrices D0 and R0 can be derived by applying step 2 of the Rectangular algorithm:

D0 =

 0 3 5 ∞

4 0 7 4
6 3 0 5
∞ 6 3 0

 and R0 =

− 2 3 −

1 − 3 4
1 2 − 4
− 2 3 −

 .

Following the Rectangular algorithm to derive theD1 and the R1 matrices, since j = 1 the first row and the first column of the
D1 matrix are exactly same as the first row and the first column of the D0 matrix (remember that the diagonal values remain
intact during all stages). Thus we have to recalculate only d23, d24, d32, d34, d42 and d43. Following Speed-Up Procedure 1,
since there is ∞ in the first row and also in the first column of the D0 matrix, the entities of the fourth row and the fourth

A. Aini, A. Salehipour / Applied Mathematics Letters 25 (2012) 1–5 5

Fig. 5. The constructed rectangle for calculating entity d23 .

Fig. 6. The constructed rectangle for calculating entity d32 .

column of the D0 matrix will appear intact in the D1 matrix (see Speed-Up Procedure 1). Hence, we need to recalculate only
d23 and d32.

To calculate d23, we construct a rectangle in D0 starting at d11 as we are in stage 1 (j = 1). The opposite corner would be
d23 (see Figs. 4 and 6). Having these two corners we can construct the rectangle as shown in Fig. 5.

Thus in D1, d23 = min(7, 4 + 5). Similarly d32 = min(3, 6 + 3) (Fig. 6).

Thus D1 =

 0 3 5 ∞

4 0 7 4
6 3 0 5
∞ 6 3 0


. It is trivial to show that R1 =


− 2 3 −

1 − 3 4
1 2 − 4
− 2 3 −


. It is clear that this procedure (the

Rectangular algorithm) has reduced the amount of calculation substantially. Continuing this, we will stop at D4 =0 3 5 7
4 0 7 4
6 3 0 5
9 6 3 0


and R4 =


− 2 3 2
1 − 3 4
1 2 − 4
3 2 3 −


(which is the same as the result from the Floyd–Warshall algorithm) which

enables us to find the shortest path costs and routes between any two arbitrary nodes (i, k) ∈ N . From this simple example
which contains only four nodes, it is clear that the Rectangular algorithm developed is faster and more efficient than
the Floyd–Warshall algorithm. Again we emphasize that the Rectangular algorithm will reduce the amount of calculation
substantially.

5. Conclusion

In this work we introduced a novel approach for calculating the shortest path in networks with cycles. The proposed
approach, the Rectangular algorithm, improves on the Floyd–Warshall algorithm, one of the best available algorithms for
treating this problem, in a number of ways. The Floyd–Warshall algorithm and the Rectangular algorithm have exactly the
same performance in deriving the D0 and the R0 matrices. For the stages j ≥ 1, however, the Rectangular algorithm derives
the associated matrices much more quickly due to the reduced amount of calculation. This has been explained graphically
using simulated data. As future research directions, the authors are investigating further improvements of the Rectangular
algorithm, to reduce the amount of calculation required when deriving the Dj and the Rj matrices.

References

[1] R.E. Bellman, On a routing problem, Quarterly of Applied Mathematics 16 (1) (1958) 87–90.
[2] E.W. Dijkstra, A note on two problems in connection with graphs, Numeriskche Mathematik 1 (1959) 269–271.
[3] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[4] G. Gallo, S. Pallotino, Shortest paths algorithms, Annals of Operations Research 13 (1988) 3–79.
[5] B.V. Cherkassky, A.V. Goldberg, T. Radzik, Shortest paths algorithms: theory and experimental evaluation, Mathematical Programming 73 (2) (1996)

129–174.
[6] R.W. Floyd, Algorithm 97, Communications of the ACM 5–6 (1962) 345.
[7] S. Warshall, A theorem on boolean matrices, Journal of the ACM 9 (1962) 11–12.

	Speeding up the Floyd--Warshall algorithm for the cycled shortest path problem
	Introduction
	The Floyd--Warshall algorithm
	The Rectangular algorithm
	An example
	Conclusion
	References

