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1. Introduction and preliminaries

Consider the semilinear stochastic differential equation{
dX(t) = (

A X(t) + (−A)
1
2 F

(
X(t)

))
dt + dWt , t � 0,

X(0) = x
(1)

in a separable Hilbert space H . Here A is a self adjoint operator with negative type ω and compact resolvent A−1 on H , F is
a nonlinear function. The process (Wt)t�0 is a standard cylindrical Wiener process on H defined on a filtered probability
space (Ω, F , (Ft)t�0,P). Under appropriate assumptions the solution to (1) is given by the formula

X(t) = et A x +
t∫

0

e(t−s)A(−A)
1
2 F

(
X(s)

)
ds +

t∫
0

e(t−s)A dW s, t � 0.

For ϕ ∈ Bb(H) (space of all bounded measurable functions on H), we define the transition semigroup (Pt)t�0 by

Ptϕ(x) = E
(
ϕ

(
X(t, x)

))
, x ∈ H, t � 0.

We are concerned with regularity properties of the function Ptϕ . One of our main aims is to show that, under appropri-
ate assumptions the function Ptϕ is globally Lipschitz on H which means that the semigroup (Pt)t�0 is strong Feller. In
the framework of infinite dimensional stochastic equations, the strong Feller property of transition semigroups related to
stochastic evolution equations have been addressed by many authors. They consider mostly equations of type (1) without

the term (−A)
1
2 in front of the nonlinear drift F and they discuss equations of the form
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{
dX(t) = (

A X(t) + G
(

X(t)
))

dt + dWt , t � 0,

X(0) = x.
(2)

If G is bounded on H , it has been proved in [2,4] that (Pt)t�0 is strong Feller by solving a mild form of the Kolmogorov
equation corresponding to (2). In [11] the results of [4] are extended to cover in particular, the case of a nonlinear local
Lipschitz function G and later in [9] this result was extended also for general drift G with weak regularity properties.
In [12] by generalizing an earlier formula, due to Elworthy [7] to the infinite dimensional setting, the strong Feller property
of (Pt)t�0 was proved for equations with multiplicative noise and global Lipschitz nonlinear drifts. Recently in [10], a similar
equation to (1) was treated on space of 2π -periodic square integrable real functions. The following equation was considered{

dX(t) = ((
D2

ξ − Id
)

X(t) + Dξ F
(

X(t)
))

dt + dWt , t � 0,

X(0) = x,
(3)

where F is a C1-function on L2[0,2π ] with bounded derivative. It has been proved that the transition semigroup associated
to (3) is strong Feller and irreducible and there exists a unique invariant measure for (3). In the present paper we generalize
the result in [10] in a more abstract setting, by supposing the nonlinear function F to be only global Lipschitz we prove
the strong Feller property of (Pt)t�0 in Theorem 2.3. Our method is based on an approximation argument as in [12]. Using
similar techniques as in [10] we prove the irreducibility of the semigroup (Pt)t�0. Moreover, if we suppose the nonlinear
function F to be dissipative, we can prove the existence and uniqueness of an invariant measure μ of (1). We shall remark

that in our case only F need to be dissipative not (−A)
1
2 F for the existence of μ. In the rest of this introductory section let

us fix some notations and our main assumptions. For γ ∈ [0,1] let

Vγ := (
D

(
(−A)γ

)
, 〈·,·〉γ

)
, where 〈x, y〉γ = 〈

(−A)γ x, (−A)γ y
〉

for x, y ∈ Vγ .

Note that, since A has a compact resolvent, the imbedding Vγ ↪→ H is compact. In the following ‖ ·‖HS denotes the Hilbert–
Schmidt operator norm on the space H . We shall formulate our assumptions:

(H0) A is selfadjoint and ‖et A‖ � e−ωt for certain ω > 0.
(H1) There exist α ∈ ]0, 1

2 [ such that for all t > 0

t∫
0

s−2α
∥∥esA

∥∥2
HS ds < ∞.

(H2) F maps H into D((−A)
1
2 ) and∣∣F (x) − F (y)

∣∣ � L|x − y|, x, y ∈ H .

Definition 1.1. A mild solution of Eq. (1) is an Ft -adapted process which satisfies the following integral equation

X(t) = et A x +
t∫

0

(−A)
1
2 e(t−s)A F

(
X(s)

)
ds +

t∫
0

e(t−s)A dW s, t � 0.

For T > 0 and 1
α > p > 2 we denote by H p,T the Banach space of all adapted processes in L p(Ω, C([0, T ], H)) ∩

L∞([0, T ], H) endowed with the norm

‖Y ‖p
p,T = E sup

t∈[0,T ]
(∣∣Y (t)

∣∣p)
.

Theorem 1.2. Under hypotheses (H1) and (H2), for any x ∈ H, Eq. (1) has a unique mild solution X(·, x) ∈ H p,T .

Proof. We define the mapping K on H p,T by

K(t, X) = et A x +
t∫

0

e(t−s)A(−A)
1
2 F

(
X(s)

)
ds +

t∫
0

e(t−s)A dW s, t ∈ [0, T ].

First we remark that for X ∈ H p,T we have K(·, X) ∈ H p,T . Indeed,

∣∣K(t, X)
∣∣p � 3p−1

(∥∥et A
∥∥p|x|p +

( t∫ ∣∣e(t−s)A(−A)
1
2 F

(
X(s)

)∣∣ds

)p

+
∣∣∣∣∣

t∫
e(t−s)A dW s

∣∣∣∣∣
p)

.

0 0
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Hypothesis (H1) implies that the stochastic convolution W A(t) := ∫ t
0 e(t−s)A dW s is well defined in H and by [4, Proposi-

tion 7.9] there exists a constant cp(T ) > 0 such that

E

(
sup

t∈[0,T ]

( t∫
0

e(t−s)A dW s

)p)
� cp(T )

∣∣∣∣∣
T∫

0

s−2α
∥∥esA

∥∥2
HS ds

∣∣∣∣∣
p
2

< ∞.

Since F is global Lipschitz we have( t∫
0

∣∣e(t−s)A(−A)
1
2 F

(
X(s)

)∣∣ds

)p

� cp
1
2

( t∫
0

(t − s)−
p

2(p−1) ds

)(p−1)

·
t∫

0

∥∥F
(

X(s)
)∥∥p

� c̃p(T ) ·
(

1 + sup
0�t�T

∣∣X(t)
∣∣p

)
,

where we put c̃p(T ) := 2pcp
1
2

cp(
2(p−1)
(p−2)

)p−1T
p
2 and we used∥∥(−A)

1
2 et A

∥∥ � c 1
2

t− 1
2 and

∣∣F (x)
∣∣ � c · (1 + |x|), x ∈ H .

Hence

E

(
sup

t∈[0,T ]

( t∫
0

∣∣e(t−s)A(−A)
1
2 F

(
X(s)

)∣∣ds

)p)
� c̃p(T ) ·

(
1 + E

(
sup

0�t�T

∣∣X(t)
∣∣p

))
.

Therefore, we have for some constants c1, c2, c3,

E

(
sup

t∈[0,T ]
∣∣K(t, X)

∣∣p
)

� c1 + c2|x|p + c3E

(
sup

t∈[0,T ]
∣∣X(t)

∣∣p
)
.

Thus K(·, X) ∈ H p,T .
In the same way, we obtain for X1, X2 ∈ H p,T

E

(
sup

t∈[0,T ]
∣∣K(t, X1) − K(t, X2)

∣∣p
)

� c3E

(
sup

t∈[0,T ]
∣∣X1(t) − X2(t)

∣∣p
)
.

We remark that if T is small enough, then c3 < 1 and consequently, by the Banach fixed point theorem, Eq. (1) has a unique
solution in H p,T . The case of general T > 0 can be treated by considering the equation in intervals [0, T̃ ], [T̃ ,2T̃ ], . . . for
small T̃ . �
2. Strong Feller property

In this section we discuss the strong Feller property of the semigroup (Pt)t�0. We start with the case when F is regular
and assume that F ∈ C2

b (H, H). In the following we prove that the mild solution X(t, x) is differentiable with respect to x
and for any h ∈ H it holds

D X(t, x) · h = ηh(t, x),

where ηh(t, x) is the mild solution of the equation⎧⎨⎩
d

dt
ηh(t, x) = Aηh(t, x) + (−A)

1
2 D F

(
X(t, x)

) · ηh(t, x),

ηh(0, x) = h ∈ H .

(4)

This means that ηh(t, x) is the solution of the integral equation

ηh(t, x) = et Ah +
t∫

0

(−A)
1
2 e(t−s)A D F

(
X(s)

) · ηh(s, x)ds, t � 0. (5)

Theorem 2.1. The mild solution X(t, x) of Eq. (1) is differentiable with respect to x P-a.s., and for any h ∈ H, we have

D X(t, x) · h = ηh(t, x), P-a.s. (6)

and ∣∣ηh(t, x)
∣∣ � et L2

4 |h|, t � 0. (7)
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Proof. Similarly as in the proof of Theorem 1.2, we can see that Eq. (4) has a unique mild solution ηh(t, x) in H p,T . Let us
prove (7). For λ ∈ ρ(A), we set R(λ, A) := λ(λ − A)−1 and consider the approximation sequence ηh

λ(t, x) := λR(λ, A)ηh(t, x),
λ ∈ ρ(A). By multiplying both sides of (4) by λR(λ, A), we obtain

1

2

d

dt

∣∣ηh
λ(t, x)

∣∣2 = 〈
Aηh

λ(t, x), ηh
λ(t, x)

〉 + 〈
(−A)

1
2 D F

(
X(t, x)

)
ηh(t, x), (−A)

1
2 ηh

λ(t, x)
〉

= 〈
Aηh

λ(t, x), ηh
λ(t, x)

〉 + ‖D F‖2∞
4

∣∣ηh(t, x)
∣∣2 + ∣∣(−A)

1
2 ηh

λ(t, x)
∣∣2

= ‖D F‖2∞
4

∣∣ηh(t, x)
∣∣2

.

Therefore,

1

2

d

dt

∣∣ηh
λ(t, x)

∣∣2 � 1

2

∣∣λR(λ, A)h
∣∣2 + ‖D F‖2∞

4

t∫
0

∣∣ηh(t, x)
∣∣2

ds.

Letting λ → +∞ we get

1

2

∣∣ηh(t, x)
∣∣2 � 1

2
|h|2 + ‖D F‖2∞

4

t∫
0

∣∣ηh(t, x)
∣∣2

ds.

Then (7) follows now by Gronwall’s lemma.
We now prove that ηh(t, x) fulfills (6). The argument we follow here is similar to the proof of Theorem 5.4.1 in [5]. Fix

T > 0, x,h ∈ H such that |h| � 1. Setting

Δh(t, x) = X(t, x + h) − X(t, x) − ηh(t, x),

we have

Δh(t, x) =
t∫

0

(−A)
1
2 e(t−s)A(

F̂
(

X(s, x + h)
) − F̂

(
X(s, x)

))
ds

−
t∫

0

(−A)
1
2 e(t−s)A D F̂

(
X(s, x)

) · ηh(s, x)ds.

Consequently,

Δh(t, x) =
t∫

0

(−A)
1
2 e(t−s)A

1∫
0

D F̂
(
ρ(ξ, s)

)
dξ · (X(s, x + h) − X(s, x)

)
ds

−
t∫

0

(−A)
1
2 e(t−s)A D F̂

(
X(s, x)

) · ηh(s, x)ds

=
t∫

0

(−A)
1
2 e(t−s)A

1∫
0

D F̂
(
ρ(ξ, s)

)
dξ · Δh(s, x)ds

+
t∫

0

(−A)
1
2 e(t−s)A

1∫
0

(
D F̂

(
ρ(ξ, s)

) − D F̂
(

X(s, x)
))

dξ · ηh(s, x)ds,

where ρ(ξ, s) = ξ X(s, x + h) + (1 − ξ)X(s, x). Since F̂ ∈ C1
b (H, H) and X(t, x) is continuous with respect to x uniformly in

[0, T ], we have∣∣D F̂
(
ρ(ξ, s)

) − D F̂
(

X(s, x)
)∣∣ � δT (h),

for some function δT → 0 as h → 0.
Hence using ‖(−A)

1
2 et A‖ � c 1 t− 1

2 we deduce

2
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∣∣∣∣∣
t∫

0

(−A)
1
2 e(t−s)A

1∫
0

(
D F̂

(
ρ(ξ, s)

) − D F̂
(

X(s, x)
))

dξ · ηh(s, x)ds

∣∣∣∣∣
� c 1

2

t∫
0

(t − s)−
1
2 ds δT (h)

∣∣ηh(s, x)
∣∣ � 2c 1

2

√
T δT (h) sup

t∈[0,T ]
et L2

4 |h|.

It follows that

∣∣Δh(t, x)
∣∣ � ‖D F̂‖∞

t∫
0

(t − s)−
1
2
∣∣Δh(s, x)

∣∣ds + 2c 1
2

√
T δT (h)eT L2

4 |h|

� L

t∫
0

(t − s)−
1
2
∣∣Δh(s, x)

∣∣ds + 2c 1
2

√
T δT (h)eT L2

4 |h|.

Using a singular Gronwall inequality (see Amann [1, Section II.3.3]) we have∣∣Δh(t, x)
∣∣ � CT · δT (h)|h| for some CT > 0.

Hence

|Δh(t, x)|
|h| � CT · δT (h)

which implies (6). �
Consider now the approximation problem{

dX(t) = (
A X(t) + An F

(
X(t)

))
dt + dWt , t � 0,

X(0) = x,
(8)

where An := (−A)
1
2 nR(n, A) = −n(−A)− 1

2 AR(n, A). So An are bounded operators converging pointwise to (−A)
1
2 (see

[8, Section 4.10]) and commuting with A. Notice that An ◦ F : H → H is a nonlinear Lipschitz continuous function, hence the
corresponding problem (8) has a unique mild solution Xn(t, x) in H p,T which is the fixed point of the following mapping

Kn(Y )(t) := et A x +
t∫

0

e(t−s)A dW (s) +
t∫

0

e(t−s)A An F
(
Y (s)

)
ds,

on the space H p,T . Moreover

lim
n→∞ Xn(·, x) = X(·, x) in H p,T . (9)

Indeed, if we write

K(X)(t) := et A x +
t∫

0

e(t−s)A dW (s) +
t∫

0

(−A)
1
2 e(t−s)A F

(
X(s)

)
ds,

then is straightforward that Kn → K strongly in H p,T . Similar computation as in the proof of Theorem 1.2 shows that the
Lipschitz constants of K and Kn can be chose identic and equal to some α ∈ (0,1) uniformly with respect to n ∈ N, if T > 0

is small enough. Indeed, one has only to notice that ‖Ane(t−s)A‖ = ‖(−A)
1
2 nR(n, A)e(t−s)A‖ � ‖(−A)

1
2 e(t−s)A‖ for s ∈ [0, t),

and the repeat the arguments as in the proof of Theorem 1.2. By Theorem 7.1.1 in [6] we obtain that K and Kn have unique
fixed points X(t, x) and Xn(t, x), n � 1 respectively. Further, Theorem 7.1.5 in [6] shows that Xn → X in H p,T .

We denote by ηh
n(t, x) the mild solution of problem⎧⎨⎩

d

dt
ηh

n(t, x) = Aηh
n(t, x) + An D F

(
X(t, x)

) · ηh
n(t, x),

ηh
n(0, x) = h ∈ H .

(10)

It is well known that the solution Xn(t, x) of problem (8) is differentiable with respect to x P-a.s. (see [4, Section 9.1.1]),
and that

D Xn(t, x) · h = ηh
n(t, x), h ∈ H, t > 0.
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Moreover using the contractivity of the semigroup (et A)t�0, it is straightforward that estimate (7) still holds for ηh
n(t, x) (cf.,

Theorem 2.1). Furthermore we have

lim
n→∞ηh

n(·, x) = ηh(·, x) in H p,T . (11)

We now consider the approximating semigroup

Pn
t ϕ(x) = E

(
ϕ

(
Xn(t, x)

))
, ϕ ∈ Bb(H), t � 0, x ∈ H,

for n ∈ N , where Xn(t, x) is the solution of (8). By Lebesgue’s theorem we have

lim
n→∞ Pn

t ϕ(x) = Ptϕ(x), ϕ ∈ Cb(H), x ∈ H .

Hence by Theorem 2.1, we have that for all ϕ ∈ C1
b (H), Pn

t ϕ and Ptϕ are differentiable with respect to x and it holds〈
D Ptϕ(x),h

〉 = E
〈
Dϕ

(
X(t, x)

)
, ηh(t, x)

〉
, h ∈ H,〈

D Pn
t ϕ(x),h

〉 = E
〈
Dϕ

(
Xn(t, x)

)
, ηh

n(t, x)
〉
, h ∈ H .

Moreover, by Eqs. (9) and (11), it follows that for all ϕ ∈ C1
b (H), h ∈ H ,

lim
n→∞

〈
D Pn

t ϕ(x),h
〉 = 〈

D Ptϕ(x),h
〉

in C
([0, T ],R

)
.

We now are in the position to prove the following lemma.

Lemma 2.2. If F ∈ C2
b (H, H), the transition semigroup (Pt)t�0 is strong Feller.

Proof. It is well known from [3] (see also [12]) that the semigroup (Pn
t )t�0 satisfies the following Bismut–Elworthy formula

〈
D Pn

t ϕ(x),h
〉 = 1

t
E

(
ϕ

(
Xn(t, x)

) t∫
0

〈
ηh

n(t, x),dW s
〉)

for all ϕ ∈ C2
b (H). (12)

Hence if ϕ ∈ C2
b (H), t > 0, we can use (12) and Hölder inequality and recall (7) to obtain

∣∣D Pn
t ϕ(x),h

∣∣2 � t−2‖ϕ‖2∞

t∫
0

∣∣ηh
n(s, x)

∣∣2
ds

� t−2‖ϕ‖2∞

t∫
0

e
L2
2 s|h|2 ds

� t−2‖ϕ‖2∞
2

L2

(
e

L2
2 t − 1

)|h|2 for all n ∈ N.

Now, letting n → ∞ and from the arbitrariness of h we get

∣∣D Ptϕ(x)
∣∣ � t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 ‖ϕ‖∞. (13)

We now claim that for any ϕ ∈ Bb(H), t > 0, and x, y ∈ H , it holds

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ � t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 ‖ϕ‖∞|x − y|. (14)

To see this, we define M1 := {ϕ ∈ Cb(H): ‖ϕ‖∞ � 1} and M2 := {ϕ ∈ C2
b (H): ‖ϕ‖∞ � 1}. Since each function in Cb(H) can

be approximated pointwise by a sequence of functions in C2
b (H), we have

sup
ϕ∈M1

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ = sup

ϕ∈M2

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ for all x, y ∈ H .

As a consequence of the Hahn decomposition theorem we have

sup
ϕ∈M1

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ = Var

(
Pt(x, ·) − Pt(y, ·)),

where Pt(x, U ) = Pt 1U (x) for U ∈ B(H). Therefore by (13) we have for all x, y ∈ H
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Var
(

Pt(x, ·) − Pt(y, ·)) � t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 |x − y|

and consequently for all ϕ ∈ Bb(H)

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ =

∣∣∣∣ ∫
H

ϕ(u)
(

Pt(x,du) − Pt(y,du)
)∣∣∣∣

� ‖ϕ‖∞ Var
(

Pt(x, ·) − Pt(y, ·))
� t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 ‖ϕ‖∞|x − y|.

Hence (14) is proved. �
Our main theorem in this section is the following.

Theorem 2.3. The transition semigroup (Pt)t�0 corresponding to (1) is strong Feller.

Proof. We are going to approximate F by a sequence of C1
b (H) function. For this purpose we consider a sequence of

nonnegative twice differentiable functions (ρn)n∈N such that

supp(ρn) ⊂ {
ξ ∈ R

n: |ξ |Rn � 1/n
}

and
∫
Rn

ρn(ξ)dξ = 1.

Let (en)n∈N be an orthonormal basis in H , and for n ∈ N denote by Pn the orthogonal projection from H onto
span{e1, . . . , en} which we identify with R

n , hence Pn : H → R
n and the Euclidean inner product on R

n is just 〈·,·〉 (i.e.
the one induced by (H, 〈·,·〉) on span{e1, . . . , en}). Similar to [12] we define Fn : H → H by

Fn(x) =
∫
Rn

ρn(ξ − Pnx)F

(
n∑

i=1

ξiei

)
dξ.

The sequence (Fn)n∈N converges pointwise to F . Moreover for every n ∈ N, Fn is a twice Fréchet differentiable function
with bounded and continuous derivatives. Furthermore, for all x, y and n ∈ N,

∣∣Fn(x) − Fn(y)
∣∣ =

∣∣∣∣∣
∫
Rn

ρn(ξ)

(
F

(
n∑

i=1

ξiei + Pnx

)
− F

(
n∑

i=1

ξiei + Pn y

))
dξ

∣∣∣∣∣
� L

∣∣Pn(x − y)
∣∣ ∫
Rn

ρn(ξ)dξ � L|x − y|.

We now consider the solution Xn(t, x) of the equation{
dXn(t) = (

A Xn(t) + (−A)
1
2 Fn

(
Xn(t)

))
dt + dWt , t � 0,

Xn(0) = x.
(15)

Clearly,

lim
n→∞ Xn(·, x) = X(·, x) in H p,T .

Let (Pn
t )t�0 be the corresponding transition semigroup and take ϕ ∈ C2

b (H). By (14) we have for the semigroup (Pn
t )t�0

∣∣Pn
t ϕ(x) − Pn

t ϕ(y)
∣∣ � t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 ‖ϕ‖∞|x − y|.

By letting n → ∞ and applying Lebesgue’s theorem we get

∣∣Ptϕ(x) − Ptϕ(y)
∣∣ � t−1

√
2

L

(
e

L2
2 t − 1

) 1
2 ‖ϕ‖∞|x − y|,

which proves the theorem. �
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3. Irreducibility

In this section we discuss the irreducibility of the semigroup (Pt)t�0. To this end, we need to check first that the
deterministic control problem corresponding to (1) is approximatively controllable. We shall prove that given x1, x2 ∈ H ,
T > 0 and ε > 0 then there exists a control u(s) ∈ L2([0, T ], H) such that the solution of

Y (t) = et A x1 +
t∫

0

(−A)
1
2 e(t−s)A F

(
Y (s)

)
ds +

t∫
0

e(t−s)Au(s)ds (16)

comes within ε of x2 at time T . Let us define the following operator

J : L2([0, T ]; H
) → C0

([0, T ], H
)
, J u =

t∫
0

e(t−s)Au(s)ds,

where

C0
([0, T ]; H

) := {
f ∈ C

([0, T ], H
)
: f (0) = 0

}
.

The operator J has a dense range. Indeed, take

ϕ ∈ C0
([0, T ], D(A)

) := {
f ∈ C

([0, T ], D(A)
)
: f (0) = 0

}
and set

u(t) = ϕ′(t) − Aϕ(t).

We can see that J u = ϕ , hence by the denseness of C0([0, T ], D(A)) we conclude the denseness of Im J . Let us now consider
the path γ (t) joining x1 and x2 defined by

γ (t) = T − t

T
x1 + t

T
x2.

Set

f (t) = γ (t) − et A x1 −
t∫

0

(−A)
1
2 e(t−s)A F

(
γ (s)

)
ds, t ∈ [0, T ].

We have f ∈ C0([0, T ]; H), hence for any δ > 0 there exists u ∈ L2([0, T ], H) such that

| J u − f | � δ for some δ > 0.

Now, given ε > 0, if Y (·, x1, u) is the solution of (16), we have

∣∣Y (t) − γ (t)
∣∣ �

t∫
0

∣∣(−A)
1
2 e(t−s)A(

F
(
Y (s)

) − F
(
γ (s)

))∣∣ds + ∣∣ J u(t) − f (t)
∣∣

� c1/2L

t∫
0

1√
t − s

∣∣Y (s) − γ (s)
∣∣ds + ∣∣ J u(t) − f (t)

∣∣.
Hence by singular Gronwall inequality (see Amann [1, Section II.3.3]) we obtain∣∣Y (t) − γ (t)

∣∣ � δ · CT for some constant CT > 0.

It follows that∣∣Y (T ) − x2
∣∣ � δ · CT .

It is now enough to choose δ < ε
CT

. We have thus proven the following.

Lemma 3.1. Given x1, x2 ∈ H, T > 0 and ε > 0 then there exists a control u ∈ L2([0, T ], H) such that the solution of
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Y (t) = et A x1 +
t∫

0

(−A)
1
2 e(t−s)A F

(
Y (s)

)
ds +

t∫
0

e(t−s)Au(s)ds (17)

comes within ε of x2 at time T .

After this preparation we are now able the prove the following theorem.

Theorem 3.2. The transition semigroup (Pt)t�0 corresponding to (1) is irreducible.

Proof. Let B(x0, r) ⊆ H be an open ball. We show Pt 1B(x0,r) = P({|X(t, x) − x0| < r}) > 0 for all t > 0, where X(t, x) is the
solution of (1). We choose a control u ∈ L2([0, T ], H) such that |Y (T , x, u)− x0| � r

2 , where Y (T , x, u) is the solution of (17).
Then we have

P
({∣∣X(T , x) − x0

∣∣ < r
})

� P
({∣∣X(T , x) − Y (T , x)

∣∣ < r/2
})

. (18)

On the other hand,

∣∣Y (t, x, u) − X(t, x)
∣∣ �

t∫
0

∣∣(−A)
1
2 e(t−s)A(

F
(
Y (s)

) − F
(

X(s)
))∣∣ds + ∣∣W A(t) − J u(t)

∣∣
� c1/2L

t∫
0

1√
t − s

∣∣Y (s) − X(s)
∣∣ds + sup

t∈[0,T ]
∣∣W A(t) − J u(t)

∣∣.
Hence by singular Gronwall inequality we obtain∣∣X(t, x) − Y (t, x, u)

∣∣ � CT · sup
t∈[0,T ]

∣∣W A(t) − J u(t)
∣∣.

Moreover, since W A(·) is a nondegenerate continuous Gaussian random variable, we have that

P

{
sup

t∈[0,T ]
∣∣W A(t) − J u(t)

∣∣ <
r

2CT

}
> 0.

This implies that

P
({∣∣X(T , x) − Y (T , x)

∣∣ < r/2
})

> 0.

Therefore estimate (18) implies the irreducibility of the semigroup (Pt)t�0. �
4. Invariant measure

In this section we discuss the existence and uniqueness of the invariant measure μ of the semigroup (Pt)t�0. For
this purpose we will use Krylov–Bogoliubov’s theorem. Since (Pt)t�0 is strong Feller, in order to obtain the existence of

an invariant measure it is sufficient to check tightness of the set of probability measures {μT := 1
T

∫ T
0 μX(t,x) dt, T � 1}.

Here μX(t,x) denotes the distribution of X(t, x), t � 0. Indeed, using [5, Theorem 3.1.1] any limit point μ of some weakly
convergent subsequence of (μT )T �1 will be an invariant measure for (1).

We now set

Y (t) := X(t) − W A(t).

We shall assume further assumption

(H3)
〈
F (x) − F (y), x − y

〉
� 0, x, y ∈ H .

Since the semigroup generated by A is analytic, (Y (t))t�0 is differentiable on V 1
4

for t > 0 with derivative

Y ′(t) = AY (t) + (−A)
1
2 F

(
Y (t) + W A(t)

)
, t > 0.

Using the dissipativity of F in (H3) we have the following estimate for the process (Y (t))t�0.
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Lemma 4.1. Assume that assumptions (H0), (H1) and (H3) hold. Then there exists C > 0 and α > 0 such that

E

(
1

2

∥∥(−A)−
1
4
(
Y (t)

)∥∥2 + α

t∫
0

∥∥Y (s)
∥∥2

1
4

ds

)
� C(t + 1) for t � 0.

Proof. Let t > 0. We have

1

2

d

dt

∥∥(−A)−
1
4
(
Y (t)

)∥∥2 = 〈
AY (t) + (−A)

1
2 F

(
Y (t) + W A(t)

)
, (−A)−

1
2
(
Y (t)

)〉
= 〈−(−A)

1
2 Y (t) + F

(
Y (t) + W A(t)

)
, Y (t)

〉
= −∥∥Y (t)

∥∥2
1
4

+ 〈
F
(
Y (t) + W A(t)

) − F
(
W A(t)

)
, Y (t)

〉 + 〈
F
(
W A(t)

)
, Y (t)

〉
� −∥∥Y (t)

∥∥2
1
4

+ 〈
F
(
W A(t)

)
, Y (t)

〉
� −∥∥Y (t)

∥∥2
1
4

+ σ
∥∥Y (t)

∥∥2 + 1

4σ
c
(
1 + ∥∥W A(t)

∥∥2)
.

Since ‖y‖2
1
4

�
√

ω‖y‖2, we obtain

1

2

d

dt

∥∥(−A)−
1
4
(
Y (t)

)∥∥2 � −
(

1 − σ√
ω

)∥∥Y (t)
∥∥2

1
4

+ 1

4σ
c
(
1 + ∥∥W A(t)

∥∥2)
.

Therefore

1

2

∥∥(−A)−
1
4
(
Y (t)

)∥∥2 +
(

1 − σ√
ω

) t∫
0

∥∥Y (s)
∥∥2

1
4

ds � 1

2

∥∥(−A)−
1
4 x

∥∥ + δ

t∫
0

∥∥W A(s)
∥∥2

ds + δt, (19)

where δ := 1
4σ c. Now hypotheses (H0) and (H1) imply that

M := sup
t�0

E
(∥∥W A(t)

∥∥2
γ0

) =
∞∫

0

∥∥(−A)γ0 et A
∥∥2

HS dt < ∞, for any γ0 � α. (20)

Indeed,

∞∫
0

∥∥(−A)γ0 et A
∥∥2

HS dt =
∞∑

k=0

k+1∫
k

∥∥(−A)γ0 et A
∥∥2

HS dt

=
∞∑

k=0

1∫
0

∥∥(−A)γ0 et AekA
∥∥2

HS dt �
∞∑

k=0

∥∥ekA
∥∥2

1∫
0

∥∥(−A)γ0 et A
∥∥2

HS dt

�
∞∑

k=0

e−2ωk

1∫
0

∥∥(−A)γ0 et A/2
∥∥2∥∥et A/2

∥∥2
HS dt

�
∞∑

k=0

e−2ωk

1∫
0

c2

t2γ0

∥∥et A/2
∥∥2

HS dt < ∞.

Hence

sup
t�0

E
(∥∥W A(t)

∥∥2) � 1

ω2γ0
sup
t�0

E
(∥∥W A(t)

∥∥2
γ0

) = M

ω2γ0

so that

E

( t∫
0

∥∥W A(s)
∥∥2

ds

)
=

t∫
0

E
(∥∥W A(s)

∥∥2)
ds � M

ω2γ0
· t.

Choosing σ > 0 such that α := 1 − σ√ > 0 and taking expectation in (19), we obtain that

ω
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E

(∥∥(−A)−
1
4
(
Y (t)

)∥∥2 + α

t∫
0

∥∥Y (s)
∥∥2

1
4

ds

)
� C(t + 1) for t � 0 and some constant C > 0. �

Now we are in the position to state our main theorem in this section.

Theorem 4.2. Under hypotheses (H0), (H1) and (H3), there exists a unique invariant measure for the transition semigroup (Pt)t�0 .

Proof. As we mentioned at the beginning of this section we need to prove tightness of the set of probability measures
{μT := 1

T

∫ T
0 μX(t,x) dt, T � 1}. Where μX(t,x) denotes the distribution of X(t, x), t � 0. Take ε > 0 and γ0 < inf(α, 1

4 ), since
the map z �→ α‖z‖2

γ0
is coercive on Vγ0 (i.e., lim‖z‖γ0 →∞ α‖z‖2

γ0
= ∞), there exists Rε > 0 such that

ε
(
α‖y‖2

γ0
+ ‖w‖2

γ0

)
� 1

for w, y ∈ Vγ0 with ‖w + y‖Vγ0
� Rε . Consequently if we denote by B(0, Rε) the closed ball of radius Rε in Vγ0 , we have

by using Lemma 4.1 and (20)

μT
(

H \ B(0, Rε)
) = E

(
1

T

T∫
0

1{‖X(s)‖Vγ0
�Rε} ds

)
� εE

(
1

T

T∫
0

α
∥∥Y (s)

∥∥2
γ0

+ ∥∥W A(s)
∥∥2

Vγ0
ds

)

� εE

(
1

T

T∫
0

α
∥∥Y (s)

∥∥2
1
4

+ ∥∥W A(s)
∥∥2

Vγ0
ds

)

� ε

(
C

(
1 + 1

T

)
+ M

)
� ε(2C + M)

uniformly in T � 1. Since the embedding Vγ0 ↪→ H is compact, the family of probability measures {μT }T �1 is tight on H .
Now, by the Krylov–Bogoliubov theorem, there exists an invariant measure μ for the semigroup (Pt)t�0. The uniqueness of
μ follows from the strong Feller property and the irreducibility of (Pt)t�0. �
References

[1] H. Amann, Linear and Quasilinear Parabolic Problems, vol. I. Abstract Linear Theory, Monogr. Math., vol. 89, Birkhäuser-Verlag, 1995.
[2] A. Chojnowska-Michalik, B. Goldys, Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces, Probab. Theory

Related Fields 102 (1995) 331–356.
[3] G. Da Prato, K.D. Elworthy, J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stoch. Anal. Appl. (1995) 35–45.
[4] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, in: Encyclopedia of Mathematics and Its Applications, Cambridge University Press,

1992.
[5] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Math. Soc. Lecture Note Ser., vol. 229, Cambridge University Press, 1996.
[6] G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Math. Soc. Lecture Note Ser., vol. 283, Cambridge Univer-

sity Press, 2002.
[7] K.D. Elworthy, Stochastic flows in Riemannian manifolds, in: M.A. Pinsky, V. Vihstutz (Eds.), Diffusion Processes and Related Problems in Analysis,

vol. II, Birkhäuser, 1992, pp. 37–72.
[8] K.-J. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., vol. 194, Springer-Verlag, New York, 2000.
[9] D. Gatarek, B. Goldys, On invariant measures for diffusions on Banach spaces, Potential Anal. 7 (1997) 539–553.

[10] L. Manca, On a class of stochastic semilinear PDEs, Stoch. Anal. Appl. 24 (2) (2006) 399–426.
[11] B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stoch. Stoch. Rep. 45 (1993) 17–44.
[12] S. Peszat, J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995) 157–172.


	Existence and uniqueness of invariant measures for a class of transition semigroups on Hilbert spaces
	Introduction and preliminaries
	Strong Feller property
	Irreducibility
	Invariant measure
	References


