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A circular domain is a domain whose boundary is a circle or a straight 
line. A well-known theorem of Laguerre ([6, pp. 56-631; also see [7, 
p. 331) can be stated as follows: 

THEOREM A. Let p he a polynomial of degree n >, 1. If p(z) # 0 in a 
(closed or open) circular domain K, then 

v(z) - (2 -0 P’(Z) f 0 for z EK,[EK 

which in the case < = co means p’(z) # 0 for z E K, 

We prove the following resul which as we shall show constitutes an 
extension of Theorem A and has many applications. 

THEOREM 1. Let f be an entire function of exponential type z > 0 such 
that 

hl(n/2) := lim sup loglf(iy)l = o 
.v - % Y 
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and denote by H the (closed or open) upper half-plane. If f (z) # 0 for z E H, 
then 

zf(z)+i(l-i),f”(z)#O for zEHand[[(<l. (1) 

Let us recall that the class of functions of exponential type r consists of 
all functions of order less than 1 as well as those of order 1 type as most z. 
Thus Theorem 1 says, in particular, that if S is of order less than 1 or of 
order 1 type 0 and f(z) # 0 for z E H, then (1) holds for each r > 0. 

Proqf qf Theorem 1. If f(z) # 0 for all z E @, then 

,f(z) = ae” 

with c E IR, a #O and Jc( ,< 7. A simple calculation shows that (1) holds in 
this case. 

Next, suppose that f has zeros in the complement of H. Take an 
arbitrary point z0 = x0 + iyO E H where x0, y0 E R and consider the function 

g(z) :=e”‘f(Y+ iy,). 

Obviously 

L?(Z) +o for Im z<O, 

h,( -x/2) := lim sup logId -iY)l = 
h&/2) d 0 

(2) 
t, 

.I‘ - 3( ? 

and g(z) has zeros, a, + ih,(a,, b,,E R; n = 1, 2,...) say, all with positive 
imaginary parts. The properties (2) ensure that g belongs to the class P 
introduced in [l, Definition 7.8.21. Hence (see [l, Theorem 7.8.3 and 
formula ( 11.7.6)]), 

It is geometrically evident that this inequality is equivalent to 

i.e., 

But 

Ig’(x,) - i~g(xo)l < Id(- (3) 

g’(x,) = e’Tro(i2f(z0) +fm) 
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and so 

which implies that ( 1) holds for z = z. and I[\ d 1. 

Remark 1. The conclusion of Theorem 1 does not hold with any c of 
modulus greater than 1. In fact, for every K > 1 the function 

f(z) := eirz + K 

satisfies the conditions of that theorem, whereas 

Zf(Z) + i( 1 - 5) f’(Z) = 5(K + jf?“‘). (4) 

Given any [ with I[\ > 1 we can find a point z. in H such that -jerrq’ > 1. 
Hence there exists a K > 1, namely K := - je’““, for which (4) vanishes 
at zO. 

Remark 2. The conclusion of Theorem 1 does not hold if h,(rc/2) < 0 is 
admitted. In fact, for 0 < E < r the function 

ftz) := eic + eiTz 

which is of exponential type T, does not vanish in the open upper half-plane 
H and h,(n/2)= --E. But for [ := -(T--~)/r the function 

rf(=)+i(l -i).f’(-) 

vanishes identically if E = z and at the points 

;:=&{iLog(&)+2kn] (k=O, +I, *2,...) 

(lying in H) in case F < r. If the half-plane is taken to be closed, the same 
function serves as a counterexample in the case E = T; for E < z we may 
consider f(z + (i/2(5-~)) Log(r/(r - E))). 

Remark 3. Theorem A can be deduced from Theorem 1. To see this let 
us first consider a polynomial p of degree n not vanishing in the closed unit 
disk. The entire function 

f(z) :=p(e”) 

is of exponential type n such that h,(rc/2) = 0 and f(z) # 0 in the closed 
upper half-plane H. Hence by Theorem 1 

np(e”) - (1 - [) e”p’(eiZ) # 0 for Im z 2 0 and Ill < 1 
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or equivalently (putting w := ci’ and E. = [e”) 

np(u’)-(w-lj,)p’(u’)#o for /WI d 1 and 12) 6 \wJ. 

In particular, li.p’(n~)i < Inp( LV) - LV~‘(W)~ for Iu’J = 1 and all j, such that 
Ii,/ d 1; furthermore np( W) - u’p’( W) # 0 for 1 IV) d 1. Therefore by Rouche’s 
theorem 

np( w) - (u’ - E.) p’(w) # 0 for 1~IdlandI1/,<1. (5) 

This proves Theorem A in case K is the closed unit disk. As it is well- 
known, the result in its full generality can be deduced from this special 
case. 

2. APPLICATIONS 

Theorem 1 can be used to obtain various old and new resuls for entire 
functions of exponential type. They are related to the famous inequality of 
S. Bernstein which states [ 1, Chap. 111 that if J’ is an entire function of 
exponential type r such that If(~)1 GM for XE iw then If’(x)1 6 Mr for 
XE IF!. The first corollary is an analogue of [3, Theorem 41. 

COROLLARY 1. [ff is an entire,func.tion of exponential type t > 0 satisfjl- 
ing h,(71/2) d 0 and H is the (closed or open) upper half-plane, then 

.f(4+;41 -i).f’(~)~.f(H) .for I EHandl<l 6 1. (6) 

Proof: First let /2,(71/2) = 0. Then for every \r,$,f( H) the function 

F(z) :=.f’(z) - W’ 

satisfies the assumptions of Theorem 1 and so 

tF(z)+i(l -<)F’(z)#O for z E Hand /iI d 1. 

This means that 

,f.(z)+ii(l -i)f“(Z)#M’ for zEHand I[/<1 

which is equivalent to (6). In case h,(x/2) < 0, we may consider the function 
g(z) :=,f(z) + 1 for which h,(z/2) = 0. 
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COROLLARY 2. Under the assumptions of Corollary 1 let R be the 
supremum of the radii of all disks that can be placed inside f(H). Then 

I,f’(z)l fzR for ZE H. (7) 

Proof From (6) it follows that f(H) contains the disk with centre at 
f(z)+ (l/r) if’(z) and radius (l/r)l<f’(z)j as long as I[\ d 1. This clearly 
implies (7). 

Remark 4. An entire function of exponential type 0 is also of exponen- 
tial type r for every r > 0. Therefore we can conclude from (7) that for 
a nonconstant function .f of exponential type 0 the closure off(H) must 
contain disks of arbitrarily large radius. 

If f is an entire function of exponential type such that h,(7c/2) Q 0 and 

I.f(x)l d 1 for XE~W, (8) 

then I,f(x)l < 1 throughout the upper half-plane (see [ 1, Theorem 6.2.41 or 
(10)). Thus the following result is a consequence of Corollary 2. 

COROLLARY 3 [2, Theorem 21. Let f be an entire function qf exponen- 
tial type 5 satisfying (8). If h,(z/2) <O and f(z) #O for Im z> 0, then 
If”(x)1 <72/2 for xE[W. 

Corollary 2 also leads us to 

COROLLARY 4 [4, Theorem 11. Let f be an entire function of exponen- 
tial type 7 such that I J‘(x)] is bounded on the real axis and h,(7c/2) ~0. If 
lRe,f(x)l d 1 for XE [w, then 

I f’(x)1 d z for xE Iw. (9) 

ProqfI According to a formula in [S, Lemma 9 3, 

where (takingf(z) = 1 in (10)) 

l=ty f 
l-(-lye--’ 

k= -e (v9’+(W2 
l-(-lye-” 

= lTyl k =! r 1 (ry)2 + (kn)2 
for ~20. 
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Hence IRe f(x + iy)l 6 1 for y 3 0, i.e., f maps the closed upper half-plane 
into the strip (w: IRe WI d 1 f. Now we may apply Corollary 2 to obtain 
the desired estimate. 
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