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In this paper, we introduce and study a new unified and general class of 
variational inequalities. We derive the general error estimates for the finite element 
solutions of variational inequalities. It has been shown that a class of contact 
problems with friction terms arising in elastostatics can be studied in the framework 
of variational inequalities. Several special cases, which can be obtained from the 
general results, are also discussed. 0 1987 Academic Press. Inc. 

1. INTRODUCTION 

The mathematical subject, we call variational inequalities, was 
introduced by Stampacchia and Fichera in potential theory and mechanics 
(problems in elasticity with unilateral constraints), developed by the 
French and Italian schools, has enjoyed a vigorous growth for the last 
twenty years. Variational inequalities not only have stimulated new and 
deep results dealing with nonlinear partial differential equations, but also 
have been used in a large variety of problems arising in mechanics, physics, 
optimization and control, nonlinear programming, economics and trans- 
portation equilibrium, and engineering sciences. 

In 1970, using a transformation, Baiocchi found that the free boundary 
value problem associated with seepage through an earth dam is equivalent 
to a class of variational inequality. Since then variational inequalities have 
produced a tremendous impact in this field. So successful have been 
variational inequalities, that other methods are rarely used. 

The development of the theory of variational inequalities can be viewed 
as the simultaneous pursuit of two different lines of research: On the one 
hand, it reveals the fundamental facts on the qualitative behavior of 
solutions (regarding existence, uniqueness, and regularity) to important 
classes of nonlinear boundary value problems; on the other hand, it also 
provides highly efficient new numerical methods to solve, for example, free 
and moving boundary value problems. Consequently, it is clear that the 
theory of variational inequalities provides a natural and elegant framework 
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for the study of the many seemingly unrelated free boundary value 
problems arising in fluid flow through porous media, elasticity, transpor- 
tation and economics equilibrium, operations research, etc. 

Our main aim in this paper is to introduce and study a new class of 
variational inequalities, which is the most general and unifies all the 
previously known classes of variational inequalities. We focus our attention 
on an existence and uniqueness theorem for such abstract problems in 
Section 3 after introducing this class in Section 2 by using the fixed point 
theorem. We derive the general error estimates for the finite element 
approximation of the solution of variational inequalities in Section 4. 
In Section 5, we show that a class of contact problems with friction 
terms arising in elasticity can be studied in the framework of variational 
inequalities introduced in this paper. Furthermore, we prove that the error 
estimate for the finite element approximate solution is of order hi” in the 
energy norm. Several special cases which can be obtained from our results 
are also discussed. 

2. PRELIMINARIES AND FORMULATION 

Let H be a real Hilbert space with its dual H’, whose inner product and 
norm are denoted by ( -, .) and 11. (1, respectively. The pairing between 
elements of H’ and H is denoted by ( ., . ). Let A4 be a closed nonempty 
convex subset of H. 

Let a(u, u) be a coercive and continuous bilinear form on H, that is, 
there exist constants c1> 0, and /I > 0 such that 

4u, 0) B a II u II *, for all u E H (2.1) 

and 

4% u) G P II u II II 0 II? 

It is clear that c1 </I. 

for all U, u E H. (2.2) 

Consider the form b(u, u): H x H --f R satisfying the following properties: 

(i) b( .,.) is linear in the first variable. 
(ii) b( .,e) is bounded, that is, there exists a constant y > 0 such that 

I b(f.4 0) I G Y II 24 II II u II> for all U, u E H. (2.3) 
(iii) b( -,.) is either convex or linear in the second argument. 
(iv) For every u, u, w E H, 

14% u) - b(u, w) I < b(u, u - w) (2.4) 

b(u, 0 z!I w) < b(u, u) + b(u, w). (2.5) 
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If a(u, u) is a coercive continuous bilinear form, b(u, u) is a form 
satisfying the properties (i)-(iv) and f is a continuous functional, then we 
consider the functional Z[o], defined by 

Z[u] = a(u, u) + b(u, u) - 2f(u), for all v E ZZ. (2.6) 

Many mathematical problems in physical and engineering sciences either 
arise or can be formulated in terms of a functional of this form. Here one 
seeks to minimize the functional Z[u], defined by (2.6) over a whole space 
or on a convex set in H, bearing in mind whether the real-valued functional 
S is linear or not. We point out that the whole theory of variational 
methods can be based on the minimum of the functional Z[v]. In fact, the 
functional Z[u] represents the potential energy associated with the statistic 
friction problem for the Coulomb law, see Section 5, for applications. 

For the linear continuous functionalf, the minimum of Z[u] on a closed 
convex set A4 is equivalent to finding u E M such that 

a(u, u -u) + b(u, u) - b(u, 24) > (f, u - u) for all u E A4, (2.7) 

a case considered by Oden and Pires [ 11. 

For a differentiable nonlinear continuous functional f, using the techni- 
que of Noor [2], we can show that the minimum of Z[u] on M can be 
characterized by a class of variational inequalities of the type 

a(% u-u)+b(u, u)-b(u, u)> (f’(u), u--u), for all UEM, (2.8 1 

where f’(u) is the Frtchet differential off at u E M. 

Special Cases 

I. If the form b(u, u) = 0, then it is clear that the minimum of Z[u] on 
A4 can be characterized by the following classes of variational inequalities 
depending upon whether f is a linear or nonlinear continuous functional 

fand 

for all u E M, (2.9) 

a(u, u - u) 2 (f’(u), u - 24 >, for all u E M. (2.10) 

Variational inequality of the type (2.9) was originally considered and 
studied by Lions and Stampacchia [3]. Iterative and numerical methods 
for finding the approximate solutions of (2.9) have been studied by many 
authors including Noor [4], Falk [S], and Glowinski et al. [6], where 
one can also find various applications of this type of varitional inequalities. 
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Noor [7] introduced and considered the variational inequalities of the 
form (2.10) in the study of mildly nonlinear elliptic boundary value 
problems satisfying some extra constraint conditions. Recently, it has been 
shown [S] that unilateral problems with nonconvex potential can only be 
characterized by a class of variational inequality of the type (2.10). 

II. If we restrict the dependent of the form b(u, u) to its second variable 
only, that is, if b(u, u) = j(u), then it can be shown that the minimum of 
Z[u], defined by (2.6) can be characterized by a class of variational 
inequality of the type, 

a(u, 0 - u) + j(u) -j(u) 2 (f’(u), u - u), forall uEA4, (2.11) 

a problem considered and studied by Noor [9]. The variational inequality 
(2.11) characterizes a Signorini problem with friction, but with a law of 
friction different from Coulomb’s law. Using the piecewise linear elements, 
it has been shown [9] that the error estimate in the energy norm is of 
order h112. Furthermore, we note that if f(u) is independent of u, that is, 
f’(u), -f(say), then (2.11) is equivalent to 

a(u, u - u) + j(u) - j(u) 2 (“6 u - u >, for all 0 E M, (2.12) 

a case considered by Pires and Oden [lo] and Glowniski et al. [6]. 
We also need the following standard results for the proof of our main 

results concerning the existence and uniqueness of the solution of 
variational inequality (2.8). 

LEMMA 2.1. Let M be a conuex subset of H. Then, given z E H, we have 

u = P,z, 

if and only if 

UEM: (u-2, u-u)20, for all u E M, 

where P, is the projection of H into M. 

LEMMA 2.2. The project operator P, is nonexpansive, that is, 

II PMU - P.&f0 II d II u - u II9 for all u, u E H. 

3. EXISTENCE RESULTS 

In this section, we study those conditions under which there does exist a 
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unique solution of a more general variational inequality of which (2.8) is a 
special case. 

Let us consider the following problem: 

PROBLEM 3.1. Find u E A4 such that 

4% v-u)+b(u, V)-b(u, u)> (A(u), v-u), for all v E M, (3.1) 

where A is a nonlinear operator such that A(u) E H’. 

We also define the following concepts. 

DEFINITION 3.1. The nonlinear operator T: A4 -+ H’ is called 

(i) Antimonotone, if for all u, u E M, 

(TM- TV, u-v) GO, 

(ii) Lipschitz continuous, if there exists a constant < > 0 such that 

II Tu - TV II G 5 II u - v II, for all U, u E M. 

Since a(u, u) is a continuous bilinear form on H, then by the Riesz-Frechet 
representation theorem, we have 

a(u, u) = (Tu, v), for all v E H. (3.2) 

It can be shown that 11 TII G /?. Finally, we define A, a canonical 
isomorphism from H’ onto H for all f~ H’, 

(f, u> = (Af, VI, for all u E H, (3.3) 

Then IIA(l,.=l=l/AP’I/,. 
We make the following hypothesis. 

Condition N. We assume that y + C; < a, where a is the coercivity 
constant of a(u, u), y is the boundedness constant of the form b(u, u), and c 
is the Lipschitz constant of the operator A. 

We also need the following result, which is a generalization of a result of 
Noor [ 1 l] and Lions and Stampacchia [3]. 

LEMMA 3.1. Let p be number such that 0 < p < 2(a - y - 5)/ 
CD*-(y+t)*) and P<V(Y+O. Th en there exists a 8 with 0 < 8 < 1 such 
that 

II w) - e2) II G 0 II u1 - uz II, forall u,,q~H, 
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where for u E H, 4(u) E H’ is defined by 

(d(u), v> = (u, v) - P(K v) - pb(u, 0) 

+ P(4uh v>, for all v E H. (3.4) 

Here p is the boundedness constant of the bilinear form a(u, 0). 

Proof: For all U, , u2 E H, consider 

<#(Ul) - #(u,), v> = (4 - u2,v) - Pdu, - u2, VI 

-Nu, -u2, v)+P(~u,)-~u~), v> 

= (v - u2, -p(ATu, -Ai%,), v) 

- pb(u, - 4,~) + AMu,) - n-4(u,), VI 

Hence 

I (d(u1) - 4(u,), v> I G II u1 - u2 - P4W - Tu2) II II u II 

+ py II Ul - u2 II II v II + PC II Ul - u2 II II 0 II. 

Now using (2.1) (2.2), (3.2), and (3.3), we obtain 

IIU, -u2 -pA(Tu, - TU2)l12<(1 +p2b2-2crp) II241 -u21/2. 

Thus 

I (&%)-4$(~z),V)I G {JU +P2P2-W+P(Y+5H IIUI -u2II Ilull 

= 0 II Ul - u2 II II v IL 

where 8= [ (1+p2~2-2~p)+p(y+~)]< 1 for O<p<2(~--7--t)/ 
(p’- (y + 1)2) and p < l/(y + l), by Condition IV, it follows that 

the required result. 

Remark 3.1. Note that for b(u, v) E 0, Lemma 3.1 is exactly the same as 
proved in Noor [2]. Furthermore, if A(u) is independent of U, that is, 
A(u) = f, then Lemma 3.1 reduces to a result of Noor [ 111. For A(u) s f 
(say) and b(u, v) E 0, we get a result of Lions and Stampacchia [3]. 

409’128/1-IO 
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Now using the technique of Lions and Stampacchia [3] and Noor 
[ 11, 71, we prove the main existence result of this section. 

THEOREM 3.1. Let a(u, u) be a coercive continuous bilinear form and 
b(u, u) be a form satisfying the properties (it(iv). If the operator A is 
antimonotone and Lipschitz continuous and Condition N holds, then there 
exists a unique solution u E M such that 

a(u, v - u) + b(u, u) - b(u, u) 2 (A(u), v - u), for all v E M. (3.5) 

Proof (a) Uniqueness. See Oden and Pires [ 1 ] and Noor [ 111. 
(b) Existence. For a fixed p as in Lemma 3.1, and u E H define 

ME H’ by (3.4). By Lemma 2.1, there exists a unique WE M such that 

(w v - w) 3 (4(u), v - w>, for all v E M, 

and w is given by 

w = PM@(u) = Tu, 

which defines a map from H into M. 
Now for all ul, u2 E H, 

II Tu, - Tuz II = II PM&XUI) - P,Mu,) II 

6 II MUI) - Mu,) IL by Lemma 2.2 

6 II d(4) - 4(u*) II 

d II% -u*ll, by Lemma 3.1. 

Since 8 < 1, Tu is a construction mapping and has a fixed point Tu = u, 
which belongs to M, a closed convex set of H and satisfies 

a(u, v - u) + b(u, v) - b(u, u) 

2 (A(u), u - u >, for all v E M, 

showing that u E M is a unique solution of Problem 3.1. 

Remarks 2.2. (i) It is obvious that for A(u) = f’(u), the existence of a 
unique solution of the nonlinear variational inequality (2.8) follows under 
the assumptions of Theorem 3.1. 

(ii) If A is independent of u, that is, A(u)= f (say), then the 
Lipschitz constant 5 is zero and consequently Theorem 3.1 is exactly the 
same as proved by Noor [ 111 for a class of variational inequalities arising 
in elasticity. 
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(iii) If b(u, 0) = 0, and A(u) = f (say), then we get a result of Lions 
and Stampacchia [3] for a class of variational inequalities of type (2.9). 

4. ABSTRACT ERROR ESTIMATES 

We shall now establish a general error estimate for finite element 
approximation of the type (3.5). Our estimate is quite general. It holds for 
any finite element subspace S,, and approximate constraint set M, and 
represents a significant improvement of all estimates for variational 
inequalities that can be found in the literature. For definiteness, we shall 
assume that there exists a Hilbert space U which is densely and con- 
tinuously embedded in the dual space H’. It is then possible to identify H 
with a subspace of u’, i.e., dense in u’ by a continuous injection. 

In order to derive the error estimate for the approximate solutions for 
variational inequalities of types (3.5) and (2.7), we consider an 
approximate form of the variational inequalities (3.5) and (2.7). Thus, let 
S, c H be a finite dimensional subspace and M, c H be a finite dimen- 
sional convex set; for the construction of S, and M,,, see Section 5. 

An approximation of (3.5) is that of finding uh EM, such that 

dub, Oh - uh) + b(% uh) -b(uh, uh) 

2 (Am uh - uh >, for all oh E M,. (4.1) 

Similarly, we can also construct an approximation of (2.7) of the form: 
Find u,, EM, such that 

dub, “h - uh) + b(&, Oh) - b(uh, uh) 

2 <f, uh -“h>, for all uh E M,. (4.2) 

and of (2.11) of the form: Find u,, EMU such that 

dub, uh -#h) + jtvh) -vd”h) 

3 <A(Uh), Oh - uh>, for all vh E M,,. (4.3) 

With these hypotheses and preliminaries established, we can now derive the 
following abstract error estimate. 

THEOREM 4.1. Let UEM and uh EM,, be the solutions of (3.5) and (4.1), 
respectively. Let a(u, v) be a coercive continuous bilinear form and b(u, v) 
satisfy the properties (i)-(iv) and denote by a(u, v) = (Tu, v), for all o E H. 
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Zf A is antimonotone Lipschitz continuous and Tu - A(u) E U, then there 
exists a constant c > 0, such that 

(i) For M,, d M, 

+(IIA(Uh)- Tu,,IIu 11% -&J,)“~ 

+(llull, CII%l -u/H 

+ ~~“-uht~,~Ij1’2}1, forallueMandu, EMh. (4.4) 

(ii) For M, c M, 

11 24 - uh 11 H < c[I 11 u - uh I/ H + (11 A(Uh) 1) c/ 1) u - o,, 1) d’2 

+(llull, ll~-~/Illm~ for all V/, E kfh. (4.5) 

Proof (i) M, d M. Since UE M and uh gMh are solutions of (3.5) 
and (4.1), respectively, then adding (3.5) and (4.1), we have for all u E M 
and uh Eii!fh, 

a(% U) + a(&, U,,) < (A(u), u - U> + (A(&,), uh - Uh) 

-b(u, u, + b(u, MI + b(u,, uh) -b(u,, oh). 

Subtracting a(u, #h) + a(u,, U) from both sides, using (ik(iv), and rearrang- 
ing terms, we get 

a(#-uh, u-#,)<a(#-uh, u-uu,)+a(u-uu,, u-oh) 

+ (A(u)-A(&,), uh -0) 

+(A(U)-T&U-u,)+(A(U,)-TU,,U,-U) 

+b(u-#,,#-u,)+b(#,u,-u)+b(#,,u-oh). (4.6) 

Since, by assumptions, Tu - A(u) E U, a(u, u) is coercive continuous and f’ 
is Lipschitz continuous, so we obtain 

u II”-uhII$~B iIU--hiIH If”--hIIH +p IIU--hIIH 

x I~~--o,~~,+t Ii”--hIiO iI”h -“IIU’ 

+ IA(u)-Tull. II”--hIIU 

+ 11 A(G) - TU, 11 u 11 uh -U II CT 

+y[II”-uhIi&+ IIUi,H iI”h -dH 

+ 11 uh II H Ii u - oh II HI. (4.7) 
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Since the inequality 

holds for positive a, 6, and any E > 0, we have 

Thus, from (4.7) and the above inequalities, we have, for CI > 3y, 

+a(g92,y) IlUh -VII:, 

+ & II4u)-Tu/I. IIu--hIIu’ 

+ ~I~~(~,)-TuhI(,I~uh--U~l,, 

+ Uh -uIIff + Ib-uhII/f)>. 

Hence, the estimate (4.3) follows from the fact that for positive a, b, c, d, 
and e, u<b+c+d+e implies that &<,/%+&+Jd+&, 

(ii) M, c M. Setting u = uh in (4.5), we get 

u(“-u,, u-u,)<u(u-u,, u--v,)+ (A(u)-A(u,), u,, -uh) 

+ (A(u)- Tu, u-u,,) 

+ b(u - u,,, U-u,,) + b(u,, U-U/,), 

which can be written as 
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a(u-uu,,u-uu,)<u(u-z&u-v/J 

+ (A(u), u - Vh) + a(u, Vh - u) 

+ cAtu) - A(&), uh - u) 

+ b(u - u,,, u - uh) + b(u,, td - oh). 

Now using the antimononicity of A(u), we obtain 

a(u-uh,u--h)<~(~--h, u--h)+a(u, vh -u)+ (A(Uh), U-vh) 

+b(u-u,,u-u,)+b(y,,u-v,). (4.8) 

From the coercivity, continuity of u(u, v) and boundedness of b(u, v), we 
obtain 

+Y lI~-G/+Y II%llH llU--/llIH 

or 

(a-7) II”-u,~~2,~(a+~) IIU--hIIH /IU--hIIH 

+ 11 A(“h II ” II u - vh II U 

+(Y+b) IlUll” IIU--hIIW 

Hence, for a > y, we have 

/b--“hIIH++ /b--“h~~,+(--$, 
> 

112 
11 A(Uh) 11 b’ II ZJ - I)h II U’ 

the required estimate (4.3). 

THEOREM 4.2. Let u E A4 and uh E M, are solutions of (2.11) and (4.3), 
respectively, then under the assumptions of Theorem 4.1, there exists a 
constant c > 0, independent of h, such that 
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(i) for M,, d M, 

II~-~,II,Q~CII~-~,II,+ IIU--hIIH 

+lIu,-~lI,+{Il~~~~-~~II.II~-~,II.~ 

+ 11 A(%) - Tu,, 11 u I/ uh - 0 II I/,> 1’2 

+ {ikUhIIH + ii”h -UiIH)1’21 (4.9) 

for all OEM and v,, EM,,. 

(ii) for Mh c M. 

lIU-U,ll,6C[IIU-~,lI,+ {II-%z)-TUIiu Ib--&~}1’2 

+ w--hll”~1’21~ for all v,, E Mh. (4.10) 

Special Cases 

If A is independent of U, that A(u) = f (say), then our results are exactly 
the same as obtained by Pires and Oden [lo] recently for variational 
inequalities characterizing the Signorini problem with nonlocal friction 
arising in plane elasticity. 

THEOREM 4.3. [lo]. Let UE M and uh EMU be the solutions of (2.7) and 
(4.2) respectively. If a(u, u) = (Tu, u), and b(u, u) satisfies (i)-(iv), and 
Tu - f E U, then we have the following error estimates: 

(1) M, d M, 

l~~-~hJ~~~C(~l~--yhI~~ + CIITu-fll,(ll~-v,lI, + 11% -dc#* 

+ b 11 ullH(II U--hi/H + II”h -“~~H)1”2}~ 

forallvEMandv,EM,. 

(2) M, CM, 

11 u - uh II H G c{ II u - uh II H + (II Tu -f II u 1) 24 - u,, II v.)l’* 

+ Cr II~II, lI~--hllH11’2), for all oh EM,,. (4.12) 

(b) For b(u, u) = j(u),* then 

(3) M,, d M, 

llu--/zllH Gc{ Ilu--hII” + [II Tu-f II,(IIu-uhII(I’ + IIu,, -uII,.)]“2 

+ CY(IIU-d,+ II% -~ll,W2}, 
forall vEMandv,EMh. (4.13) 
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lI~-~,II,d~CII~-~,IIH+oI~~-f/I~II~-~~ll(1’)1’2 

+(Y II~--&P*1~ for all vh E M,. (4.14) 

(c) For b(u, u) = 0, then 

(5) Mh cf M, 

IIU--hIIH a~-Gf + CIIAu-f IIci(I/u--~I/u 

+ 11 uh -lj II “‘)“21}~ forallvEMandv, EMh (4.15) 

(6) M,,cM, 

for all v,, E M,. (4.16) 

5. APPLICATIONS 

We consider the following Signorini problem with nonlocal friction: 

OijC").j = fA”)t olj(u) = E~k/uk,l in Q, 

ui =o on r, 

ovklUk,lnl = ti on rF; 

and on T,-, (5.1) 

u.N--s<O, Q,v(U) d 0, c~Ju)(u. N-s) < 0 

I ar(u) I < P~(a,(u)) * UT = 0 
I rrTfu) I = @~(G~(u)) * there exists a number 

A>Osuchthatu,= -Ao.(u). I 

In this section we consider a varitional formulation of problem (5.1) and 
show that how this problem can be studied in the framework of the 
abstract theory of variational inequalities developed in the previous sec- 
tions. We would like to point out that problem (5.1) is a generalization of a 
problem considered by Oden and Pires [ 11, when the nonlinear function 
fi(u) is a function of space variable only, i.e., fj(u) E fi. It is well known 
that contact is precisely the physical event through which loads are 
delivered to a structure and by which a structure transmits forces to its 
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supports, The underlying difficulty is that contact problems in solid 
mechanics are inherently nonlinear due to the facts that the area of contact 
is not known a priori to the applicaton of loads and complex physical 
phenomena are experienced on the contact surfaces which often require 
special mechanical and mathematical considerations. It is known [ 11, that 
problems of type (5.1) can be studied in the framework of variational 
inequalities. 

Here, we use the following notations and conventions, see Kikuchi and 
Oden [12]: 

- Q is the elastic body in a bounded open domain RN with 
Lipschitz boundary r= 7, v FF v Tic. 

- T,(T,) are portions of r on which the displacements (tractions) 
are prescribed. 

- TC is the (candidate) contact surface on which the body may 
come in contact with the foundation upon the application of loads; it 
is assumed throughout that FC n To =q4, u= (u,, u2, . . . . uN) is the 
displacement vector U= u(x), where x= (xi, x2, . . . . xN) is a point in Q. 

- o&u) are components of the stress tensor; its value at a dis- 
placement u is defined by the relation o&u) = Eijkruk,,, where E,, are the 
elasticities of material of which the body is composed. These are given 
functions of x satisfying the usual ellipticity (coercivity) and symmetry 
conditions. 

- H is the space of admissible displacement vector {u E H’(Q), u = 0 
a.e. on r,}, where H’(Q) is the usual Sobolev space of classes of functions 
with &-partial derivatives of order 1. The space H is a Hilbert space and is 
equipped with the energy norm 

II ” II * = j. ui,j”i,j dx, 

where the commas denote partial differentiation ui, j = &,/axj. We shall 
also use the notation 

- W= H1”(rc) is the space of normal traces of the admissible dis- 
placements u on the contact surface TC. Here n denotes the unit outward 
normal to TC. If Uo H, and A(u) is the trace of u on TC, then A(u) .no W. 

- A4 is the constraint set corresponding to the unilateral condition 
A(u).n<s= {uEH, A(u).n<s in W}, where s is given in W, s represents 
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the initial gap between the body .Q and the rigid foundation. M is a closed 
convex subset of H. 

= the virtual work produced by the stresses. (5.2) 

- f is a continuous (nonlinear) functional on H representing the 
virtual work of the external forces with values given by 

where fi is the body force depending upon the displacement vector, t, is the 
prescribed surface tractions on rF, and ds, the elemental surface area 
measure. Here we assume that fi E &(Q) and tj E L2(rF). 

- S: IV’ + L,(T,) is a smoothing operator from the dual space IV’ 
into L2(r,-) representing a transformation of the normal stress CTJU) in ?V’ 
into a mollified stress in L,(T,). We assume that S is endowed with the 
property that S(o,(u)) > 0 a.e. on TC. 

- p is the coefficient of friction of the contact surface. We assume 
that ,DEE~(T~), p>pO>/O a.e. on fC. 

Furthermore, we assumed that the nonlinear given functionf(u) satisfies 
the following: 

- f(u) is antimonotone, that is, 

s (f(u)-f(v))(u-v)dxGO (5.4) 
R 

and 

II f(u) II L@) G 4 II 24 II HI 17 (5.5) 

where r EE r(t) is a nondecreasing function for t E R, t > 0. We note that, if 
the function f(u), defined by (5.3) is a Frechet differentiable, then 

<f'W.~)=faf(4~dx~ see Noor and Whiteman [ 133. (5.6) 

from which it follows that f’(u) is antimonotone and 

II f'(u) II G II f(u) lIL2tR) G 4 II f4 II ~11. (5.7) 
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With these preliminaries now established and using the technique of 
Oden and Pires [l], we can show that the Signorini problem with non- 
local friction can be characterized by a class of highly nonlinear variational 
inequalities, which is the motivation of our next result. 

THEOREM 5.1. Let u E (H2(s2))” n M be a solution of problem (5.1) then 
u, is also a solution of the variational inequality (2.8) and conversely in the 
distributional sense, where 

(5.8) 

satisfies the properties (i)-(iv) and (f’(u), v ) = Ja f(u)v dx, see Noor and 
Whiteman [ 131. 

Remark 5.1. If F, = G,, is assumed to be given on all of T,-; that is, 
p I a,(u) I = g, g given in L,(f,), then the contact surface TC is known in 
advance and u is not prescribed on TC. Then the solution of problem (5.1) 
can be characterized by a class of variational inequalities of the type: 

4% v - u) + j(v) - j(u) >, (f’(u), u - u), for all v E M, (5.9) 

wherej(v) is given by the relation 

.i(v)=jrcg Id ds 

is obviously convex, proper, and lower semi-continuous. 

In order to apply the result of Sections 3, we must show that all the 
hypotheses of Theorem 2.2 are satisfied. Now, in view of the symmetry and 
ellipticity of E,,, the bilinear form a(u, v) defined by (5.2) is coercive and 
continuous. The form b(u, v) = srC @(C,(U)) ( vTI ds also satisfies the 
properties, (i)-(iv) as shown by Oden and Pires [l]. As the nonlinear 
functionf(u) defined by (5.3) is antimonotone and Lipschitz continuous by 
the assumptions, thus showing that all the hypotheses of Theorem 2.2 are 
satisfied. Hence, it follows from Theorem 2.2, that there does exist a 
solution of problem 5.1. 

Finite Element Approximation 

We now consider finite element approximation of the variational 
inequality (2.8). Following standard finite element techniques, we construct 
a partition of s’z into a mesh of finite elements over which the displacements 
are approximated by piecewise polynomials. This defines a finite dimen- 
sional subspace S,, of H. By constructing a sequence of regular refinemens 
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of the mesh, we generate a family (S,,), h > 0, of subspaces of H. It is well 
known [14] that the subspaces S, exhibit the following asymptotic inter- 
polation properties. 

If u E (H’(Q))N, r >, 0 then there exists a constant c > 0 such that 

inf {ib-“hi/O +h ib-“hi/H) 
%~Sh 

d Ch” II 24 II r.n9 s=min(3, r- 1). (5.10) 

Let rh, denote the boundary of the mesh that approximates Tc and C, 
denote the set of all odal points e on rs. We assume that Z, = Ts n Tc. As 
an approximation of the constraint set M, we introduce 

< sh(e)y for all e 6 C,), (5.11) 

where sh is the L,(T,)-projection of s on the space W, of normal traces of 
functions in s,,. Thus, in our discrete model of the friction problem (2.8), 
we impose the contact condition only at the modal points on r”,. Clearly, 
in general, Mh d M. 

We also need the following result, which can be easily proved by using 
the methods of Noor [15] and Janovsky and Whiteman [ 161. 

LEMMA 5.1. There exists a constant C, such that 

11 f tub) II L*(O) G Cl 9 for all h > 0. (5.12) 

For simplicity, we only consider the special case of Theorem 4.l(ii), 
where Mh c M. Taking U = u’ = (L,(G))’ and using Lemma 5.1, we obtain 

11 U - uh 11 1 = O(h1’2). (5.13) 

Note that in the absence of the friction term b(u, u), it has been shown in 
[lS], that the error estimate in the energy norm is of order h. 
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