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a b s t r a c t

Explicit local time-stepping methods are derived for time dependent Maxwell equations
in conducting and non-conducting media. By using smaller time steps precisely where
smaller elements in the mesh are located, these methods overcome the bottleneck caused
by localmesh refinement in explicit time integrators.When combinedwith a finite element
discretisation in space with an essentially diagonal mass matrix, the resulting discrete
time-marching schemes are fully explicit and thus inherently parallel. In a non-conducting
source-free medium they also conserve a discrete energy, which provides a rigorous
criterion for stability. Starting from the standard leap-frog scheme, local time-stepping
methods of arbitrarily high accuracy are derived for non-conducting media. Numerical
experiments with a discontinuous Galerkin discretisation in space validate the theory and
illustrate the usefulness of the proposed time integration schemes.
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1. Introduction

The need to simulate electromagnetic wave phenomena of increasing complexity drives the quest for more general
and efficient numerical methods. The first and probably most popular method, the finite difference time domain (FDTD)
scheme [1], is simple and efficient on structured (Cartesian) grids, but on oblique or curved boundaries and interfaces
it suffers from the inaccurate representation of the solution (staircase approximation) [2]. Moreover, higher order FDTD
methods are generally difficult to implement near interfaces and boundaries. In contrast, finite element methods (FEMs)
can handle unstructured grids and complex geometry, regardless of the order of approximation. They also provide rigorous
a posteriori error estimates which are useful for local adaptivity and error control.
Different finite element discretisations of Maxwell’s equations are available, such as edge elements [3–5] and nodal

elements [6,7]. Although edge elements may be the most satisfactory from a theoretical point of view [8], in particular
near re-entrant corners, they are less attractive for time-dependent computations because the solution of a linear system is
required at every time step. Indeed, in the case of triangular or tetrahedral edge elements, the entries of the diagonal matrix
resulting from mass-lumping are not necessarily strictly positive [9]. Therefore, explicit time-stepping cannot be used in
general. In contrast, standard (H1-conforming) nodal elements naturally lead to a fully explicit schemewhenmass-lumping
is applied, but cannot correctly represent corner singularities in general [8].
DiscontinuousGalerkin (DG) FEMs offer an attractive alternative to edge elements for the numerical solution ofMaxwell’s

equations, in particular for time-dependent problems. Not only do they accommodate elements of various types and shapes,
irregular non-matching grids, and even locally varying polynomial order, and hence offer greater flexibility in the mesh
design; they also lead to a block-diagonal mass matrix, with block size equal to the number of degrees of freedom per
element. Thus when a spatial DG discretisation is combined with explicit time integration, the resulting time marching
scheme will be truly explicit and inherently parallel.
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For the time-dependent Maxwell equations in first-order hyperbolic form, various DG methods are available [10–13],
which combine high order nodal elements with low-storage Runge–Kutta (RK) time integration. By using a strong-stability-
preserving RK scheme instead, improved accuracy and a less stringent time-step restriction can be achieved [14]. For
Maxwell’s equations in second-order form, a symmetric interior penalty (IP) DG method was proposed in [15,16], which
yields optimal a priori error estimates in the energy norm and in the L2-norm. In a non-conducting source-free medium, it
also conserves (a discrete version of) the energy.
In the presence of complex geometry, adaptivity and mesh refinement are certainly key for the efficient numerical

solution of Maxwell’s equations. However, locally refined meshes impose severe stability constraints on explicit time-
stepping schemes, where the maximal time-step allowed by a CFL condition is dictated by the smallest elements in the
mesh [17]. When mesh refinement is restricted to a small region, the use of implicit methods, or a very small time step
in the entire computational domain, are very high a price to pay. To overcome this stability restriction, various local time-
stepping schemes [18,19] were proposed, which use implicit time-stepping or explicit smaller time-steps only where the
smallest elements in the mesh are located. However, straightforward interpolation or extrapolation from the coarse to the
finer space–time grid, say, generally results in low accuracy and poor stability properties. By enforcing the conservation
of energy, an important ingredient for stability, Collino and Joly proposed a second-order local time-stepping method for
the wave equation [18] and for Maxwell’s equations [20] in a non-conducting medium. Although their approach remains
explicit inside the coarse and the fine mesh, it nevertheless requires at every time step the solution of a linear system at the
interface between the two grids.
Since DG methods are inherently local, they are particularly well suited for the development of explicit local time-

stepping schemes [21]. By combining the symplectic Störmer–Verlet method with a DG discretisation, Piperno derived a
symplectic local time-stepping scheme for Maxwell’s equations in a non-conducting medium [22], which is explicit and
second-order accurate. In [23], Montseny et al. combined a similar recursive integrator with discontinuous hexahedral
elements. Although hexahedral elements are very efficient, they can produce spurious modes [24] while automated
grid generation only with such elements remains a non-trivial task. Starting from the standard leap-frog scheme, Diaz
and Grote [25] devised an explicit energy conserving local time-stepping scheme of arbitrarily high accuracy for the
homogeneous wave equation. Recently, Taube et al. [26] proposed an explicit local time-stepping method for Maxwell’s
equations by extending the so-called arbitrary high-order derivatives (ADER) DG approach to Maxwell’s equations; there,
the solution is expanded in Taylor series in time and then the Cauchy–Kovalevskaya procedure is used to replace the time
derivatives in this series by space derivatives.
Here we derive explicit local time-stepping methods for Maxwell’s equations in conducting or non-conducting media

with source terms. The rest of the paper is organized as follows. In Section 2, we present the Maxwell equations in second-
order form and briefly recall the symmetric IP–DG formulation from [15,16] Section 3. Starting from thewell-known second-
order leap-frog scheme, we then derive in Section 4 explicit second-order local time-stepping schemes both in a conducting
and in a non-conductingmedium. In a non-conductingmedium,we show that (a discrete version of) the energy is conserved,
which provides a rigorous criterion for numerical stability. By using the modified equation approach, we then derive in
Section 5 explicit local time-steppingmethods of arbitrarily high accuracy in a non-conductingmedium. Finally in Section 6,
we present several numerical experiments, which validate the theory and illustrate the usefulness of the proposed local
time-stepping schemes.

2. The Maxwell equations

The evolution of a time-dependent electromagnetic field E(x, t), H(x, t) propagating through a linear isotropic medium
is governed by Maxwell’s equations:

εEt = ∇ × H− σE+ j,
µHt = ∇ × E.

Here, the coefficients µ, ε and σ denote the relative magnetic permeability, the relative electric permittivity and the
conductivity of the medium, respectively. The source term j corresponds to the applied current density. By eliminating
the magnetic field H, Maxwell’s equations reduce to a second-order vector wave equation for the electric field E:

εEtt + σEt +∇ × (µ−1∇ × E) = jt .

If the electric field is eliminated instead, one easily finds that the magnetic field H satisfies a similar vector wave equation.
Thus, we consider the following model problem: find the (electric or magnetic) field u(x, t) such that

εutt + σut +∇ × (µ−1∇ × u) = f inΩ × (0, T ),
n× u = 0 on ∂Ω × (0, T ),
u(·, 0) = u0 inΩ,
ut(·, 0) = v0 inΩ.

(1)
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Here, Ω is a bounded domain in Rd, d = 2, 3, and n is the outward unit normal to the domain boundary ∂Ω . The right-
hand side f is a (known) source term in L2([0, T ]; L2(Ω)d). The functions u0 and v0 in (1) are prescribed initial data with
u0 ∈ H0(curl;Ω) and v0 ∈ L2(Ω)d, where

H0(curl;Ω) = {v ∈ L2(Ω)d : ∇ × v ∈ L2(Ω)d,n× u = 0 on ∂Ω}.

We assume that the coefficients ε = ε(x) ≥ ε0 and µ = µ(x) ≥ µ0 are strictly positive and uniformly bounded below,
ε0, µ0 > 0, and that σ = σ(x) is non-negative, σ ≥ 0. Then, the model problem (1) is well-posed and has a unique (weak)
solution [27], u ∈ C0(0, T ;H0(curl;Ω)) ∩ C1(0, T ; L2(Ω)d).

3. Discontinuous Galerkin semi-discrete formulation

Here, we briefly recall the symmetric interior penalty (IP) DG formulation of (1) from [15,16]. We consider shape-regular
meshes Th that partition the domain Ω into disjoint triangles or tetrahedra K , such that Ω = ∪K∈Th K . For simplicity, we
assume in this section that the elements are triangles in two space dimensions and tetrahedra in three space dimensions.
Generally, we allow for irregular (k-irregular) meshes with hanging nodes [28]. The diameter of element K is denoted by hK
and the mesh size, h, is given by h = maxK∈Th hK . We denote by EI

h the set of all interior edges of Th, by EB
h the set of all

boundary edges of Th, and set Eh = EI
h ∪ EB

h . Here, we generically refer to any element of Eh as an ‘‘edge’’, both in two and
three space dimensions.
For a piecewise smooth vector-valued function v, we introduce the following trace operators. Let e ∈ EI

h be an interior
edge shared by two elements K+ and K− with unit outward normal vectors n±, respectively. Denoting by v± the trace of v
on ∂K± taken from within K±, we define the jump and the average on e by

[[v]] := n+ × v+ + n− × v−, {{v}} := (v+ + v−)/2.

On every boundary edge e ∈ EB
h , we set

[[v]] := n× v and {{v}} := v.

For a given partition Th of Ω and an approximation order ` ≥ 1, we shall approximate the solution u(·, t) of (1) in the
finite element space

Vh =
{
v ∈ L2(Ω)d : v|K ∈ P `(K)d, ∀K ∈ Th

}
,

whereP `(K)denotes the space of polynomials of total degree atmost `onK . Thus,we consider the following (semi-discrete)
discontinuous Galerkin finite element formulation [15,16]: find uh : [0, T ] → Vh such that

(εuhtt , v)+ (σu
h
t , v)+ ah(u

h, v) = (f, v), ∀v ∈ Vh, t ∈ (0, T ),

uh(·, 0) = Πhu0,

uht (·, 0) = Πhv0.

(2)

HereΠh is the L2-projection onto Vh. The discrete bilinear form ah(·, ·), defined on Vh × Vh, is given by

ah(u, v) =
∑
K∈Th

∫
K
µ−1(∇ × u) · (∇ × v) dx−

∑
e∈Eh

∫
e
[[v]] · {{µ−1∇ × u}} dA

−

∑
e∈Eh

∫
e
[[u]]{{µ−1∇ × v}} dA+

∑
e∈Eh

∫
e
a[[u]] · [[v]] dA.

The function a penalizes the jumps of u and v over the edges of Th. To define it, we first introduce the functions h and m by

h|e =
{
min{hK+ , hK−}, e ∈ EI

h ,

hK , e ∈ EB
h ,

m|e =
{
min{µK+ , µK−}, e ∈ EI

h ,

µK , e ∈ EB
h .

Then, on each e ∈ Eh, we set

a|e := αm−1h−1, (3)

where α is a positive parameter independent of the local mesh sizes. There exists a threshold value αmin > 0, independent
of the local mesh size, such that for α ≥ αmin the discontinuous Galerkin bilinear form ah(·, ·) is coercive [29,30]. Hence, the
semi-discrete problem (2) is well-posed and uniquely solvable provided that α ≥ αmin. This completes the semi-discrete
formulation of the IP–DG method for (1).
In [15,16], a detailed convergence analysis and numerical study of the semi-discrete problem (2) was presented. In

particular, optimal a priori estimates in a DG-energy normwere derived, either for smooth solutions on arbitrary meshes or
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for low regularity (singular) solutions on conforming meshes [15]. For sufficiently smooth solutions on regular tetrahedral
meshes, the above IP–DG method (2) also yields the optimal L2-error estimate [16]

‖u− uh‖L∞(0,T ;L2(Ω)d) ≤ Ch
`+1,

where the constant C = C(Ω,u, T ) > 0 is independent of the mesh size.
The semi-discrete IP–DG formulation (2) is equivalent to the second-order system of ordinary differential equations

Mε

d2U
dt2

(t)+Mσ

dU
dt
(t)+ KU(t) = F(t), t ∈ (0, T ),

with initial conditions

MU(0) = uh0, M
dU
dt
(0) = vh0.

Here U denotes the vector whose components are the coefficients of uh with respect to the finite element basis of Vh, M
the mass matrix, K the DG stiffness matrix, andMε ,Mσ denote the mass matrices with weights ε, σ , respectively. Because
individual elements decouple, themassmatrices are sparse, symmetric, positive definite, and block-diagonal with block size
equal to the number of degrees of freedom per element. Thus, they can be inverted at very low computational cost. In fact,
for a judicious choice of (locally orthogonal) shape functions, the mass matrices are truly diagonal. The stiffness matrix K is
sparse, symmetric and, in general, positive semi-definite.

4. Second-order explicit local time-stepping

We consider the semi-discrete model equation

Mε

d2U
dt2
+Mσ

dU
dt
+ KU = F, (4)

whereMε andMσ are symmetric positive definite matrices and K is a symmetric positive semi-definite matrix; moreover,
we assume that the mass matrixMε is (block-)diagonal, as in the IP–DG formulation (2). We remark, however, that the time
integration techniques presented below are also applicable to other spatial discretisations of Maxwell’s equations that lead
to the same semi-discrete form (4).

Because Mε is assumed block-diagonal, M
1
2
ε can be explicitly computed and inverted at low cost. Thus, we multiply (4)

byM
−
1
2

ε to obtain

d2z
dt2
+ D

dz
dt
+ Az = R, (5)

with z = M
1
2
ε U, D = M

−
1
2

ε MσM
−
1
2

ε , A = M
−
1
2

ε KM
−
1
2

ε and R = M
−
1
2

ε F. Note that A is also sparse and symmetric positive
semidefinite. In a non-conducting medium, D vanishes and hence energy is conserved, whereas in a conducting medium
D is nonzero and energy is dissipated. We shall distinguish these two situations in the derivation of local time-stepping
schemes below.

4.1. Local time-stepping method in a non-conducting medium

In a non-conducting medium, (5) reduces to

d2z
dt2
+ Az = R. (6)

Since for any f ∈ C2, we have

f (t +1t)− 2f (t)+ f (t −1t) = 1t2
∫ 1

−1
(1− |θ |)f ′′(t + θ1t) dθ, (7)

the exact solution z(t) of (6) satisfies

z(t +1t)− 2z(t)+ z(t −1t) = 1t2
∫ 1

−1
(1− |θ |) (R(t + θ1t)− Az(t + θ1t)) dθ. (8)

The integral on the right side of (8) represents a weighted average of R(s)− Az(s) over the interval [t −1t, t +1t], which
needs to be approximated in any numerical algorithm. If we approximate in (8) Az(t + θ1t) and R(t + θ1t) by Az(t)
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and R(t), respectively, and evaluate the remaining θ-dependent integral, we obtain the well-known second-order leap-frog
scheme with time-step1t ,

zn+1 − 2zn + zn−1 = 1t2 (Rn − Azn) , Rn ' R(tn), zn ' z(tn), (9)

which, however, would require1t to be comparable in size to the smallest elements in the mesh for numerical stability.
Following [25,31], we instead split the vectors z(t) and R(t) as

z(t) = (I− P)z(t)+ Pz(t) = z[coarse](t)+ z[fine](t),

R(t) = (I− P)R(t)+ PR(t) = R[coarse](t)+ R[fine](t),
(10)

where the projection matrix P is diagonal. Its diagonal entries, equal to zero or one, identify the unknowns associated with
the locally refined region, where smaller time-steps are needed. To circumvent the severe CFL restriction on1t in the leap-
frog scheme, we need to treat z[fine](t) and R[fine](t) differently from z[coarse](t) and R[coarse](t) in

z(t +1t)− 2z(t)+ z(t −1t) = 1t2
∫ 1

−1
(1− |θ |)

{
R[coarse](t + θ1t)+ R[fine](t + θ1t)

− A
(
z[coarse](t + θ1t)+ z[fine](t + θ1t)

)}
dθ. (11)

Since we wish to use the standard leap-frog scheme in the coarse part of the mesh, we approximate the terms in (11) that
involve z[coarse](t + θ1t) and R[coarse](t + θ1t) by their values at t , which yields

z(t +1t)− 2z(t)+ z(t −1t) ' 1t2 {(I− P)R(t)− A(I− P)z(t)}

+1t2
∫ 1

−1
(1− |θ |) {PR(t + θ1t)− APz(t + θ1t)} dθ. (12)

Note that A and P do not commute.
Next for fixed t , let z̃(τ ) solve the differential equation

d2̃z
dτ 2

(τ ) = (I− P)R(t)− A(I− P)z(t)+ PR(t + τ)− AP̃z(τ ),

z̃(0) = z(t),
z̃′(0) = ν,

(13)

where ν will be specified below. Again from (7), we deduce that

z̃(1t)− 2̃z(0)+ z̃(−1t) = 1t2 {(I− P)R(t)− A(I− P)z(t)}

+1t2
∫ 1

−1
(1− |θ |) {PR(t + θ1t)− AP̃z(θ1t)} dθ. (14)

From the comparison of (12) with (14), we infer that

z(t +1t)− 2z(t)+ z(t −1t) ' z̃(1t)− 2 z̃(0)+ z̃(−1t),

or equivalently

z(t +1t)+ z(t −1t) ' z̃(1t)+ z̃(−1t). (15)

In fact from Taylor expansion and (6), we obtain

z̃(1t)+ z̃(−1t) = 2̃z(0)+ z̃′′(0)1t2 + O(1t4) = 2z(t)+ (R(t)− Az(t))1t2 + O(1t4)
= z(t +1t)+ z(t −1t)+ O(1t4).

Thus to advance z(t) from t to t +1t , we shall evaluate z̃(1t)+ z̃(−1t) by solving (13) numerically.
To take advantage of the inherent symmetry in time and thereby reduce the computational effort even further, we now

let

q(τ ) = z̃(τ )+ z̃(−τ).

Then, q(τ ) solves the differential equation

d2q
dτ 2

(τ ) = 2 {(I− P)R(t)− A(I− P)z(t)} + P {R(t + τ)+ R(t − τ)} − APq(τ ),

q(0) = 2z(t),
q′(0) = 0,

(16)
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with

z(t +1t)+ z(t −1t) = q(1t)+ O(1t4). (17)

Note that q(1t) does not depend on the value of ν. Now,we shall approximate the right side of (8) by solving (16) on [0,1t],
and then use (17) to compute z(t +1t). Thus, we need the numerical value of q(τ ) only at1t . Clearly, in doing so we must
also ensure that the overall numerical scheme remains second-order accurate in time, as we shall show below.
In summary, the local time-stepping algorithm for the solution of (6) computes zn+1 ' z(t +1t), given zn and zn−1, as

follows:

Algorithm 1. 1. Setw := (I− P)Rn − A(I− P)zn and q0 := 2zn.

2. Compute q1/p := q0 + 1
2

(
1t
p

)2 (
2w+ 2PRn,0 − APq0

)
.

3. Form = 1, . . . , p− 1, compute

q(m+1)/p := 2qm/p − q(m−1)/p +
(
1t
p

)2 (
2w+ P(Rn,m + Rn,−m)− APqm/p

)
. (18)

4. Compute zn+1 := −zn−1 + q1.

Here, we have used the notations Rn,m ' R(tn+ τm) and Rn,−m ' R(tn− τm), where tn = n1t and τm = m1τ ; note that
Rn,0 ' R(tn + τ0) = R(tn) ' Rn. Steps 1–3 correspond to the numerical solution of (16) until τ = 1t with the leap-frog
scheme, using the local time-step1τ = 1t/p. For P = 0, that is without any local time-stepping, we recover the standard
leap-frog scheme. If the fraction of nonzero entries in P is small, the overall cost is dominated by the computation of w,
which requires one multiplication by A(I− P) per time-step1t . All further matrix–vector multiplications by AP only affect
those unknowns that lie inside the refined region, or immediately next to it.
We are now ready to establish the accuracy of the above local time-stepping scheme. We begin by proving the following

two technical results.

Lemma 1. For m ≥ 2, qm/p defined by Algorithm 1 satisfies

qm/p = 2zn +
(
1t
p

)2 (
m2(Rn,0 − Azn)+ PRm

)
+ O

(
1t4

)
, (19)

where the termsRm are given by

R2 = Rn,1 + Rn,−1 − 2Rn,0,
R3 = 2R2 + Rn,2 + Rn,−2 − 2Rn,0,
Rm = 2Rm−1 −Rm−2 + Rn,m−1 + Rn,−(m−1) − 2Rn,0 ∀m ≥ 4.

(20)

Proof. The proof is by induction onm. We first show that (19) holds form = 2, 3. Since

q1/p = q0 +
1
2

(
1t
p

)2 (
2w+ 2PRn,0 − APq0

)
= 2zn +

(
1t
p

)2 (
Rn,0 − Azn

)
,

we find from (18) withm = 1 that

q2/p = 2zn +
(
1t
p

)2 (
4Rn,0 − 4Azn + P(Rn,1 + Rn,−1 − 2Rn,0)

)
−

(
1t
p

)4 (
APRn,0 − APAzn

)
,

which yields (19) withR2 as in (20). The casem = 3 follows by a similar argument.
Next, let (19) hold form ≥ 3. From (18) we then have

q(m+1)/p = 2

(
2zn +

(
1t
p

)2 (
m2
(
Rn,0 − Azn

)
+ PRm

))
− 2zn −

(
1t
p

)2 (
(m− 1)2

(
Rn,0 − Azn

)
+ PRm−1

)
+

(
1t
p

)2 {
2(I− P)Rn,0 − 2A(I− P)zn + P(Rn,m + Rn,−m)− 2APzn

}
+ O

(
1t4

)
.

After simplification, we find

q(m+1)/p = 2zn +
(
1t
p

)2 {
(m+ 1)2

(
Rn,0 − Azn

)
+ P

(
2Rm −Rm−1 + Rn,m + Rn,−m − 2Rn,0

)}
+ O

(
1t4

)
,

which corresponds to (19) and (20) withm replaced bym+ 1, and thus concludes the proof. �
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Lemma 2. For m ≥ 2, we have

Rm =
m−1∑
k=1

kRn,−(m−k) −m(m− 1)Rn,0 +
m−1∑
k=1

kRn,m−k, (21)

withRm defined by (20). Moreover, if R(t) ∈ C2([0, T ]), we have

Rm = O
(
1t2

)
, 1t → 0. (22)

Proof. The proof of (21) is by induction on m. For m = 2 the statement clearly holds because of (20). For m = 3, we
immediately find from (20) that

R3 = Rn,−2 + 2Rn,−1 − 6Rn,0 + 2Rn,1 + Rn,2.

Now, let (21) holds form− 1 andm. Then,

Rm+1 =
m−1∑
k=1

2kRn,−(m−k) − 2m(m− 1)Rn,0 +
m−1∑
k=1

2kRn,m−k −
m−2∑
k=1

kRn,−(m−1−k)

+ (m− 1)(m− 2)Rn,0 −
m−2∑
k=1

kRn,m−1−k + Rn,m + Rn,−m − 2Rn,0.

Rearranging terms we find

Rm+1 =
m∑
`=2

2(`− 1)Rn,−(m+1−`) +
m∑
`=2

2(`− 1)Rn,m+1−` −
m∑
`=3

(`− 2)Rn,−(m+1−`)

−

m∑
`=3

(`− 2)Rn,m+1−` + Rn,m + Rn,−m − (2m(m− 1)− (m− 1)(m− 2)+ 2)Rn,0

=

m∑
`=1

`Rn,−(m+1−`) − (m+ 1)mRn,0 +
m∑
`=1

`Rn,m+1−`,

which yields (21) after further simplifications.
To prove (22), we first show that

Rm =
m(m− 1)

2

(
Rn,−1 − 2Rn,0 + Rn,1

)
+ O

(
1τ 2

)
, (23)

withm ≥ 2 and1τ = 1t/p. Replacing Rn,−(m−k) and Rn,m−k in (21) by their Taylor expansion

Rn,−(m−k) = Rn,−1 − (m− k− 1)1τ
dR
dt
(tn −1τ)+ O

(
1τ 2

)
,

Rn,m−k = Rn,1 + (m− k− 1)1τ
dR
dt
(tn +1τ)+ O

(
1τ 2

)
,

we find that

Rm =
m(m− 1)

2
Rn,−1 −m(m− 1)Rn,0 +

m(m− 1)
2

Rn,1

+

m−1∑
k=1

k(m− k− 1)1τ
(
dR
dt
(tn +1τ)−

dR
dt
(tn −1τ)

)
+ O

(
1τ 2

)
.

Since
dR
dt
(tn +1τ)−

dR
dt
(tn −1τ) = O (1τ) , 1τ → 0,

(23) follows. Finally, since the first term on the right of (23) corresponds to the second-order central finite difference
approximation for R′′(tn), we immediately obtain (22). �

We are now ready to establish the accuracy of the above local time-stepping scheme.

Proposition 1. For R(t) ∈ C2([0, T ]), the local time-stepping method (Algorithm 1) is second-order accurate.



3290 M.J. Grote, T. Mitkova / Journal of Computational and Applied Mathematics 234 (2010) 3283–3302

Proof. Recall that zn+1 = −zn−1 + q1. We now use (19) in Lemma 1 withm = p to replace q1. This yields

zn+1 = −zn−1 + 2zn +1t2
(
Rn,0 − Azn

)
+

(
1t
p

)2
PRp + O

(
1t4

)
,

which is equivalent to

zn+1 − 2zn + zn−1
1t2

+ Azn = Rn,0 +
1
p2

PRp + O
(
1t2

)
.

From (22) in Lemma 2withm = p and the comparisonwith (6), we conclude that the local time-stepping scheme is second-
order accurate. �

To establish the stability of the above local time-stepping scheme we consider the homogeneous case, R = 0. Then, the
standard leap-frog scheme (9) conserves the discrete energy

En+
1
2 =

1
2

[〈(
I−

1t2

4
A
)

zn+1 − zn
1t

,
zn+1 − zn
1t

〉
+

〈
A
zn+1 + zn
2

,
zn+1 + zn
2

〉]
. (24)

Here En+
1
2 ' E(tn+ 12 ) and the angular brackets denote the standard Euclidean inner product. Since A is symmetric, the

quadratic form in (24) is also symmetric. For sufficiently small 1t it is also positive semidefinite and hence yields a true
energy.
To derive a necessary and sufficient condition for the numerical stability of the local time-stepping scheme, we shall also

exhibit a conserved discrete energy for Algorithm 1 with Rn = 0. Following [25], we first show how to rewrite the local
time-stepping Algorithm 1 in ‘‘leap-frog manner’’. To do so, we need the following technical result.

Lemma 3. For m ≥ 2, qm/p defined in (18) with Rn,m = 0 satisfies

qm/p = 2zn −m2
(
1t
p

)2
Azn +

m−1∑
j=1

(
1t
p

)2(j+1)
αmj (AP)

jAzn, (25)

where the constants αmj are given by

α21 = 1, α31 = 6, α32 = −1,

αm+11 = m2 + 2αm1 − α
m−1
1 ,

αm+1j = 2αmj − α
m−1
j − αmj−1, j = 2, . . . ,m− 2,

αm+1m−1 = 2α
m
m−1 − α

m
m−2,

αm+1m = −αmm−1.

(26)

Proof. The proof is by induction on m. As it is similar to the proof of Lemma 3.2 in [25], we refrain from repeating it here;
however, we note that the constants αpj in (26) are not identical to those in [25]. �

As a consequence, we can rewrite the local time-stepping algorithm in ‘‘leap-frog manner’’.

Proposition 2. The local time-stepping scheme (Algorithm 1) with Rn,m = 0 is equivalent to

zn+1 = 2zn − zn−1 −1t2Apzn,

where Ap is defined by

Ap = A−
2
p2

p−1∑
j=1

(
1t
p

)2j
α
p
j (AP)

jA (27)

and the constants αpj are given by (26). Furthermore, the matrix Ap is symmetric.

Proof. Starting from the definition of q1 = qp/p in (18), the result immediately follows from (27) and Lemma 3 withm = p.
The symmetry of Ap follows from the symmetry of A and P. �

Remark 1. Proposition 2 is required for the stability analysis. However, the actual implementation of the local time-stepping
scheme follows Algorithm 1. In particular, neither Ap nor the constants α

p
j are ever used in practice.
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Proposition 3. The local time-stepping scheme (Algorithm 1) with Rn = 0 conserves the energy

En+
1
2 =

1
2

[〈(
I−

1t2

4
Ap
)

zn+1 − zn
1t

,
zn+1 − zn
1t

〉
+

〈
Ap

zn+1 + zn
2

,
zn+1 + zn
2

〉]
. (28)

Proof. By symmetry of Ap, this classical proof is similar to that of (24); see also [25] for details. �

The above local time-stepping scheme (Algorithm 1) with Rn = 0 conserves the energy En+
1
2 in (28), which guarantees

stability if and only if En+1/2 is non-negative or, equivalently, if and only if the matrices
(
I− (1t2/4)Ap

)
and Ap are both

positive semidefinite. Hence, if λmin and λmax denote the smallest and largest eigenvalues of Ap, respectively, the numerical
scheme will be stable if and only if

0 ≤
1t2

4
λmin ≤

1t2

4
λmax ≤ 1.

For p = 1 we have Ap = A, and thus we recover the CFL condition of the standard leap-frog scheme

1t ≤
2
√
λmax

= 1tLF .

For p > 1, the matrix Ap explicitly depends on 1t , and so do its eigenvalues. Moreover, as the eigenvalues of A and Ap do
not coincide, the analytical derivation of a sharp CFL condition is not obvious. In Section 6, we shall study the behavior of
the eigenvalues of (1t2/4)Ap for an IP–DG discretisation of Maxwell’s equations in two space dimensions. A more detailed
numerical study of the eigenvalues of (1t2/4)Ap for the one-dimensional wave equation is presented in [25].

4.2. Local time-stepping method in a conducting medium

We shall now derive a second-order local time-steppingmethod for the semi-discreteMaxwell equations (5) in a general
conductingmediumwithD 6= 0. In contrast to the time-stepping scheme presented in Section 4.1 for the caseD = 0, which
can be seen as a natural extension of [25] to the inhomogeneous case, we are now faced with several difficulties due to the
additional Dz′(t) term. First, as in standard FD/FE–TDmethods in conducting media [2,5], we shall treat that term implicitly
to avoid any additional CFL restriction; else, the stability conditionwill bemore restrictive than thatwith the non-dissipative
scheme, depending on the magnitude of σ [23]. Nevertheless, the resulting scheme will be explicit, since D is essentially a
diagonal matrix. Second, we can no longer take advantage of any inherent symmetry in time of the solution. Third, to avoid
any loss of accuracy, wemust carefully initialize the local time-stepping scheme, which again is based on the highly efficient
(two-step) leap-frog method.

Lemma 4. The exact solution z(t) of (5) satisfies

z(t +1t)− 2z(t)+ z(t −1t)+
1t
2

D (z(t +1t)− z(t −1t))

= 1t2
∫ 1

−1
(1− |θ |) (R(t + θ1t)− Az(t + θ1t)) dθ + O(1t4). (29)

Proof. Since z(t) solves (5), we deduce from (7) that

z(t +1t)− 2z(t)+ z(t −1t) = 1t2
∫ 1

−1
(1− |θ |) (R(t + θ1t)− Az(t + θ1t)) dθ

−1t2D
∫ 1

−1
(1− |θ |)

dz
dt
(t + θ1t) dθ. (30)

We now concentrate on the new term involving z′ in (30). Integration by parts yields

1t2D
∫ 1

−1
(1− |θ |)z′(t + θ1t) dθ = 1tD

∫ t+1t

t−1t

(
1−
|s− t|
1t

)
z′(s) ds

= 1tD
(
−z(t −1t)+

∫ t

t−1t

s− t
1t

z′(s) ds+ z(t +1t)−
∫ t+1t

t

s− t
1t

z′(s) ds
)

= D
(∫ t+1t

t
z(s) ds−

∫ t

t−1t
z(s) ds

)
. (31)
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Let g(s) = Dz(s) in (31). We shall now show that∫ t+1t

t
g(s) ds−

∫ t

t−1t
g(s) ds =

1t
2
(g(t +1t)− g(t −1t))+ O(1t4).

By Taylor expansion and the mean value theorem, we find∫ t+1t

t
g(s) ds−

∫ t

t−1t
g(s) ds = 1t2g ′(t)+

∫ t+1t

t

s3

6
g ′′′(ξ) ds−

∫ t

t−1t

s3

6
g ′′′(ξ) ds

= 1t2g ′(t)+
1t4

24

(
g ′′′(η1)+ g ′′′(η2)

)
,

where η1 ∈ [t, t +1t] and η2 ∈ [t −1t, t]. Replacing g ′(t) by second-order central finite differences, we thus obtain

1t
2
(g(t +1t)− g(t −1t))−

(∫ t+1t

t
g(s) ds−

∫ t

t−1t
g(s) ds

)
= −

1t4

24

(
g ′′′(η1)+ g ′′′(η2)

)
+ O(1t4),

which completes the proof. �

To derive a second-order local time-stepping method for (5), we now split the vectors z(t) and R(t) as in (10) and
approximate the integrands in (29) as follows:

R[coarse](t + θ1t)+ R[fine](t + θ1t) ' R[coarse](t)+ PR(t + θ1t),
A
(
z[coarse](t + θ1t)+ z[fine](t + θ1t)

)
' Az[coarse](t)+ APz(θ1t).

From Lemma 4 we thus have

z(t +1t)− 2z(t)+ z(t −1t)+
1t
2

D (z(t +1t)− z(t −1t))

' 1t2 {(I− P)R(t)− A(I− P)z(t)} +1t2
∫ 1

−1
(1− |θ |) {PR(t + θ1t)− APz(θ1t)} dθ. (32)

Next for fixed t , let z̃(τ ) solve the differential equation

d2̃z
dτ 2

(τ )+ D
d̃z
dτ
(τ ) = (I− P)R(t)− A(I− P)z(t)+ PR(t + τ)− AP̃z(τ ),

z̃(0) = z(t),
z̃′(0) = ν,

(33)

where ν will be specified below. By applying Lemma 4 now to z̃(t), we obtain

z̃(1t)− 2̃z(0)+ z̃(−1t)+
1t
2

D (̃z(1t)− z̃(−1t)) = 1t2 {(I− P)R(t)− A(I− P)z(t)}

+1t2
∫ 1

−1
(1− |θ |) {PR(t + θ1t)− AP̃z(θ1t)} dθ. (34)

From the comparison of (32) and (34), we thus infer that

z(t +1t)+ z(t −1t)+
1t
2

D (z(t +1t)− z(t −1t)) ' z̃(1t)+ z̃(−1t)+
1t
2

D (̃z(1t)− z̃(−1t)) . (35)

In our local time-stepping scheme, we shall use the right side of (35) to approximate the left side. In doing so, we must
carefully choose ν in (33) to minimize that approximation error. By using Taylor expansions and the fact that z and z̃ solve
(5) and (33), respectively, we obtain

z(t +1t)+ z(t −1t) = 2z(t)+ z′′(t)1t2 + O(1t4) = 2z(t)+ (R(t)− Az(t)− Dz′(t))1t2 + O(1t4),
z̃(1t)+ z̃(−1t) = 2̃z(0)+ z̃′′(0)1t2 + O(1t4) = 2z(t)+ (R(t)− Az(t)− Dν)1t2 + O(1t4),

together with

z(t +1t)− z(t −1t) = 2z′(t)1t + O(1t3),
z̃(1t)− z̃(−1t) = 2ν1t + O(1t3).

Hence for arbitrary ν, the right side of (35) is not sufficiently accurate to approximate the left side while preserving overall
second-order accuracy. However, if we choose

ν = z′(t)
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in (33), theO(1t2) terms in (35) cancel each other and overall second-order accuracy of the scheme can be achieved. Since
the term on the right side of (35) is not symmetric in time, unlike in the previous section (see (15) and (17)), we need to
compute the value of z̃(τ ) both at τ = 1t and at τ = −1t . Clearly, in doing so we must also ensure that the overall
numerical scheme remains second-order accurate in time, as we show below.
For the numerical solution of (33), we shall use the leap-frog scheme with the local time-step 1τ = 1t/p. Since the

leap-frog scheme is a two-step method, we need a second-order approximation of z̃′(0) = z′(t) during every initial local
time-step. Since the value of zn+1 is still unknown at time t = tn, we now derive a second-order approximation z′n ' z′(t)
that uses only zn and zn−1. First, we approximate

z′n '
z′n−1/2 + z′n+1/2

2
, (36)

where both z′n−1/2 ' z′(t − 1t/2) and z′n+1/2 ' z′(t + 1t/2) are second-order approximations. By using second-order
central differences for z′n−1/2,

z′n−1/2 =
zn − zn−1
1t

+ O(1t2), (37)

and the differential equation (5) for z′n+1/2,

z′n+1/2 − z′n−1/2
1t

+ Dz′n = Rn − Azn + O(1t2),

we obtain

z′n+1/2 =
(
I+

1t
2

D
)−1 {(

I−
1t
2

D
)

zn − zn−1
1t

+1tRn −1tAzn
}
+ O(1t2). (38)

Then, we insert (37), (38) into (36), which yields a second-order approximation of z′(t).
In summary, the second-order local time-stepping algorithm for the solution of (5) computes zn+1 ' z(t+1t), for given

zn and zn−1, as follows:

Algorithm 2. 1. Setw := (I− P)Rn − A(I− P)zn, z̃0 := zn and

z′n :=
1
2

[
zn − zn−1
1t

+

(
I+

1t
2

D
)−1 {(

I−
1t
2

D
)

zn − zn−1
1t

+1tRn −1tAzn
}]
.

2. Compute

z̃1/p := z̃0 +
1t
p

z′n +
1
2

(
1t
p

)2 (
w+ PRn,0 − AP̃z0 − Dz′n

)
and

z̃−1/p := z̃0 −
1t
p

z′n +
1
2

(
1t
p

)2 (
w+ PRn,0 − AP̃z0 − Dz′n

)
.

3. Form = 1, . . . , p− 1, compute

z̃(m+1)/p :=
(
I+

1t
2p

D
)−1 {

2̃zm/p −
(
I−

1t
2p

D
)
z̃(m−1)/p +

(
1t
p

)2
(w+ PRn,m − AP̃zm/p)

}
and

z̃−(m+1)/p :=
(
I−

1t
2p

D
)−1 {

2̃z−m/p −
(
I+

1t
2p

D
)
z̃−(m−1)/p +

(
1t
p

)2
(w+ PRn,−m − AP̃z−m/p)

}
.

4. Compute

zn+1 := z̃1 +
(
I+

1t
2

D
)−1 (

I−
1t
2

D
)
(−zn−1 + z̃−1) .

Here, we have used the same notations as in Algorithm 1. If ε and σ are piecewise constant in each element,Mε andMσ

can be diagonalised simultaneously and hence the matrix D is diagonal. If ε and σ vary in elements, D is a block-diagonal
matrix and both (I± (1t/2p)D) and (I± (1t/2)D) can be explicitly inverted at low cost. In that sense, the local time-
stepping scheme (Algorithm 2) is truly explicit. Again, if the fraction of nonzero entries in P is small, the overall cost is
dominated by the computation ofw in step 1.
We now establish the accuracy of the above local time-stepping scheme. For simplicity, we restrict ourselves to the case

p = 2, as the extension to the general case p > 2 is straightforward but cumbersome.
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Proposition 4. For R(t) ∈ C2([0, T ]), the local time-stepping method (Algorithm 2) is second-order accurate.

Proof. Recall that(
I+

1t
2

D
)
zn+1 =

(
I+

1t
2

D
)
z̃1 −

(
I−

1t
2

D
)
zn−1 +

(
I−

1t
2

D
)
z̃−1. (39)

We shall now show that(
I+

1t
2

D
)
z̃1 +

(
I−

1t
2

D
)
z̃−1 = 2zn +1t2(Rn,0 − Azn)+ O(1t4) (40)

holds. To do so, let

Z̃1 = 2̃z1/2 −
(
I−

1t
4

D
)
z̃0 +

(
1t
2

)2
(w+ PRn,1 − AP̃z1/2),

Z̃−1 = 2̃z−1/2 −
(
I+

1t
4

D
)
z̃0 +

(
1t
2

)2
(w+ PRn,−1 − AP̃z−1/2).

Then, (
I+

1t
2

D
)
z̃1 +

(
I−

1t
2

D
)
z̃−1 =

(
I+

1t
2

D
)(

I+
1t
4

D
)−1

Z̃1 +
(
I−

1t
2

D
)(

I−
1t
4

D
)−1

Z̃−1. (41)

Next, we recall that D = M
−
1
2

ε MσM
−
1
2

ε , where Mε , Mσ denote the mass matrices with weights ε, σ , respectively. Since
ε(x) ≥ ε0 > 0, we have ‖D‖ < C , with C independent of themesh size h. For sufficiently small1t , we have (1t/4) ‖D‖ < 1
independently of h. Then, we may use the expansion(

I±
1t
4

D
)−1
= I∓

1t
4

D+
1t2

16
D2 ∓

1t3

64
D3 + O(1t4). (42)

Inserting (42) into (41), we find(
I+

1t
2

D
)
z̃1 +

(
I−

1t
2

D
)
z̃−1 = (̃Z1 + Z̃−1)+

1t
4
(̃Z1 − Z̃−1)−

1t2

16
(̃Z1 + Z̃−1)

−
1t3

64
(̃Z1 − Z̃−1)+ O(1t4). (43)

Next, we derive explicit expressions for Z̃1 and Z̃−1. By using (42) we first rewrite z′n as

z′n =
1
21t

(zn − zn−1)T1 +
1t
2

(
I−

1t
2

D
)
(Rn,0 − Azn)+ O(1t3),

with T1 := I+
(
I− 1t

2 D
)2
+ O(1t2) and insert it into z̃1/2 and z̃−1/2. Thus, we obtain

z̃1/2 = zn +
1
4
(zn − zn−1)T1 −

1t
16
(zn − zn−1)DT1 +

1t2

8
(Rn,0 − Azn)+

1t2

4
(Rn,0 − Azn)

(
I−

1t
2

D
)

−
1t3

16
(Rn,0 − Azn)D

(
I−

1t
2

D
)
+ O(1t4),

and similarly for z̃−1/2. By rearranging terms we then rewrite Z̃1 and Z̃−1 as

Z̃1 = zn +
1
2
(zn − zn−1)T1 +

1t
4

Dzn −
1t
8
(zn − zn−1)DT1 −

1t2

16
(zn − zn−1)APT1 +

1t2

2
(Rn,0 − Azn)

+
1t2

2
(Rn,0 − Azn)

(
I−

1t
2

D
)
+
1t2

4
(PRn,1 − PRn,0)−

1t3

8
(Rn,0 − Azn)D

(
I−

1t
2

D
)
+ O(1t4),

Z̃−1 = zn −
1
2
(zn − zn−1)T1 −

1t
4

Dzn −
1t
8
(zn − zn−1)DT1 +

1t2

16
(zn − zn−1)APT1 +

1t2

2
(Rn,0 − Azn)

−
1t2

2
(Rn,0 − Azn)

(
I−

1t
2

D
)
+
1t2

4
(PRn,−1 − PRn,0)−

1t3

8
(Rn,0 − Azn)D

(
I−

1t
2

D
)
+ O(1t4).

After inserting the resulting expressions for Z̃1 and Z̃−1 into (43) and further simplifications, we obtain (40).
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Finally, we insert (40) into (39) to find(
I+

1t
2

D
)
zn+1 = −

(
I−

1t
2

D
)
zn−1 + 2zn +1t2(Rn,0 − Azn)+ O(1t4), (44)

which is equivalent to

zn+1 − 2zn + zn−1
1t2

+ D
zn+1 − zn−1
21t

+ Azn = Rn,0 + O
(
1t2

)
.

From the comparison with (5) we conclude that the local time-stepping scheme is second-order accurate. �

Remark 2. For σ = 0 (D = 0), Algorithm 2 coincides with Algorithm 1 and thus also conserves the discrete energy (28).
For σ 6= 0 and p = 1, i.e. no local mesh refinement, one can easily show that the energy is no longer conserved but decays
with time (independently of σ ) under the same CFL condition as in the case with σ = 0.

5. High-order explicit local time-stepping

In a non-conducting medium, Maxwell’s equations correspond to a separable Hamiltonian system. This fact explains the
success of symplectic integrators, such as the leap-frog (or Störmer–Verlet) method, when combined with a symmetric
discretisation in space based on centred finite differences or centred DG fluxes, for instance. Indeed the fully discrete
numerical scheme will then conserve (a discrete version of) the energy, too. Clearly, standard symplectic partitioned
Runge–Kutta (Lobatto IIIA–IIIB pairs) or composition methods [31] can be used to achieve higher accuracy [32]. Because the
Hamiltonian here is separable, those higher order versions will also remain explicit in time, like the Störmer–Verlet method.
Since Maxwell’s equations are linear, we instead opt for the even more efficient modified equation (ME) approach [33] in
Section 5, which leads to explicit local-time stepping of arbitrarily high (even) order. In a conducting medium, however,
Maxwell’s equations are dissipative and those approaches no longer yield explicit high-order time-marching schemes. Thus
standard explicit Runge–Kutta ormulti-stepmethods become themethods of choice [13,21,34]. The development of explicit
local time-stepping schemes of arbitrarily high accuracy based on RK methods is a topic of active research while an explicit
stability criterion still remains an open problem.

5.1. Modified equation approach

Following the ME approach, we replace Az(t + θ1t) in (8) by its Taylor expansion

Az(t + θ1t) = A
(
z(t)+ θ1tz′(t)+

θ21t2

2
z′′(t)+

θ31t3

6
z′′′(t)

)
+ O(1t4).

Then, the integrals involving odd powers of θ vanish. Next, by using that z′′(t) = R(t)− Az(t) and the Simpson quadrature
rule for the term that involves R(t + θ1t), we obtain the fourth-order modified equation scheme.

zm+1 − 2zm + zm−1
1t2

= Rm − Azm +
1t2

12
A2zm −

1t2

12
ARm +

1
3

(
Rm−1/2 − 2Rm + Rm+1/2

)
+ O(1t4), (45)

where zm ' z(tm), Rm ' R(tm) and Rm±1/2 ' R(tm ± 1t/2). Clearly, integration schemes of arbitrary (even) order can
be obtained by using additional terms in the Taylor expansion. Since the maximal time-step allowed by the fourth-order
ME method is about 70% times larger than that of the leap-frog scheme [35], the additional work needed for the improved
accuracy is quite small; hence, the ME method is extremely efficient.

5.2. Fourth-order local time-stepping method in a non-conducting medium

We now derive a fourth-order local time-stepping method for (6). Similarly to the derivation in Section 4.1, we split the
vectors z(t) and R(t) in (11) into a fine and a coarse part, and shall treat z[fine](t) and R[fine](t) differently from z[coarse](t)
and R[coarse](t). We expand z[coarse](t + θ1t) in Taylor series as

z[coarse](t + θ1t) = z[coarse](t)+ θ1t
dz[coarse]

dt
(t)+

θ21t2

2
d2z[coarse]

dt2
(t)+

θ31t3

6
d3z[coarse]

dt3
(t)+ O(1t4)

and insert it into (11). In (11), the integrals involving odd powers of θ vanish. By using

d2z[coarse]

dt2
(t) = (I− P)

d2z
dt2

(t) = (I− P)R(t)− (I− P)Az(t)



3296 M.J. Grote, T. Mitkova / Journal of Computational and Applied Mathematics 234 (2010) 3283–3302

and the Simpson quadrature rule for the term in (11) that involves R[coarse](t + θ1t), we find that

z(t +1t)− 2z(t)+ z(t −1t) = 1t2 {(I− P)R(t)− A(I− P)z(t)} +
1t4

12
A(I− P)Az(t)−

1t4

12
A(I− P)R(t)

+
1t2

3
(I− P)

{
R
(
t −

1t
2

)
− 2R(t)+ R

(
t +

1t
2

)}
+1t2

∫ 1

−1
(1− |θ |)

{
R[fine](t + θ1t)− Az[fine](t + θ1t)

}
dθ. (46)

Hence, if P = 0we recover the standard modified equation scheme (45).
Similarly to Section 4.1, we now approximate the right-hand side of (46) by solving the following differential equation

for z̃(τ )
d2̃z
dτ 2

(τ ) = (I− P)R(t)− A(I− P)z(t)+
1
3
(I− P)

{
R
(
t −

1t
2

)
− 2R(t)+ R

(
t +

1t
2

)}
+
τ 2

2
A(I− P)Az(t)−

τ 2

2
A(I− P)R(t)+ PR(t + τ)− AP̃z(τ ),

z̃(0) = z(t),
z̃′(0) = ν,

where ν will be specified below. Again, using Taylor expansions, we infer that
z(t +1t)+ z(t −1t) = z̃(1t)+ z̃(−1t)+ O(1t6).

Again, the quantity z̃(1t) + z̃(−1t) does not depend on the value of ν, which we set to zero. As in Section 4.1, we set
q(τ ) := z̃(τ )+ z̃(−τ), which solves the differential equation

d2q
dτ 2

(τ ) = 2 {(I− P)R(t)− A(I− P)z(t)} +
2
3
(I− P)

{
R
(
t −

1t
2

)
− 2R(t)+ R

(
t +

1t
2

)}
+ τ 2A(I− P)Az(t)− τ 2A(I− P)R(t)+ P {R(t + τ)+ R(t − τ)} − APq(τ ),

q(0) = 2z(t),
q′(0) = 0.

(47)

Thus, we have

z(t +1t)+ z(t −1t) = q(1t)+ O(1t6). (48)
Now, we approximate the right side of (8) by solving (47) with the fourth-order ME method on [0,1t]with a smaller time
step1τ = 1t/p, and then use (48) to compute z(t +1t).
In summary, the fourth-order algorithm for the solution of (6) computes zn+1 ' z(t+1t), given zn and zn−1, as follows:

Algorithm 3. 1. Set q0 := 2zn,w1 := (I−P)Rn−A(I−P)zn,w2 := A(I−P)Azn−A(I−P)Rn and r1 := Rn−1/2−2Rn+Rn+1/2.
2. Compute

u := 2w1 +
2
3
(I− P)r1 + 2Rn,0 − APq0

q1/p := q0 +
1
2

(
1t
p

)2
u+

1
24

(
1t
p

)4
(2w2 + 2Pr1 − APu) .

3. Form = 1, . . . , p− 1, compute

u1 := 2w1 +
2
3
(I− P)r1 +

(
m1t
p

)2
w2 + P

(
Rn,m + Rn,−m

)
− APqm/p,

r := Rn,m−1/2 − 2Rn,m + Rn,m+1/2 + Rn,−m−1/2 − 2Rn,−m + Rn,−m+1/2,
u2 := 2w2 + Pr − APu1,

q(m+1)/p := 2qm/p − q(m−1)/p +
(
1t
p

)2
u1 +

1
2

(
1t
p

)4
u2.

4. Compute zn+1 := −zn−1 + q1.
Here, Steps 1–3 correspond to the numerical solution of (47) until τ = 1t with theME approach using the local time-step

1τ = 1t/p. This algorithm requires three – two,without sources –multiplications byA(I−P) and 2p furthermultiplications
by AP. For P = 0, that is without any local time-stepping, Algorithm 3 reduces to the modified equation scheme (45) above.
To establish the accuracy and stability of the above local time-stepping scheme, one must rewrite it in ‘‘leap-frog manner’’
following the approach in [25] for the homogeneous case and use extensions of Lemmas 1 and 2 (Section 4.1).
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Fig. 1. The triangular meshes on (global) refinement level 1: local refinement with p = 2 (left), p = 4 (centre), and p = 8 (right). The darker triangles
belong to the ‘‘fine’’ mesh and the lighter triangles to the ‘‘coarse’’ mesh.

6. Numerical experiments

We shall now present three numerical experiments to validate the theoretical results obtained for the local time-
stepping methods and illustrate their usefulness in the presence of complex geometry. Throughout this section we use
the IP–DG discretisation from Section 3 with linear triangular elements and fix the penalty parameter in (3) to α = 10, for
simplicity. First, we consider a model problem in a non-conducting source-free medium, for which the analytical solution
is known. Here, we shall verify space–time second-order convergence and conservation of energy for different rates of local
refinement, p. Moreover, we shall study the stability condition on the time step, 1t , for varying p, both for regular and
unstructured triangulations. Second, we include an inhomogeneous source and verify the expected rates of convergence
both in a conducting and in a non-conductingmedium. Third, we illustrate the versatility of our local time-stepping schemes
by simulating a Gaussian beam penetrating a cavity with a small hole embedded in a locally refined mesh.

6.1. Homogeneous source and non-conducting medium

We consider (1) in a non-conducting medium, i.e. σ = 0 throughoutΩ = (−π, π)2, with T = 2π , f = 0, and constant
material parameters ε = µ = 1. Furthermore, we set the initial conditions such that the solution corresponds to

u(x, y, t) = cos(t)
(
sin(y)
sin(x)

)
.

The computational domainΩ is discretized with a regular triangular mesh of size hcoarse = 0.23. Then, we refine by a factor
p = 2, 4 or 8 a square-shaped subregion of diagonal 1.4 at the centre ofΩ; hence, hfine = hcoarse/p. The finemesh, that is the
subregion ofΩ where local time steps are required, then consists of all triangles of size hK < hcoarse, as indicated in Fig. 1.
For every time-step 1t , we shall take p local time-steps of size 1τ = 1t/p inside the refined region with the second-

order local time-stepping scheme (Algorithm 1). In the absence of local refinement, i.e. p = 1, the (local) time-stepping
scheme corresponds to the standard leap-frog (LF)method andwe denote by1tLF = 0.5hcoarse (determined experimentally)
the largest time-step allowed on that initial mesh. In the presence of local refinement, that is for p ≥ 2, we denote by 1tp
the maximal time-step allowed. If1tp = 1tLF , the local time-stepping scheme imposes no further restriction on1t beyond
that of the coarse mesh; then, we call the CFL condition of the scheme optimal.
To investigate the overall convergence rate, we consider a sequence of four successively refined regular meshes at fixed

p, where in all instances 1tp = 1tLF (the largest possible time-step for p = 1) — see Table 1. In Fig. 2, the L2-error at time
T = 2π is shown versus the mesh size h = hcoarse. Independently of the number of local time-steps and the rate of local
refinement p = 1, 2, 4 or 8, the numerical method yields overall second-order convergence for the optimal CFL condition.
In Fig. 2, we also observe that the (discrete) energy En+1/2, defined in (28), is truly conserved for all time.
Next, we study the stability of the local time-stepping scheme. Recall that the scheme is stable if all eigenvalues of

(1t2/4)Ap (see (27)) lie between zero and one; note that Ap also depends on 1t . Since the smallest eigenvalue always
remains positive, it does not affect the stability here, which is fully determined by the maximal eigenvalue. In Fig. 3, we
display the largest eigenvalue of (1t2/4)Ap for varying 1t/1tLF for p = 4 and two different levels of (global) mesh
refinement. We observe that for certain values of 1t , the maximal eigenvalue slightly transgresses the strict limit at one.
However, as the mesh is refined the magnitude and the extent of the overshoot are reduced – compare the left and the right
frame of Fig. 3 – and as a consequence do not affect the overall convergence of the scheme (on a fixed time interval). This
somewhat subtle behavior, also observed for p = 2 and 8, is typical and always more prominent on regular meshes.
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Table 1
Mesh data for each level of (global) refinement. The degree of local refinement is determined by p.

Level p
1 2 4 8
el. h el. hcoarse hfine el. hcoarse hfine el. hcoarse hfine

1 128 0.230 144 0.230 0.115 160 0.230 0.057 176 0.230 0.028
2 512 0.115 576 0.115 0.057 640 0.115 0.028 704 0.115 0.014
3 2048 0.057 2304 0.057 0.028 2,560 0.057 0.014 2,816 0.057 0.007
4 8192 0.028 9216 0.028 0.014 10,240 0.028 0.007 11,264 0.028 0.003
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Fig. 2. L2-error at time T = 2π vs. h = hcoarse (left). Time evolution of the discrete energy, defined in (28), with p = 2 and (global) refinement level 2
(right); note that the vertical scale is strongly magnified here.
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Fig. 3. The largest eigenvalues of (1t2/4)Ap for varying 1t/1tLF with p = 4: (global) refinement level 1 (left), (global) refinement level 2 (right); the
vertical scale is strongly magnified.

To illustrate this fact we now repeat the same experiment with an unstructured mesh, where again a small square
subregion is refined by a factor p = 4, as shown in Fig. 4. Since the initial mesh inΩ is unstructured, the boundary between
the fine and coarse mesh is not well-defined andwe shall treat as finemesh those triangles of size hK < 0.5hcoarse. Again, for
a sequence of successively refined meshes with 1tLF = 0.25hcoarse (determined experimentally), we obtain second-order
convergence (not shown here). We now study the eigenvalues of (1t2/4)Ap for varying 1t/1tLF . As shown in the right
frame of Fig. 4, the maximal eigenvalue still slightly transgresses the limit at one for certain values of1t , yet the overshoot
is much smaller here – compare with Fig. 3 – and occurs only at time steps1t > 0.91tLF . Thus, for all time-steps1t smaller
than 0.91tLF , the local time-stepping scheme is stable.
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Fig. 4. The unstructured triangular mesh (left): 364 elements with hcoarse = 0.067 and p = 4; the darker triangles belong to the ‘‘fine’’ mesh and the
lighter triangles to the ‘‘coarse’’ mesh. The largest eigenvalues of (1t2/4)Ap are shown for varying 1t/1tLF on the unstructured mesh (right); here, the
vertical scale is strongly magnified.

Table 2
Mesh data for each level of (global) refinement. The degree of local refinement is determined by p.

Level p
1 2 4 8
el. h el. hcoarse hfine el. hcoarse hfine el. hcoarse hfine

1 128 0.073 144 0.073 0.036 160 0.073 0.018 176 0.073 0.009
2 512 0.036 576 0.036 0.018 640 0.036 0.009 704 0.036 0.004
3 2048 0.018 2304 0.018 0.009 2,560 0.018 0.004 2,816 0.018 0.002
4 8192 0.009 9216 0.009 0.004 10,240 0.009 0.002 11,264 0.009 0.001

6.2. Inhomogeneous source inside conducting or non-conducting medium

Next, we consider the numerical solution of (1) inΩ = (−1, 1)2 until time T = 0.5, with constant material parameters
ε = µ = 1. We shall study two separate situations: an insulator with σ = 0 and a conductor with σ = 1. The initial and
source data are chosen to match the smooth solution

u(x, y, t) =
t2

2

(
cos(πx) sin(πy)
− sin(πx) cos(πy)

)
.

InsideΩ , we choose a regular triangulation with hcoarse = 0.073. Then, we refine by a factor p = 2, 4 or 8 a square-shaped
subregion of diagonal 0.5 at the centre ofΩ . The fine mesh consists of triangles with size hK < hcoarse. In Table 2, we present
the mesh data of a sequence of four successively refined meshes. We always set the time-step to its (maximal) optimal
value,1tp = 1tLF = 0.5hcoarse (determined experimentally with p = 1), and study the convergence of the two local time-
stepping schemes: Algorithm 1 for σ = 0 and Algorithm 2 for σ 6= 0. In Fig. 5, we display the space–time L2-errors of the
numerical solutions at time T = 0.5 for different values of p. In all instances the numerical results corroborate the expected
second-order rate of convergence.

6.3. Gaussian beam

Finally, we consider an electromagnetic wave propagating into a non-conducting square cavity Ω = (−1, 1)2, with a
diamond-shaped hole of diagonal 0.2 at its centre — see Fig. 6.We set ε = µ = 1 and let the initial conditions and the source
term vanish throughoutΩ . The electromagnetic field is excited at the top ofΩ through the time-dependent inhomogeneous
boundary condition

n× u(x, y, t) =
{
g(x, t) at y = 1, − 1 < x < 1,
0 else, (49)

with

g(x, t) = cos(2π t)
1
√
2πb

e
−x2

2b2 , b = 0.2.
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Fig. 5. L2-error at time T = 0.5 vs. h = hcoarse: σ = 0 (left) and σ = 1 (right).

Fig. 6. The computational domain (left); the initial triangular mesh at (global) refinement level 1 (right): the darker triangles belong to the ‘‘fine’’ mesh.

The inhomogeneous boundary condition (49) is (weakly) imposed in the IP–DG discretisation by modifying (2) as follows:
find uh : [0, T ] → Vh such that

(uhtt , v)+ ah(u
h, v) = (f, v)+

∑
e∈EB

h

∫
e
g(a(n× n)−∇ × v) ds, ∀v ∈ Vh, t ∈ (0, T ).

First,Ω is discretized with triangles of minimal size hcoarse = 0.062. Then, we refine the region [−0.2, 0.2]× [−0.2, 0.2]
around the hole by a factor p = 6; hence, inside the locally refined region hfine = hcoarse/6. Then, we successively refine
the entire mesh four times, each time splitting every triangle into four. Again, since the initial mesh in Ω is unstructured,
the boundary between the fine and coarse mesh is not well-defined and we shall treat as fine mesh those triangles, whose
centre of gravity lies inside the box [−0.3, 0.3]×[−0.3, 0.3]— see Fig. 6. The corresponding degrees of freedom in the finite
element solution are then selected merely by setting to one the corresponding diagonal entries of the matrix P in (10).
For the time discretisation we choose the local time-stepping method (Algorithm 1) from Section 4.1. Thus, the

numerical method is second-order accurate in both space and time under the CFL condition 1t = 0.19hcoarse, determined
experimentally. If the same (global) time step1t was used everywhere insideΩ , it would have to be about six times smaller
than necessary inmost ofΩ . Instead, we use the local time-steppingmethodwith p = 6, which for every time step1t takes
six local time steps inside the refined region.

In Fig. 7, the intensity of the electric field, |u| =
√
u21 + u

2
2 is shown at different times. The time-harmonic Gaussian beam,

excited at the top of the computational domainΩ , propagates until it impinges on the hole. The resulting scattered circular
wave then interferes with the incoming beam, as it reaches the lateral boundaries ofΩ . Even stronger interferences occur
as the beam is reflected back from the lower boundary, while singularities appear at the (re-entrant) corners of the hole.
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Fig. 7. Gaussian beam penetrating a cavity with a small diamond-shaped hole from above. The intensity of the electric field, |u| =
√
u21 + u

2
2 , at times

t = 1, 1.5, 2, 3, 3.5 and 4.5.

7. Conclusion

Starting from the standard second-order leap-frog scheme, we have presented explicit local time-stepping methods for
Maxwell’s equations,which allowarbitrarily small time-steps preciselywhere the smallest elements in themesh are located.
When combinedwith a finite element discretisation in spacewith an essentially diagonalmassmatrix, the resulting discrete
time-marching schemes are fully explicit. The second-order accurate schemes are given by Algorithm 1 (Section 4.1) and
Algorithm 2 (Section 4.2) in a non-conducting or conducting medium, respectively. A fourth-order accurate scheme is given
by Algorithm 3 (Section 5) for a non-conducting media, while higher order extensions are straightforward. In a source-free
and non-conducting medium, these local time-stepping schemes also conserve (a discrete version of the) energy, which
not only provides a rigorous criterion for numerical stability but also is of practical importance for long-time simulations.
In a conducting medium, the stability of the local time-stepping scheme remains independent of the magnitude of the
conductivity.
Since the local time-steppingmethods presented here are truly explicit, their parallel implementation is straightforward.

Let1t denote the time-step imposed by the CFL condition in the coarser part of the mesh. Then, during every (global) time-
step 1t , each local time-step of size 1t/p inside the fine region of the mesh, simply corresponds to sparse matrix–vector
multiplications that only involve the degrees of freedom associated with the fine region of the mesh. Those ‘‘fine’’ degrees
of freedom can be selected individually and without any restriction by setting the corresponding entries in the diagonal
projection matrix P to one; in particular, no adjacency or coherence in the numbering of the degrees of freedom is assumed.
Hence the implementation is straightforward and requires no special data structures. In the presence of multi-level mesh
refinement, each local time-step in the fine region can itself include further local time-steps inside a smaller subregion with
an even higher degree of local mesh refinement.
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