
Physics Letters B 678 (2009) 254–258

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Multiple layer structure of non-Abelian vortex

Minoru Eto a,b,∗, Toshiaki Fujimori c, Takayuki Nagashima c, Muneto Nitta d, Keisuke Ohashi e,
Norisuke Sakai f

a INFN, Sezione di Pisa, Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy
b Department of Physics, University of Pisa Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy
c Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
d Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8521, Japan
e Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA, UK
f Department of Mathematics, Tokyo Woman’s Christian University, Tokyo 167-8585, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2009
Accepted 20 May 2009
Available online 29 May 2009
Editor: M. Cvetič

Bogomolny–Prasad–Sommerfield (BPS) vortices in U (N) gauge theories have two layers corresponding to
non-Abelian and Abelian fluxes, whose widths depend nontrivially on the ratio of U (1) and SU(N) gauge
couplings. We find numerically and analytically that the widths differ significantly from the Compton
lengths of lightest massive particles with the appropriate quantum number.
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1. Introduction

Many important properties of Abelian (ANO) vortex were found
[1–5] since its discovery [6]. Recently vortices in U (N) gauge the-
ories (called non-Abelian vortices) were found [7,8] and have at-
tracted much attention [9] because they play an important role in
a dual picture of quark confinement [8,10] and are a candidate of
cosmic strings [11] (see [12] for review report). The moduli space
of U (N) non-Abelian vortices was determined in [13] and study on
interactions between non-BPS configurations started in [14]. Non-
Abelian vortices in other gauge groups have been studied in [15].

Although there have been much progress and wide applications,
internal structures and dependence on gauge coupling constants
have not yet been studied for (color) magnetic flux tubes. It is
particularly important to study physical widths of vortices quali-
tatively and quantitatively, although it is not easy because no ana-
lytic solutions are known. It may be tempting to speculate that the
width is determined by the Compton lengths of lightest massive
particles with the appropriate quantum number. Purpose of this
Letter is to clarify intricate multiple layer structures of non-Abelian
vortices by investigating numerically and analytically the equations
of motion. Non-Abelian vortices have two distinct widths for SU(N)

and U (1) fluxes. We clarify properties of these widths by making
use of several approximations. It turns out that non-Abelian vor-
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tices are very different from ANO vortices and have much richer
internal structures.

2. Vortex equations and solutions

Let us consider a U (N) gauge theory with gauge fields Wμ for
SU(N) and wμ for U (1) and N Higgs fields H (N-by-N matrix) in
the fundamental representation. We consider the Lagrangian L =
K − V which can be embedded into supersymmetric theory with
eight supercharges

K = Tr

[
− 1

2g2
(Fμν)2 + DμH DμH†

]
− 1

4e2
( fμν)2, (1)

V = g2

4
Tr

[〈
H H†〉2] + e2

2

(
Tr

[
H H† − c1N

])2
, (2)

where 〈X〉 stands for a traceless part of a square matrix X .
Our notation is DμH = (∂μ + iWμ + iwμ1N )H , Fμν = ∂μWν −
∂ν Wμ + i[Wμ, Wν ] and fμν = ∂μwν − ∂ν wμ . We have three cou-
plings: SU(N) gauge coupling g , U (1) gauge coupling e and Fayet–
Iliopoulos parameter c > 0.

The Higgs vacuum H = √
c1N is unique and is in a color-

flavor SU(N)C+F locking phase. Mass spectrum is classified accord-
ing to representations of SU(N)C+F as mg ≡ g

√
c for non-Abelian

fields φN = (W ,< H >) and me ≡ e
√

2Nc for Abelian fields φA =
(w,Tr(H − √

c1N)). The non-Hermitian part of H is eaten by the
U (N) gauge fields. A special case of mg = me [7] has been mostly
considered so far, which is equivalently

γ = 1 with γ ≡ g√ = mg
, (3)
e 2N me
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Fig. 1. h1,2 (solid, broken lines) and Be,g . The left panels (me = 1) for logγ = 0,1,2,3,4,5 and ∞. The right panels (mg = 1) for logγ = 0,−0.5,−1, . . . ,−3 and −∞.
but we study general cases in this Letter.
Let us consider static vortex-string solutions along x3-axis. The

BPS equations for the non-Abelian vortex are

D̄ H = 0,
F12

m2
g

= 〈H H†〉
2c

,
f12

m2
e

= Tr(H H† − c1N)

2c
, (4)

with D̄ = (D1 + iD2)/2. The tension of k-vortex is Tk = −c
∫

d2x ×
Tr[ f121N ] = 2πkc. No analytic solutions have been known whereas
a numerical solution was first found in [8]. For k = 1 vortex,
we take H = S−1 H0, W̄ = −i S−1∂̄ S [2W̄ ≡ (W1 + w11N ) +
i(W2 + w21N)] with diagonal matrices H0 = diag(reiθ ,1, . . . ,1)

and cS S† = e(ψe+ 1
N log r2)1N +(ψg+ N−1

N log r2)T . Here, T ≡ diag(1,− 1
N−1 ,

. . . ,− 1
N−1 ) and ψe and ψg are real functions of the radius r > 0 of

the polar coordinates (r, θ) in x1, x2 plane. Then we get

	ψe

m2
e

+ 1

N
e−ψe

(
e−ψg + (N − 1)e

ψg
N−1

) = 1, (5)

	ψg

m2
g

+ N − 1

N
e−ψe

(
e−ψg − e

ψg
N−1

) = 0, (6)

with 	 f (r) = ∂r(r∂r f (r))/r. The boundary conditions are ψe,ψg →
0(r → ∞) and Nψe,

N
N−1 ψg → − log r2(r → 0). The fluxes and the

Higgs fields are expressed by

f12 = −1
	ψe, F12 = −1

	ψg T ,

2 2
H = √
c diag(h1,h2, . . . ,h2) (7)

with h1 = e− ψe+ψg
2 +iθ and h2 = e− 1

2 (ψe− ψg
N−1 ) . The amount of the

Abelian flux is 1/N and the non-Abelian flux is (N − 1)/N of the
ANO vortex.

We found the following theorems for Eqs. (5) and (6)

(a) ψe,g > 0, ∂rψe,g < 0 and 	ψe,g > 0,
(b) |h1| < |h2|, |h1| < 1 and ∂r |h1| > 0,

(c) ∂r |h2| � 0 and 1 � h2 �
√

N/(N + γ 2 − 1) for γ � 1.

All these can be proved by using the following theorem for an an-
alytic function f (r) satisfying f (r) < 0 ⇒ 	 f (r) < 0: If ∂r f (0) � 0
and f (∞) = 0, then f (r) � 0 for ∀r ∈ (0,∞). In the case of γ = 1,
we get Nψe = N

N−1 ψg ≡ ψANO and the above equations reduce

to 	ψANO = m2
e (1 − e−ψANO) with boundary condition ψANO →

0(r → ∞) and ψANO → − log r2(r → 0).
Numerical solutions for N = 2 for a wide range of γ (including

γ = 0,∞) are shown in Fig. 1. Winding field h1 is not sensitive on
γ while unwound field h2 is. As mg being sent to ∞ (γ → ∞),
the non-Abelian flux F12 becomes very sharp and finally gets to
singular. Interestingly, the Abelian flux f12 is kept finite there. In
a region γ < 1 (me > mg ), on the other hand, the Abelian flux is
a bit smaller than the non-Abelian tube. Surprisingly, the fluxes
remain finite even in me → ∞ limit.
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Table 1
Numerical data for k = 1 U (2) vortex.

γ ce cg be bg aγ

0 – 1.1363 0 0.75905
√

2
0.25 – 1.1853 0.31719 0.73163 1.31688
0.5 – 1.3090 0.47907 0.68393 1.18361
0.75 2.196 1.4852 0.55921 0.64006 1.07932
1 1.70786 1.70786 0.60329 0.60329 1
1.5 1.4715 2.3031 0.64726 0.54697 0.88820
2 1.4037 3.15 0.66773 0.50604 0.81226
2.5 1.3746 4.32 0.67897 0.47469 0.75640
3 1.3594 6.0 0.68584 0.44969 0.71301
∞ 1.3267 – 0.70653 0 0

3. Asymptotic width

Let us investigate the vortex solution by expanding (5) and (6)
in region r � max{m−1

e ,m−1
g } where |ψe|, |ψg | 
 1. We keep only

the lowest-order term in ψe while keeping terms up to next to
leading order in ψg in Eq. (5):

(
	 − m2

e

)
ψe + m2

eψ
2
g

2(N − 1)
= 0,

(
	 − m2

g

)
ψg = 0. (8)

The solution is given by the second modified Bessel function K0(r),
and approximated as

ψe �

⎧⎪⎨
⎪⎩

ce

√
π

2mer e−mer,

πc2
g

4(N−1)(1−4γ 2)

e−2mg r

mgr ,

ψg � cg

√
π

2mgr
e−mgr, (9)

with ce,g being dimensionless constants, see Table 1. The asymp-
totic behavior of ψe changes at γ = 1/2 (upper for γ � 1/2 and
lower γ � 1/2). Similar phenomenon was observed for the non-
BPS ANO vortex [3,4]. The origin of ψe (ψg) is (non-)Abelian
fields φA (φN) with mass me (mg), and the γ = 1/2 threshold
can be interpreted as follows. The expansion of the Lagrangian
with respect to small φA,N contains the triple couplings φAφ2

N. For
me � 2mg , asymptotics for φA,N are given by K0(me,gr) as the two-
dimensional Green’s function. When me > 2mg , the particles φA
decay into two particles φ2

N through these couplings, and thus,
φA exhibits the asymptotic behavior e−2mgr below γ = 1/2 like
Eq. (9). On the contrary, even for γ > 2, φN does not behave as
e−2mer since there is no triple coupling φNφ2

A due to the traceless
condition for φN.

Let us define asymptotic width of the vortex by an inverse of the
decay constant in Eq. (9):

Le =
{

2/me for γ � 1/2,

2/(2mg) for γ < 1/2,
Lg = 2/mg . (10)

Here the factor 2 is put in the numerator to match with another
definition in Eq. (14). The asymptotic width of Abelian vortex is
bigger than the non-Abelian one when γ > 1 and vice versa for
1/2 � γ < 1. For γ = 1, the two widths are the same. The case
γ < 1/2 indicates a significant modification, where the Abelian
flux tube is supported by the non-Abelian flux tube. This answers
the question why the Abelian vortex does not collapse even in the
me → ∞ limit. When γ � 1, the thin non-Abelian flux hidden by
fat Abelian flux cannot be correctly measured by Lg . We now turn
to another definition of vortex width which reflect the size of the
vortex core more faithfully.

4. Core widths

Let us consider a region near the vortex core. We expand fields
by
Fig. 2. The core and asymptotic widths vs. logγ .

ψe ≈ − 2

N
log bemer, ψg ≈ −2

N − 1

N
log bgmgr. (11)

Dimensionless constants be,g are related to h2(r = 0) by

aγ ≡ h2(0) = (be/γ bg)
1/N . (12)

See Table 1. These are important since they are related to the max-
imum values of the magnetic fluxes at r = 0

Be = −m2
e

2

(
1 − N − 1

N
a2
γ

)
, B g = −m2

g

2

N − 1

N
a2
γ . (13)

Widths of the magnetic fluxes can be estimated by using a step
function Θ(x) as F12 = B gΘ(L̃ g − r)T and f12 = BeΘ(L̃e − r) keep-
ing amounts of the fluxes as |Be| ×π L̃2

e = 2π/N and |B g | ×π L̃2
g =

2(N − 1)π/N:

L̃e = 2

me

√
N − (N − 1)a2

γ

, L̃ g = 2

mgaγ
, (14)

We call L̃e and L̃ g as the core widths of the vortex. In the case of
γ = 1, L̃e and L̃ g coincide because of aγ =1 = h2 = 1. In Fig. 2, we
show the core widths numerically in the case of N = 2, which are
analytically reinforced as we will discuss. We again observe that
the Abelian core does not collapse even when me � 1 (γ 
 1).

Mass dependence of the core widths coincides with one of the
asymptotic widths Le,g given in Eq. (10), except for L̃ g(γ > 1), see
Fig. 2. The asymptotic width Lg is independent of me whereas the
core width L̃ g depends on me . This is because L̃e,g more faithfully
reflects the multilayer structure in the large intermediate region of
r for the strong coupling regime (γ � 1), to which we now turn.
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5. Two strong coupling limits

Here we study two limits: (i) mg → ∞ with me fixed, and (ii)
me → ∞ with mg fixed. In the former limit (γ → ∞ with me

fixed), all the fields with mass mg become infinitely heavy and in-
tegrated out from the theory. As a result, the original U (N) gauge
theory becomes the Abelian theory with one SU(N) singlet field
B ≡ det H . Note that the target space is C/ZN because U (1) charge
of B is N . Eq. (6) is solved by ψg,∞ = 0 while ψe,∞ is determined
by Eq. (5)

	ψe,∞
m2

e
= 1 − e−ψe,∞ , ψe,∞ −→

r→0
− 2

N
log mebe,∞r (15)

where suffix ∞ denotes γ = ∞: ψg,∞ ≡ ψg |γ →∞ . The boundary
condition tells that vorticity is fractional k = 1/N . This way the
non-Abelian flux tube collapses and the U (N) non-Abelian vortex
reduces to the 1/N fractional Abelian vortex. This solution helps
us to understand the non-Abelian vortex for γ � 1 better. Since
e−ψe ≈ (mebe,∞r)2/N (r 
 1/me) for γ � 1, ψg for r 
 1/me is
well approximated by a solution of the following

	ψg

m̃2
g

+ N − 1

N
(m̃gr)

2
N
(
e−ψg − e

ψg
N−1

) = 0, (16)

where the parameter m̃g ≡ mg(be,∞γ −1)
1

N+1 has a mass dimen-
sion. Therefore ψg has asymptotic behavior in the middle region
1/m̃g 
 r 
 1/me

ψg ≈ c̃g K0

(
N

N + 1
(m̃gr)

N+1
N

)

 1, (17)

and ψg ≈ − 2(N−1)
N log(b̃gm̃gr) for r 
 1/m̃g . Here b̃g, c̃g are de-

termined numerically and independent of γ , for instance, b̃g =
0.74672, c̃g = 0.63662 for N = 2. Comparing this with Eq. (11), we

find bg ≈ b̃g[be,∞γ −1] 1
N+1 and aγ ≈ b̃

− 1
N

g [be,∞γ −1] 1
N+1 for γ � 1.

In the second limit (γ → 0 with mg fixed), all the fields with

the mass me are integrated out. The model reduces to a CP N2−1

model with SU(N) isometry [in SU(N2 − 1)] gauged. Eq. (5) is

solved by eψe,0 = (e−ψg,0 + (N − 1)e
ψg,0
N−1 )/N while ψg,0 is deter-

mined by

	ψg,0 = m2
g
(N − 1)(1 − e− N

N−1 ψg,0)

(N − 1) + e− N
N−1 ψg,0

, (18)

where the suffix 0 denotes γ → 0: ψg,0 ≡ ψg |γ →0. This is a
new σ -model lump with the non-Abelian flux accompanied with
the internal orientation CP N−1. Again we can make use of this
solution to understand the non-Abelian vortex for γ 
 1. Let

us define α2 ≡ 	ψg,0(0)

	ψe,0(0)
= B g

Be
|γ →0 which turns out to be finite

α2 = (N − 1)/(1 + 4b2
g |γ →0). Since 	ψg,0(0) = m2

g and 	ψe,0(0) =
limγ →0 m2

gγ
−2(1 − (N − 1)a2

γ /N), we find aγ = a0(1 −γ 2/(2α2)+
· · ·), a0 = √

N/(N − 1) for γ 
 1.

6. Summary and discussion

We have proposed two length scales for fluxes of non-Abelian
vortices: asymptotic widths Le,g in Eq. (10) and core widths L̃e,g in
Eq. (14). By using the asymptotics of aγ obtained above, the core
width is summarized as

{L̃e, L̃ g} �
⎧⎨
⎩

{ 2α
mg

√
N
, 2

mg

√
N−1

N } (γ 
 1),

{ 2√ ,
2β
m (

mg
m )

1
N+1 } (γ � 1),

(19)
me N g e
where α and β depend only on N and are determined numeri-
cally, for instance α = 0.55010, β = 0.97022 for N = 2. The core
and asymptotic widths have the same mass dependence except
for L̃ g and Lg for γ � 1. Interestingly, the Abelian flux does not
collapse even when me → ∞ (γ 
 1). For γ � 1, the thin non-
Abelian flux is hidden by fat Abelian flux, so that the true width
cannot be captured by the asymptotics at r � m−1

e . Instead we
should use improved approximation given in Eq. (17) to measure
the non-Abelian flux. Indeed, the decay constant in Eq. (17) is m̃−1

g

whose mass dependence is the same as one of L̃ g for γ � 1.
In the limit mg → 0, the original U (N) gauge theory reduces

to U (1) gauge theory coupled to N2 Higgs fields. Eq. (19) tells us
that the vortex is diluted and vanishes in this limit. This is consis-
tent with the fact that there is no (smooth) vortex solution with
a winding number 1/N in that U (1) theory. The minimal vortex
in the U (1) theory corresponds to N vortices in the original the-
ory. The dilution is expected to be avoided and all the fields with
mass of the order of mg decouple, when N vortices are arranged
as H = f (r)1N . In the limit me → 0, there is no BPS vortex solu-
tion since the U (1) gauge field is decoupled from the Higgs fields.
Actually, according to Eq. (19), one can find both of the Abelian
and the non-Abelian fluxes are diluted again even in this limit due

to the factor γ
1

N+1 . Monopoles/instantons attached by vortices are
known to exist [10]. The above observation implies that such con-
figurations reduce to a monopole/instanton configurations in the
SU(N) gauge theory in that limit, and strongly supports the corre-
spondence between the moduli spaces of them.

It is interesting to study relation between non-BPS vortices and
monopoles. It was found that monopoles do not collapse when the
Higgs mass is very large [16].
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