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1. Introduction

In this article, K will denote an arbitrary field, car(K) its characteristic, and n a positive integer. We

choose an algebraic closure of K which we denote by K. We let E denote a vector space of dimension n

over K, and End(E) denote the algebra of endomorphisms of E. We choose two scalars α and β in K
∗.

An idempotent matrix ofMn(K) is a matrix P verifying P2 = P, i.e. idempotent matrices represent

projectors in finite-dimensional vector spaces. Of course, any matrix similar to an idempotent is itself

an idempotent.

Definition 1. Let A be a K-algebra. An element x ∈ A will be called an (α,β)-compositewhen there

are two idempotents p and q such that x = α · p + β · q.
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The purpose of this paper is to give necessary and sufficient conditions on amatrix A ∈ Mn(K) to be

an (α,β)-composite, both in terms of Jordan reduction and elementary factors. Thiswill generalize the

twocases (α,β) = (1,−1)and (α,β) = (1, 1)alreadydiscussed in [3]whenthefieldK is algebraically

closed and car(K) /= 2.

Remark 1

(i) Any matrix similar to an (α,β)-composite is an (α,β)-composite itself.

(ii) If A ∈ Mn(K) and B ∈ Mp(K) are (α,β)-composites, then the block-diagonal matrix

[
A 0

0 B

]
is

clearly an (α,β)-composite itself.

(iii) The matrix A ∈ Mn(K) is an (α,β)-composite iff A − α · In is a (−α,β)-composite.

Notation 2. When A is a matrix ofMn(K), λ ∈ K and k ∈ N
∗, we denote by

nk(A, λ) := dimKer(A − λ · In)k − dimKer(A − λ · In)k−1,

i.e. nk(A, λ) is the number of blocks of size greater or equal to k for the eigenvalue λ in the Jordan

reduction of A (in particular, it is zero when λ is not an eigenvalue of A). We extend this notation to an

endomorphism of E providedλ ∈ K. We also denote by jk(A, λ) the number of size k for the eigenvalue

λ in the Jordan reduction of A.

Definition 3. Two sequences (uk)k � 1 and (vk)k � 1 are said to be intertwinedwhen:

∀k ∈ N
∗, vk � uk+1 and uk � vk+1.

Notation 4. Let u ∈ End(E) and Λ be a subset of K. The minimal polynomial of u splits as μu(X) =
P(X)Q(X), where P is a monic polynomial with all its roots in Λ, and Q is monic and has no root in Λ.

We then set

uΛ := u|KerP(u) ∈ End(KerP(u)) and u−Λ := u|KerQ(u) ∈ End(KerQ(u)).

Thus uΛ is triangularizable with all eigenvalues in Λ, whereas u−Λ has no eigenvalue in Λ. The

kernel decomposition theorem ensures that u = uΛ ⊕ u−Λ. Finally, with n = dim E, themap uΛ is an

endomorphism of
⊕

λ∈ΛKer(u − λ · idE)n.
We are now ready to state our main theorems. We will start by generalizations of the Hartwig and

Putcha results on differences of idempotents:

Theorem 1. Assume car(K) /= 2 and let A ∈ Mn(K). Then A is an (α,−α)-composite iff all the following

conditions hold:
(i) The sequences (nk(A,α))k � 1 and (nk(A,−α))k � 1 are intertwined.
(ii) ∀λ ∈ K \ {0,α,−α}, ∀k ∈ N

∗, jk(A, λ) = jk(A,−λ).

Theorem 2. Assume car(K) /= 2 and let u be an endomorphism of E. Then u is an (α,−α)-composite iff

all the following conditions hold:
(i) The sequences (nk(u,α))k � 1 and (nk(u,−α))k � 1 are intertwined.

(ii) The elementary factors of u−{0,α,−α} are all even polynomials (i.e. polynomials of X2).

Using Remark 1.(iii), the previous theorems lead to a characterization of (α,α)-composites when

car(K) /= 2.

Theorem 3. Assume car(K) /= 2 and let A ∈ Mn(K). Then A is an (α,α)-composite iff all the following

conditions hold:
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(i) The sequences (nk(A, 0))k � 1 and (nk(A, 2α))k � 1 are intertwined.
(ii) ∀λ ∈ K \ {0,α, 2α}, ∀k ∈ N

∗, jk(A, λ) = jk(A, 2α − λ).

Theorem 4. Assume car(K) /= 2and letu ∈ End(E).Thenu is an (α,α)-composite iff bothof the following

conditions hold:
(i) The sequences (nk(u, 0))k � 1 and (nk(u, 2α))k � 1 are intertwined.

(ii) The elementary factors of u−{0,α,2α} are polynomials of (X − α)2.

The case car(K) = 2 works rather differently in terms of Jordan reduction:

Theorem 5. Assume car(K) = 2 and let A ∈ Mn(K). Then A is an (α,−α)-composite iff for every λ ∈
K \ {0,α}, all blocks in the Jordan reduction of A with respect to λ have an even size.

Theorem 6. Assume car(K) = 2 and let u ∈ End(E). Then u is an (α,−α)-composite iff the elementary

factors of u−{0,α} are even polynomials.

The remaining cases are handled by our two last theorems:

Theorem 7. Let A ∈ Mn(K) and (α,β) ∈ (K∗)2 such that α /= ±β. Then A is an (α,β)-composite iff all

the following conditions hold:
(i) The sequences (nk(A, 0))k � 1 and (nk(A,α + β))k � 1 are intertwined.
(ii) The sequences (nk(A,α))k � 1 and (nk(A,β))k � 1 are intertwined.
(iii) ∀λ ∈ K \ {0,α,β ,α + β}, ∀k ∈ N

∗, jk(A, λ) = jk(A,α + β − λ).

(iv) If in addition car(K) /= 2, then ∀k ∈ N
∗, j2k+1

(
A,

α+β
2

)
= 0.

Theorem 8. Let u ∈ End(E) and (α,β) ∈ (K∗)2 such that α /= ±β. Then u is an (α,β)-composite iff all

the following conditions hold:
(i) The sequences (nk(u, 0))k � 1 and (nk(u,α + β))k � 1 are intertwined.
(ii) The sequences (nk(u,α))k � 1 and (nk(u,β))k � 1 are intertwined.
(iii) The elementary factors of u−{0,α,β ,α+β} are polynomials of (X − α)(X − β).

Remark 2. A striking consequence of the previous theorems is that being an (α,β)-composite is

invariant under extension of scalars.More precisely, given amatrixA ∈ Mn(K), an extensionL ofK and

non-zero scalarsα andβ inK, thematrixA is an (α,β)-composite inMn(K) iff it is an (α,β)-composite

inMn(L).

The rest of the paper is laid out as follows:

(i) In Section 3, we showhow the odd-labeled theorems can be derived from the even-labeled ones,

e.g. how one can deduce Theorem 1 from Theorem 2.

(ii) In Section 4, we will establish a reduction principle that will show us that we can limit

ourselves to three particular cases for u ∈ End(E): the case u has no eigenvalue in {0,α,β ,

α + β}, the case u has all its eigenvalues in {α,β} and the case it has all its eigenvalues in

{0,α + β}.
(iii) The case u has no eigenvalue in {0,α,β ,α + β} is handled in Section 5 by using the reduction

to a canonical form and considerations of cyclic matrices.

(iv) In Section 6, we reduce the remaining cases to the sole case α /= β and u has all its eigenvalues

in {α,β}, and show how Theorems 2, 4, 6 and 8 can be proven if that case is solved.

(v) Finally, in Section 7, we solve the case α /= β and u has all its eigenvalues in {α,β}.
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2. Additional notations

Similarity of two matrices A and B of Mn(K) will be written A ∼ B. The rank of a matrix M will be

written rk(M), and its spectrum Sp(M). Given a list (A1, . . . , Ap) of square matrices, we will denote by

D(A1, . . . , Ap) :=

⎡
⎢⎢⎢⎢⎢⎣

A1 0 0

0 A2

...
...

. . .

0 . . . Ap

⎤
⎥⎥⎥⎥⎥⎦

the block-diagonal matrix with diagonal blocks A1, . . . , Ap.

Notation 5. Given a monic polynomial P = Xn − an−1X
n−1 − · · · − a1X − a0, we let

C(P) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a0
1 0 0 a1
0 1 0 . . . 0 a2

. . .
. . .

...
... 1 0 an−2

0 . . . . . . 0 1 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

denote its companion matrix.

Given n ∈ N
∗ and λ ∈ K, we set Jn := (δi+1,j)1� i,j � n, i.e.

Jn =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0
...

. . .

0 . . . 0 1

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

Jλ(n) := λ · In + Jn (the Jordan block of size n associated to λ).

3. Elementary factors vs. Jordan reduction

Derivation of Theorem 1 from Theorem 2 (resp. of Theorem 3 from Theorem 4, resp. of Theorem

5 from Theorem 6, resp. of Theorem 7 from Theorem 8) can be easily obtained by using the follow-

ing result and the simple remark that polynomials of (X − α)(X − β) = X2 − (α + β)X + αβ are

polynomials of X(X − α − β).

Proposition 9. Let A ∈ Mn(K) and t ∈ K. The following conditions are then equivalent:
(i) The elementary factors of M are polynomials of X(X − t).
(ii) For every λ ∈ K,

• if λ /= t − λ, then ∀k ∈ N
∗, jk(A, λ) = jk(A, t − λ);

• if λ = t − λ, then ∀k ∈ N, j2k+1(A, λ) = 0.

Proof

• Assume (i). By reduction to an elementary rational canonical form, it suffices to prove condition

(ii) when A is the companion matrix of some polynomial P = Q(X(X − t)), with Q = (Y −
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λ)r ∈ K[Y] for some λ ∈ K (remark that when Q1 and Q2 are mutually prime polynomials, the

polynomials Q1(X(X − t)) and Q2(X(X − t)) are mutually prime by the Bezout identity).

→ Assume X2 − t X − λ has only one root u in K, so it can be written (X − u)2, hence
A = C((X − u)2r) has only one Jordan block: this block is even-sized, corresponds to the

eigenvalue u, and one has u = t − u: this proves that A satisfies condition (ii).

→ Assume X2 − t X − λ has two roots in K, let v denote one such root, the other one being

t − v. One has then v /= t − v and

A = C
(
(X − v)N(X − (t − v))N

)
∼

[
C((X − v)N) 0

0 C((X − t + v)N)

]
.

In this case, A has only two Jordan blocks, they have the same size and are associated

respectively to v and t − v, so A satisfies condition (ii).

• Assume now condition (ii) holds. LetμA denote theminimal polynomial of A. Wewill first prove

that μA is a polynomial of X(X − t). Since δ �→ t − δ is an involution, we can split Sp(A) as a

disjoint union

Sp(A) = B ∪ C ∪ C′,
where B = {δ ∈ Sp(A) : δ = t − δ} and δ �→ t − δ is a bijection from C to C′. For δ ∈ Sp(A), set
rδ = max{k ∈ N

∗ : jk(A, δ) /= 0}. Then the Jordan reduction theorem shows that

μA = ∏
δ∈Sp(A)

(X − δ)rδ .

Condition (ii) then entails that rδ = rt−δ for every δ ∈ C and rδ is even when δ ∈ B, hence we

may write:

μA = ∏
δ∈B

(X − δ)2(rδ/2)
∏
δ∈C

(X − δ)rδ (X − t + δ)rδ

= ∏
δ∈B

(X2 − tX + δ2)rδ/2
∏
δ∈C

(
X2 − t X + δ(t − δ)

)rδ
,

hence μA is a polynomial of X(X − t).
However, the theory of elementary factors shows there is a square matrix B such that:

A ∼
[
B 0

0 C(μA)

]
,

and itnowsuffices to showthat theelementary factorsofBarepolynomialsofX(X − t).However,

jk(B, δ) = jk(A, δ) − jk(C(μA), δ) for every k ∈ N
∗ and δ ∈ K, and A and C(μA) satisfy (ii) (for

that lastmatrix,wecanuse thefirstpart of theproof or simply compute its Jordan form), so clearly

B satisfies (ii). We can thus conclude by downward induction on the size of the matrices. �

4. Reducing the problem

The first key lemma is a classical one:

Lemma 10. Let P and Q be two idempotents in a K-algebra A. Then P and Q commute with (P − Q)2.

Proof. Indeed (P − Q)2 = P + Q − PQ − QP, so P(P − Q)2 = P − PQP = (P − Q)2P. By the same

argument, Q commutes with (Q − P)2 = (P − Q)2. �

Corollary 11. Let P and Q be two idempotents in a K-algebra A, and set M := α · P + β · Q · Then P and

Q commute with (M − α · In) (M − β · In).
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Proof. Indeed, a straightforward computation shows that

(M − α · In)(M − β · In) = αβ
(
In − (P − Q)2

)
. �

Let now u be an endomorphism of E and assume there are idempotents p and q such that u = α · p +
β · q.

We decompose the minimal polynomial of u as

μu = Xa(X − α)b(X − β)c(X − α − β)dP(X)

so that P has no root in {0,α,β ,α + β} (in caseα + β = 0, we simply take d = 0). Since F := KerP(u)
is stabilized by v := (u − α · id) ◦ (u − β · id), we can defineQ as theminimal polynomial of v|F : then
F = KerQ(v) and u|F has no eigenvalue in {0,α,β ,α + β}.

By Corollary 11, p and q commute with v and therefore stabilize the three subspaces:

• Kervn = Ker(u − α · idE)n ⊕ Ker(u − β · idE)n;• Ker(v − αβ · idE)n = Kerun ⊕ Ker(u − (α + β) · idE)n;• KerQ(v) = KerP(u).

Since u = α · p + β · q, restricting to those three subspaces shows that the three endomorphisms

u{α,β}, u{0,α+β} and u−{0,α,β ,α+β} are themselves (α,β)-composites. Using Remark 1.(ii), we deduce

the following reduction principle:

Proposition 12 (Reduction principle). Let u ∈ End(E). Then u is an (α,β)-composite iff both

u{0,α+β}, u{α,β} and u−{0,α,β ,α+β} are (α,β)-composites.

We are now reduced to the three special cases that follow:

• u has no eigenvalue in {0,α,β ,α + β};
• u is triangularizable with all eigenvalues in {α,β};
• u is triangularizable with all eigenvalues in {0,α + β}.

5. When no eigenvalue belongs to {0,α,β ,α + β}
In this section, u still denotes an endomorphism of E. We assume that u has no eigenvalue in

{0,α,β ,α + β}.
Assume further that there are idempotents p and q such that u = α · p + β · q. The assumption on

the spectra of u implies that p and q have no common eigenvector, hence

Kerp ∩ Kerq = Kerp ∩ Imq = Imp ∩ Kerq = Imp ∩ Imq = {0}.
As a consequence dim Kerp = dimKerq = dim Imp = dim Imq and n is even. It follows that the var-

ious kernels and images of p and q all have dimension m := n
2
. By gluing together a basis of Kerq and

one of Kerp, we obtain a basis B of E, together with square matrices A ∈ Mm(K) and B ∈ Mm(K) such
that

MB(p) =
[
Im 0

A 0

]
and MB(q) =

[
0 B

0 Im

]
.

Since Imp ∩ Kerq = {0}, the matrix A is non-singular. By a change of basis, we can reduce the

situation to the case

MB(p) =
[

Im 0
1
α
Im 0

]
and MB(q) =

[
0 1

β
C

0 Im

]

for some C ∈ Mm(K), so that

MB(u) =
[
α · Im C

Im β · Im
]
.
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Conversely, for every C ∈ Mm(K), the matrix[
α · Im C

Im β · Im
]

= α ·
[

Im 0
1
α
Im 0

]
+ β ·

[
0 1

β
C

0 Im

]

is an (α,β)-composite.

Wehave thusproven that, foreveryM ∈ Mn(K)withnoeigenvalue in {0,α,β ,α + β}, the following

conditions are equivalent:

(i) M is an (α,β)-composite;

(ii) The integer n is even and there exists C ∈ Mn/2(K) such that

M ∼
[
α · In/2 C

In/2 β · In/2
]
.

We will now characterize this situation in terms of elementary factors:

Proposition 13. LetM ∈ Mn(K)with no eigenvalue in {0,α,β ,α + β}. The following conditions are then

equivalent:
(i) The elementary factors of M are all polynomials of (X − α)(X − β).
(ii) The integer n is even and there exists N ∈ Mn/2(K) such that

M ∼
[
α · In/2 N

In/2 β · In/2
]
.

(iii) M is an (α,β)-composite.
Also (ii) implies (iii) without any assumption on the eigenvalues of M.

We will start with a simple situation:

Lemma 14. Let P ∈ K[X] be a monic polynomial of degree n� 1, and set Y = (X − α)(X − β). Then[
α · In C(P)
In β · In

]
∼ C (P(Y)) .

Proof. Setting M :=
[
α · In C(P)
In β · In

]
, it will suffice to prove that P(Y), which has degree 2n, is the

minimal polynomial of M. Simple computation shows that

(M − α · In)(M − β · In) =
[
C(P) 0

0 C(P)

]
,

which proves that P(Y) is an annihilator polynomial of M.

Conversely, let Q ∈ K[X] be an annihilator polynomial of M. The sequence(
1, X − α, (X − α)(X − β), . . . , (X − α)k(X − β)k, (X − α)k+1(X − β)k, . . .

)
is clearly a basis of K[X], so we may split

Q = Q1(Y) + (X − α)Q2(Y)

for some polynomials Q1 and Q2 in K[X]. Hence
Q(M) =

[
Q1 (C(P)) 0

0 Q1 (C(P))

]
+

[
0 C(P)
In (β − α) · In

]
×

[
Q2 (C(P)) 0

0 Q2 (C(P))

]

=
[
Q1 (C(P)) ?

Q2 (C(P)) ?

]
.
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Since Q(M) = 0, we deduce that P divides Q1 and Q2, so Q is a multiple of P(Y). This proves that P(Y)
is the minimal polynomial of M. �

Proof of Proposition 13.We have already proven that (ii) is equivalent to (iii) and also that it implies

(iii) with no assumption on the eigenvalues of M. For A ∈ Mm(K), set

ϕ(A) :=
[
α · Im A

Im β · Im
]
.

• Assume (i) holds, and let P1, . . . , PN denote the elementary factors of M. For k ∈ [[1, N]], write

Pk = Qk((X − α)(X − β)) for some Qk ∈ K[X]. Hence
M ∼ D (C(P1), . . . , C(PN))

and, for every k ∈ [[1, N]], the companion matrix C(Pk) ∼ ϕ(C(Qk)) is an (α,β)-composite, so

M is an (α,β)-composite, which in turn proves (ii).

• Assume (ii) holds, and let A ∈ Mn/2(K) such that ϕ(A) ∼ M. Let Q1, . . . , QN denote the elemen-

tary factors of A, so A ∼ D (C(Q1), . . . , C(QN)). Set Pk :=Qk((X − α)(X − β)) for k ∈ [[1, N]]. A
simple permutation of the basis shows then that

M ∼ ϕ(A) ∼ D (ϕ(C(Q1)), . . . ,ϕ(C(Qn))) ∼ D (C(P1)), . . . , C(Pn)) .

Since Pi divides Pi+1 for every suitable i, the Pk ’s are the elementary factors of M, which proves

(i). �

6. When all eigenvalues belongs to {0,α,β ,α + β}
Recall first Proposition 1 of [3], the proof of which holds regardless of the field K:

Proposition 15. Any nilpotent matrix is a difference of two idempotents.

From this, we easily derive:

Proposition 16. Every nilpotent matrix is an (α,−α)-composite.

The next proposition will be the last key to our theorems:

Proposition 17. Let M ∈ Mn(K) be a triangularizable matrix with all eigenvalues in {α,β}.
Assume α /= β. The following conditions are then equivalent:
(i) M is an (α,β)-composite;
(ii) The sequences (nk(M,α))k � 1 and (nk(M,β))k � 1 are intertwined.

By Remark 1(iii), this proposition has the following corollary:

Corollary 18. Assumeα + β /= 0, and let M ∈ Mn(K) denote a triangularizable matrix with all eigenval-

ues in {0,α + β}. The following conditions are then equivalent:
(i) M is an (α,β)-composite;
(ii) The sequences (nk(M, 0))k � 1 and (nk(M,α + β))k � 1 are intertwined.

Assuming temporarily that Proposition 17 holds, we can then prove the theorems with even num-

bers listed in Section 1.

• Assume car(K) /= 2 and α /= ±β . Then Theorem 8 follows directly from Propositions 12, 17

and 18.
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• Assume car(K) /= 2 and β = −α. Notice that the polynomials of (X − α)(X + α) = X2 − α2

are simply the even polynomials.

The “only if" part of Theorem then follows from Propositions 12, 13 and 17. For the “if" part,

we use the same results in conjunction with Proposition 16.

• Assume car(K) = 2 and β = α. The “only if" part of Theorem 6 then follows from Propositions

12 and 13. For the “if" part, we use the same results in conjunction with Proposition 16 and the

fact that for every nilpotent matrix N, the matrix α · In + N is an (α,α)-composite since N is an

(α,−α) composite.

It now only remains to prove Proposition 17: this will be done in the last section.

7. Proof of Proposition 17

Our proof will differ from that of Hartwig and Putcha in [3]. More precisely, we will not rely upon

the results of Flanders featured in [1], but will try instead to prove the equivalence by elementary

means. We will need a few notations first.

Notation 6. When p, q, r, s denote non-negative integers such that p� r and q� s, we set

Kp,q :=
[
α · Ip 0

0 β · Iq
]

∈ Mp+q(K) and Jp,q,r,s :=
⎡
⎢⎢⎣

Ir 0r,s
0p−r,r 0p−r,s

0s,r −Is
0q−s,r 0q−s,s

⎤
⎥⎥⎦ ∈ Mp+q,r+s(K).

For the entire proof, we set a triangularizable matrix M with all eigenvalues in {α,β}. We will simply

write nk := nk(M,α) andmk := nk(M,β) for k ∈ N
∗.

7.1. Proof that (i) implies (ii)

Assume that M = α · P + β · Q for some idempotents P and Q . The Jordan reduction theorem

shows, after permuting the basis vectors, that the matrixM is similar to some block-triangular matrix

M′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Kn1 ,m1
Jn1 ,m1 ,n2 ,m2

0 . . . 0

0 Kn2 ,m2
Jn2 ,m2 ,n3 ,m3

0

0 0 Kn3 ,m3

. . .
...

...
. . .

0 . . . 0 KnN,mN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where N denotes the index of the nilpotent matrix (M − α · I)(M − β · I). Since the problem is

invariant under similarity, we may assume that M = M′.
Remark that the flag of linear subspaces which gives the previous block-decomposition of M con-

sists precisely of the iterated kernels of (M − α · I)(M − β · I). Since the matrices P and Q commute

with (M − α · I)(M − β · I), they stabilize these subspaces, which proves that P and Q themselves

decompose as block-triangular matrices:

P =

⎡
⎢⎢⎢⎣
P1,1 P1,2 . . . P1,N
0 P2,2 . . . P2,N
...

. . .
...

0 0 PN,N

⎤
⎥⎥⎥⎦ and Q =

⎡
⎢⎢⎢⎣
Q1,1 Q1,2 . . . Q1,N

0 Q2,2 . . . Q2,N

...
. . .

...
0 0 QN,N

⎤
⎥⎥⎥⎦ .

It is then clear that, for every k ∈ [[1, N − 1]], the matrices

[
Pk,k Pk,k+1

0 Pk+1,k+1

]
and

[
Qk,k Qk,k+1

0 Qk+1,k+1

]
are idempotents, which in turn proves that the matrix
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[
Knk,mk

Jnk,mk,nk+1 ,mk+1

0 Knk+1 ,mk+1

]
is an (α,β)�composite.

That the sequences (nk)k � 1 and (mk)k � 1 are intertwined can then be deduced from the following

lemma:

Lemma 19 (Intertwinement lemma). Let p, q, r, s be non-negative integers such that p� r and q� s.

Assume the block matrix M =
[
Kp,q Jp,q,r,s
0 Kr,s

]
is an (α,β)-composite. Then q� r and p� s.

In order to prove this, we will extract two matrices A1 and A2 such that

r � rk(A1) + rk(A2) � q.

Proof. Set K1 := Kp,q, K2 := Kr,s and K3 := Jp,q,r,s, so thatM =
[
K1 K3

0 K2

]
. We choose two idempotents

P and Q such that M = α · P + β · Q . Remark foremost that

(M − α · Ip+q)(M − β · Ip+q) =
[
0 I′
0 0

]
,

with I′ =
⎡
⎢⎢⎣
(α − β) · Ir 0r,s

0p−r,r 0p−r,s

0s,r (α − β) · Is
0q−s,r 0q−s,s

⎤
⎥⎥⎦ ∈ Mp+q,r+s(K).

The commutation argument already used earlier proves that there are three matrices A ∈ Mp+q(K),
B ∈ Mp+q,r+s(K) and C ∈ Mr+s(K) such that

P =
[
A B

0 C

]
.

The idempotent Q also has a decomposition of this type. Consequently, both A and 1
β
(K1 − αA) are

idempotents, so

β(K1 − αA) = (K1 − αA)2 = K2
1 − α(AK1 + K1A) + α2A2 = K2

1 − α(AK1 + K1A) + α2A.

From the definition of K1, it is clear that K
2
1 = (α + β) · K1 − αβ · Ip+q, and we deduce that

α · K1 − α(AK1 + K1A) + α(α + β) · A = αβ · Ip+q.

From this identity and the fact that α(α − β) /= 0, we derive that there are matrices A1 ∈ Mq,p(K)

and A2 ∈ Mp,q(K) such that A =
[
Ip A2

A1 0

]
. Identity A2 = A then entails that A2A1 = 0, hence

rkA1 + rkA2 � q.

We will now try to prove that r � rkA1 + rkA2.

Commutation of P with (M − α · In)(M − β · In) yields that there are matrices D1 ∈ Ms,r(K), L1 ∈
Ms,p−r(K), N1 ∈ Mq−s,p−r(K), D2 ∈ Mr,s(K), L2 ∈ Mr,q−s(K), and N2 ∈ Mp−r,q−s(K) such that

A1 =
[
D1 L1
0 N1

]
, A2 =

[
D2 L2
0 N2

]
and C =

[
Ir D2

D1 0

]
.

Using again the identity P2 = P, we obtain:

AB + BC = B.

Since Q = 1
β
(M − α · P) and Q is also idempotent, the corresponding identity for Q yields:

1

β
(K1 − α · A) 1

β
(K3 − α · B) + 1

β
(K3 − α · B) 1

β
(K2 − α · C) = 1

β
(K3 − α · B),
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therefore

βK3 = K1K3 + K3K2 − α(K1B + BK2) − α(K3C + AK3) + α(α + β)B.

Using a block-decomposition of B, a simple computation allows us to deduce from the previous

identity that there are matrices B1 ∈ Ms,r(K), C1 ∈ Mq−s,r(K) and B2 ∈ Mr,s(K) such that

B =
⎡
⎢⎢⎣

1
α
Ir B2
0 ?

B1 ?

C1 ?

⎤
⎥⎥⎦ .

Computation of the first r × r block in the identity AB + BC = B then yields:

D2B1 + B2D1 + L2C1 = 1

α
Ir .

For every X ∈ KerD1, one has D2B1X + L2C1X = 1
α
X , which proves that

dim(ImD2 + ImL2) � dimKerD1,

hence

rk
[
D2 L2

]
� r − rk(D1).

It follows that

r � rk(D1) + rk
[
D2 L2

]
� rk(A1) + rk(A2).

This finally proves r � q. By an argument of symmetry, one also has s� p. �

7.2. Proof of (ii) ⇒ (i)

We start with three special cases:

Proposition 20. Let n� 1. Then each one of the three matrices

A :=
[
Jn(α) 0

0 Jn(β)

]
, B :=

[
Jn(α) 0

0 Jn+1(β)

]
and B′ :=

[
Jn+1(α) 0

0 Jn(β)

]

is an (α,β)-composite.

Proof

• Since A is similar to the companion matrix C ((X − α)n(X − β)n), Proposition 13 proves that it

is an (α,β)-composite.

• We can decompose

B =
[
A C

0 β

]
, where C =

⎡
⎢⎢⎢⎣
0
...
0

1

⎤
⎥⎥⎥⎦ ∈ M2n,1(K).

We have found two idempotents P and Q such that A = α · P + β · Q . More precisely, the proof

of Proposition 13 (see the beginning of Section 5) even provides P and Q with the additional

constraint: ImP ⊕ KerQ = K
2n. We can then find two column matrices C1 and C2 such that

C1 ∈ ImP, C2 ∈ KerQ and C = α · C1 + β · C2.
The matrices

P1 :=
[
P C1
0 0

]
and Q1 :=

[
Q C2
0 1

]

are then idempotents and satisfy B = α · P1 + β · Q1.• A similar argument proves that B′ is an (α,β)-composite. �
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Let nowM ∈ Mn(K) as in Proposition 17, and assume the two sequences (nk)k � 1 = (nk(M,α))k � 1

and (mk)k � 1 = (nk(M,β))k � 1 are intertwined. Let Nα and Nβ denote the respective nilpotency in-

dices associated to the restriction ofM to Ker(M − α · In)n and Ker(M − β · In)n. That the sequences

(nk)k � 1 and (mk)k � 1 are intertwined shows that −1�Nα − Nβ � 1. If Nα = 0 or Nβ = 0, then

M = β · In or M = α · In so M is clearly an (α,β)-composite. Assume now that Nα � 1 and Nβ � 1.

Whether Nβ = Nα , Nβ = Nα + 1 or Nβ = Nα − 1, there is some matrix M′ such that M is similar to

either⎡
⎣M′ 0 0

0 JNα (α) 0

0 0 JNα (β)

⎤
⎦ ,

⎡
⎣M′ 0 0

0 JNα (α) 0

0 0 JNα+1(β)

⎤
⎦ or

⎡
⎣M′ 0 0

0 JNα (α) 0

0 0 JNα−1(β)

⎤
⎦ .

In any case,we are reduced toproving thatM′ is an (α,β)-composite,which follows easily by induction

sinceM′ has its eigenvalues in {α,β} and the sequences (nk(M
′,α))k � 1 and (nk(M

′,β))k � 1 are easily

shown to be intertwined. This finishes our proof of Proposition 17, and all the theorems claimed in

Section 1 then follow.
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