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Abstract

Using number theory on function "elds and algebraic number "elds, we prove results about
Chebyshev polynomials over "nite prime "elds to investigate reversibility of two-dimensional
additive cellular automata on "nite square grids. For example, we show that there are in"nitely
many primitive irreversible additive cellular automata on square grids when the base "eld has
order two or three.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

What got us interested to study Chebyshev polynomials over "nite "elds was a game
commonly known as Lights Out (Copyright Tiger Electronics), which was introduced
to the mathematical community by Pelletier and Sutner [12,19,18] and has since then
been broadly investigated by many others [1,15,16,20]. In this game, we are given a
square array of lights that can be in one of ‘ states, say {0; 1; 2; : : : ; ‘−1}. If ‘=2 we
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might think of the possible states as “oN” (0) and “on” (1) and similarly, if ‘=3 as
“oN” (0), “green” (1) and “red” (2). Each light is also a button and pushing that button
changes the state of the corresponding light as well as the states of the vertical and
horizontal neighbors by adding 1 modulo ‘. As an example, consider a 5× 5 square
and suppose that ‘=2. Pressing the buttons with coordinates (1; 1), (3; 4) and (5; 2)
will have the following eNect on the lights:

◦× ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦× ◦
◦ ◦ ◦ ◦ ◦
◦ ◦× ◦ ◦ ◦

→

• • ◦ ◦ ◦
• ◦ ◦ • ◦
◦ ◦ • • •
◦ • ◦ • ◦
• • • ◦ ◦

The aim in the game is—starting from some initial con"guration—to turn all the lights
oN (all 0’s) by pushing (a minimal number of) buttons. If ‘=2 and all lights are
initially turned on, then it is always possible—for any size of square—to turn all
lights oN (this was "rst discovered by Sutner and presented in [18]; see also [4]). For
example,

◦× ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

→
• • ◦×
• ◦ ◦
◦ ◦ ◦

→
• ◦ •
• ◦× •
◦ ◦ ◦

→
• • •
◦ • ◦
◦× • ◦

→
• • •
• • ◦
• ◦ ◦×

→
• • •
• • •
• • •

A "rst natural question is then the following: given some "xed ‘ (= number of possible
states of each light), what are the square arrays for which all lights can be turned
oN from any initial con"guration? This question has a surprising answer in terms of
Chebyshev polynomials. Let Fn+1(x) :=Un(x=2) be the normalized (monic) Chebyshev
polynomial of the second kind of degree n. Suppose that ‘ is prime. Then the n× n
square is reversible (i.e., completely solvable) if and only if the polynomials Fn+1(x)
and Fn+1(1− x) have no common factor mod ‘. This result was "rst proved by Sutner
[20]. 2 The degree shift in the indexing of the Chebyshev polynomials is motivated by
the following divisibility property: the polynomial Fm(x) divides Fn(x) if and only if
the integer m divides n. For a "xed prime ‘, we now de"ne a set of natural numbers

S‘ := {n ∈ N : Fn(x) and Fn(1− x) have a common factor modulo ‘}:
The divisibility property of the polynomials Fn(x) implies that S‘ is a set of multiples,
i.e. if n∈S‘ then every positive integer multiple of n belongs also to S‘. An element
n∈S‘ is called primitive if n is not a positive integer multiple of a smaller element
of S‘. For ‘=2, the "rst 26 primitive elements of S‘ are:

5; 6; 17; 31; 33; 63; 127; 129; 171; 257; 511; 683; 2047; 2731; 2979; 3277;
3641; 8191 28197; 43691; 48771; 52429; 61681; 65537; 85489; 131071; : : : :

Note that this list includes the Fermat primes 5, 17, 257 and 65537 as well as Mersenne
primes 31, 127, 8191, 131071, etc. Goldwasser et al. [5] proved in general that 2k ± 1

2 Sutner proved the result in the case ‘=2, but his proof immediately generalizes to arbitrary primes ‘.
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belongs to S2 for k¿5. Even though the set S2 has been studied by many people such
as Barua, Ramakrishnan, Sarkar, and Sutner, it still remains somewhat mysterious. The
mystery results from the fact that it requires a huge amount of computation to decide
whether an additive cellular automaton on a big size square is reversible or not. What
is interesting, but diUcult, about the set S‘ is that its primitive elements behave like
prime numbers.
In this article, we study the polynomials Fn(x) modulo ‘ and in particular, the sets

S‘, by using number theory in various "elds such as function "elds, cyclotomic "elds
and p-adic local "elds.
As an application of our techniques we prove that the (5k−1)× (5k−1) square and

the (6k − 1)× (6k − 1) square, k =1; 2; : : : ; are the only squares that are irreversible
modulo ‘ for all primes ‘. We also show that the 1× 1 square is the only square that
is reversible modulo ‘ for all primes ‘.
We then consider the question whether the sets S‘ contain in"nitely many primitive

elements. It is conjectured that this question is answered aUrmatively for all primes
‘. For ‘=2, it can be answered in the aUrmative by using the result of Goldwasser,
Klostermeyer and Ware mentioned above. Furthermore, our way to prove the case of
‘=2 leads us to another conjecture that for a prime ‘ the positive integers of the form
(‘k − 1)=(‘− 1) belong to S‘ (Conjecture 5.3), which is a generalization of that same
result of Goldwasser, Klostermeyer and Ware. It turns out that the latter conjecture
immediately implies the former one. We prove the conjecture is true for ‘=2 and 3. An
evidence for Conjecture 5.3 is also provided at the end of the article (Proposition 5.4).

2. Chebyshev polynomials

We "rst recall the de"nition of normalized Chebyshev polynomials over the integers
and prove some of their properties. Most of this material is standard (see [13]) but we
provide some of the proofs to illustrate our function "eld approach that will play an
important role later on. We then study Chebyshev polynomials over "nite prime "elds
in more detail. We will relate these polynomials to additive cellular automata in the
next section.

De�nition 2.1. We de"ne F0(x) := 0, F1(x) := 1 and for n¿1

Fn(x) := det




x 1 0 0 · · · 0 0 0

1 x 1 0 · · · 0 0 0

0 1 x 1 · · · 0 0 0
...
...
...
...
. . .

...
...
...

0 0 0 0 · · · 1 x 1

0 0 0 0 · · · 0 1 x




;

where the matrix on the right-hand side is an (n − 1)× (n − 1)-matrix.
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By expanding the determinant above with respect to the "rst row it follows that the
polynomials Fn(x) satisfy the linear recurrence

Fn(x) = xFn−1(x)− Fn−2(x):

The monic polynomials Fn(x) are known as normalized Chebyshev polynomials of the
second kind. More precisely, for n¿1, Fn(x)=Un−1(x=2), where Un−1(x) is the usual
Chebyshev polynomial of the second kind of degree n − 1. The degree shift in our
notation will prove to be useful when we consider divisibility properties. A "rst example
of such a property is the following.

Proposition 2.2. A polynomial �(x) in Z[x] divides both Fn(x) and Fm(x) if and only
if it divides Fgcd(m;n)(x). In particular,

gcd(Fm(x); Fn(x)) = Fgcd(m;n)(x):

Proof. The proof is the same as the proof of the analogous well-known result for
Fibonacci numbers and uses Euclid’s algorithm. See [8], for example.

To study the polynomials Fn(x) it is useful to introduce another sequence of poly-
nomials that satis"es the same recurrence relation but whose initial terms are diNerent.
We de"ne G0(x) := 2, G1(x) := x and for n¿2, Gn(x) := xGn−1(x) − Gn−2(x). The
polynomials Gn(x) are the normalized Chebyshev polynomials of the :rst kind. More
precisely, Gn(x)= 2Tn(x=2), where Tn(x) is the usual Chebyshev polynomial of the "rst
kind of degree n.
Before we prove more properties of the Chebyshev polynomials Fn(x) and Gn(x),

we give another expression of these polynomials. Let � and � be the two distinct roots
of the characteristic polynomial t2 − xt + 1 of the linear recurrence relation that is
satis"ed by both the Fn(x) and Gn(x). The roots � and � are taken in the algebraic
closure of the function "eld Q(x). Explicitly, we may write �=(x +

√
x2 − 4)=2 and

�=(x −√
x2 − 4)=2. Note that we have the identities � + �= x and ��=1.

Proposition 2.3. Let � be as above. Then

Fn(x) =
�n − �−n

� − �−1 and Gn(x) = �n + �−n:

Proof. We prove the formula for Fn(x). The proof of the formula for Gn(x) is similar.
Put F̃n(x)= (�n − �−n)=(�− �−1). Clearly, F̃0(x)= 0 and F̃1(x)= 1. We claim that for
n¿2 we have F̃n(x)= xF̃n−1(x) − F̃n−2(x). This follows, since � + �−1 = x, from the
identity

�n − �−n

� − �−1 = (� + �−1)
�n−1 − �−(n−1)

� − �−1 − �n−2 − �−(n−2)

� − �−1 :

By induction, we then have F̃n(x)=Fn(x) for all n.
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Another identity is sometimes useful. The Laurent polynomial Fn(x+x−1) in Z[x; x−1]
can be written in the form

Fn(x + x−1) =
xn − x−n

x − x−1 :

This formula is proved in the same way as Proposition 2.3.

Lemma 2.4. The Chebyshev polynomials Fn(x) and Gm(x) satisfy the following iden-
tities:
(a) (x2 − 4)Fm(x)Fn(x)=Gm+n(x)− G|m−n|(x),
(b) Fmn(x)=Fm(Gn(x))Fn(x).

Proof. By Proposition 2.3 we have

(� − �−1)2Fm(x)Fn(x) = (�m − �−m)(�n − �−n)

= (�m+n + �−m−n)− (�m−n + �−m+n)

=Gm+n(x)− G|m−n|(x):

Since (�− �−1)2 = (�+ �−1)2 − 4= x2 − 4 this shows (a). The proof of (b) is similar.
By Proposition 2.3 and the remark following it we have

Fm(Gn(x)) = Fm(�n + �−n) =
�mn − �−mn

�n − �−n :

Multiplying this equation by Fn(x) we then get

Fm(Gn(x))Fn(x) =
�mn − �−mn

�n − �−n

�n − �−n

� − �−1 =
�mn − �−mn

� − �−1 = Fmn(x):

In what follows, let ‘ be a "xed prime and let F‘ :=Z=‘Z be the prime "eld with
‘ elements.

De�nition 2.5. We de"ne fn(x) in F‘[x] by

fn(x) := Fn(x)mod ‘;

i.e. fn(x) is the image of Fn(x) under the natural homomorphism Z[x]→ (Z=‘Z)[x] = F‘
[x]. Similarly, we de"ne gn(x) in F‘[x] by gn(x) :=Gn(x)mod ‘.

It is clear that the properties we have proved so far for the polynomials Fn(x)
and Gn(x) are inherited by the polynomials fn(x) and gn(x). We also still have the
expression in terms of the roots � and � of the characteristic equation. The only
diNerence is that we now take the roots in the algebraic closure of the "eld of rational
functions F‘(x). By abuse of notation we still will again denote the two roots by � and
�. As before we have � + �= x and ��=1.
We now prove some more identities that are speci"c to the "nite "eld case since

they involve the Frobenius homomorphism. Recall that if K is a "eld of characteristic ‘
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then the map K → K given by a �→ a‘ is a homomorphism, i.e. (a+b)‘ = a‘+b‘ (and
(ab)‘ = a‘b‘) for all a; b∈K . The prime "eld F‘ ⊆K is "xed under this homomorphism.

Lemma 2.6. The polynomials fn(x) have the following properties:
(a) fm(x) divides fn(x) if and only if m divides n;
(b) f‘km(x)=f‘k (x)f‘k

m (x);
(c) f‘k (x)= (x2 − 4)(‘

k−1)=2; in particular, if ‘=2 then f2k (x)= x2
k−1.

Proof. Part (a) immediately follows from Proposition 2.2. For parts (b) and (c) we use
the expression of fn(x) in terms of � and �= �−1. Let K be the quadratic extension
of F‘(x) to which � belongs. Then in the "eld K we have the identity

f‘km(x) =
�‘km − �‘km

� − �
=

(�m − �m)‘
k

� − �
=

(
�m − �m

� − �

)‘k

�‘k − �‘k

� − �

=f‘k

m (x) · f‘k (x):

This proves part (b). Similarly, we have

f‘k (x) =
�‘k − �‘k

� − �
=

(� − �)‘
k

� − �
= (� − �)‘

k−1 = (x2 − 4)(‘
k−1)=2:

Here in the last step we used the fact that (�− �)2 = x2 − 4. This proves part (c).

Proposition 2.7. For any k¿0,

f2k−1(x)f2k+1(x) = (x2
k−1 − 1)2 if ‘ = 2;

and similarly

f(‘k−1)=2(x)f(‘k+1)=2(x) =
x‘k − x
x2 − 4

if ‘ �= 2:

Proof. We give the proof in the case ‘ �=2. The case ‘=2 is similar. By Lemma 2.4(a),
we have

f(‘k−1)=2(x)f(‘k+1)=2(x) =
g‘k (x)− g1(x)

x2 − 4
:

Since g‘k (x)= �‘k
+ �‘k

=(� + �)‘
k
= x‘k

and since g1(x)= x the proposition follows.

Corollary 2.8. Every irreducible polynomial �(x) in F‘[x] occurs as a factor of some
fn(x). More precisely, suppose �(x) has degree k and �(x) �= x± 2. Then

�(x) divides
{

f2k+1(x) or f2k−1(x) if ‘ = 2;
f(‘k+1)=2(x) or f(‘k−1)=2(x) if ‘ �= 2:

Moreover, if �(x)= x± 2 then �(x) divides f‘(x).
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Proof. The last assertion immediately follows from Lemma 2.6. For the other asser-
tions, note that the irreducible polynomial �(x) of degree k divides x‘k − x because the
splitting "eld of �(x) over F‘ is the "eld F‘k . Proposition 2.7 implies the results.

Corollary 2.8 tells us that any irreducible polynomial �(x)∈ F‘[x], which is neither
x+2 nor x−2, divides f(‘k+1)=2(x) or f(‘k−1)=2(x), where k is the degree of �(x). How-
ever, it is not clear which one is divided by �(x). Since gcd((‘k −1)=2; (‘k +1)=2)=1,
the polynomial �(x) cannot divide both. For ‘=2 Sutner showed that an irreducible
polynomial �(x)∈ F2[x] of degree k divides f2k−1(x) if �′(0)= 0, and f1k+1(x) other-
wise ([20, Theorem 3.1]). For the case ‘ �=2, unlike the case ‘=2, this criterion does
not work at all. In what follows we show a numerical criterion for the case ‘ �=2.
From now to the end of this section we assume ‘ �=2. Let K = F‘(x) be the "eld of

rational functions over F‘, and consider the quadratic extension E=K(�), of K , where
� is one of the roots of t2 − xt + 1∈K[t]. It is easy to show that the ring of integers
OE of E is precisely OK [�], where OK = F‘[x].

Lemma 2.9. Let �(x) �= x± 2 be an irreducible polynomial of F‘[x]. Then �(x) divides
fn(x) in OK if and only if it divides �2n − 1 in OE .

Proof. Suppose �(x) divides fn(x) in OK . Then �n − �−n =(� − �−1)q�(x), for some
q∈OK . Therefore, �(x) divides �2n − 1.
Conversely, suppose that �(x) divides �2n − 1 in OE . Then �n − �−n = �−nq�(x) for

some q∈OE , and hence fn(x)= �(x)(q�−n(�−�−1))=(x2−4). Since � is a unit in OE ,
it follows that q�−n(� − �−1) ∈ OE ∩ K =OK . Finally, the assumption that � �= x± 2
implies the claim.

From now on, we use the Legendre symbol ( ··) and the second power residue symbol
( ··)2 (for the details, refer to [14]). Let �∈ F‘[x] be an irreducible polynomial, and put
d=deg(�). Then

�‘d
=

{
x +

√
x2 − 4
2

}‘d

≡ x + ((x2 − 4)=�(x))2 ·
√

x2 − 4
2

(mod �(x));

by the analogue of Fermat’s little theorem for rings of polynomials over "nite "elds
(see the corollary to Proposition 1.8 in [14]). Therefore

�‘d ≡




� (mod �(x)) if
(

x2 − 4
�(x)

)
2
= 1;

�−1 (mod �(x)) if
(

x2 − 4
�(x)

)
2
= −1:
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The reciprocity law for F‘[x] (see [14, Theorems 3.3 and 3.5]) now implies that(
x2 − 4
�(x)

)
2
=

(
�(x)

x2 − 4

)
2
=

(
�(x)
x − 2

)
2

(
�(x)
x + 2

)
2
=

(
�(2)�(−2)

‘

)

by Proposition 3.2 in [14].
This together with the lemma above gives the following:

Proposition 2.10. Suppose that ‘ �=2 and let �(x) �= x± 2 be an irreducible polynomial
of degree k in F‘[x]. Then we have

�(x)|f‘k− 
2

(x); where  =
(

�(2)�(−2)
‘

)
:

So far we considered irreducible factors of Chebyshev polynomials. Next it is natural
to ask what their multiplicities are. This question is answered by the following:

Proposition 2.11. If ‘=2 and n is odd, then fn(x) is the square of a square-free
polynomial. If ‘ �=2 and ‘ does not divide n, then fn(x) is square-free.

Proof. We will prove the result in the case ‘ �=2. The case ‘=2 was done by Sutner
[20]. The proof of the case ‘ �=2 is diNerent from that of the case ‘=2.

Suppose that ‘ �=2 and that n is not divisible by ‘. We have to check that gcd(fn(x);
f′

n(x))= 1. To compute f′
n(x), we work in the quadratic extension F‘(x)(�) of F‘(x)

to which � and � belong. We note that the derivative on F‘(x) uniquely extends to a
derivation on the quadratic extension F‘(x)(�). (Explicitly, in the case ‘ �=2, � and �
are (x ± √

x2 − 4)=2 and the derivatives �′ and �′ are given by the usual formulas.)
The identities � + �= x and ��=1 imply that

�′ + �′ = 1 and �′� + ��′ = 0:

Using these relations it is easy to get that

(x2 − 4)f′
n(x) = ngn(x)− xfn(x):

It then follows that gcd(fn(x); f′
n(x)) divides gcd(fn(x); gn(x)). On the other hand, one

has

gn(x)2 − (x2 − 4)fn(x)2 = 4;

which can again be easily obtained by Proposition 2.3. This implies gcd(fn(x); gn(x))
=1, since ‘ �=2. Therefore gcd(fn(x); f′

n(x))= 1.

Remark. Using this proposition we can easily generalize Theorem 2.1 in [20] to the
case ‘ �=2.

3. Additive cellular automata

We recall Sutner’s de"nition of a �-automaton on a graph [19,20].
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De�nition 3.1. Let G=(V; E) be a graph. We de"ne an additive cellular automaton
on G with con"guration space CG := {X : V → F‘} by the global rule �G :CG →CG

given by

�G(X )(v) =
∑

u∈N (v)
X (u);

where N (v) := {u ∈ V : {u; v}∈E}∪ {v} is the neighborhood of v.

Remark. A natural variant of a �-automaton on G is obtained by taking, instead of
the neighborhood N (v)=N+(v) := {u∈V : {u; v}∈E}∪ {v}, the deleted neighborhood
N−(v) := {u∈V : {u; v}∈E}. The two diNerent notions of �-automata are sometimes
referred to as �+- and �−-automata, respectively. Here, we only consider �+-automata
since questions about reversibility of �−-automata on square grids turn out to be trivial.

Note that �G is a F‘-linear endomorphism of the con"guration space CG. In what
follows we will identify �G with its matrix relative to the canonical basis {ev: v∈V},
where ev :V → F‘ is de"ned by ev(u)= %uv. When the graph G is a parallelotope, i.e.
G=Pm1 · · · Pmd , where Pn denotes the path with n vertices and denotes the graph
Cartesian product, 3 this matrix of � as well as its characteristic polynomial, have nice
descriptions. In fact, in this case the matrix of � is related to what we will refer to as
a Chebyshev matrix:

Cbm(A) :=




A I 0 0 · · · 0 0 0
I A I 0 · · · 0 0 0
0 I A I · · · 0 0 0
...

...
...
...
. . .

...
...

...
0 0 0 0 · · · I A I
0 0 0 0 · · · 0 I A




;

an m×m block matrix, where I denotes the n× n identity matrix while A is an arbitrary
n × n matrix. Using these, one can describe the matrices of the maps � for the d-
dimensional parallelotopes by induction on d.
If G=Pn then

�Pn = Cbn(1) =




1 1 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
0 1 1 1 · · · 0 0 0
...
...
...
...
. . .

...
...
...

0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 1 1




;

3 The graph Cartesian product G=G1 G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2
and edge sets X1 and X2 is the graph with vertex set V1 ×V2 and (u1; u2) adjacent with (v1; v2) whenever
[u1 = v1 and u2 is adjacent with v2] or [u2 = v2 and u1 is adjacent with v1].
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each column describing precisely the action of the corresponding vertex on itself and
on its two adjacent neighbors.
Let us now consider the case when G=H Pn, where H is an arbitrary graph. With

Pn = {v1; : : : ; vn}, put Xi :=H {vi} (i=1; : : : ; n), the “layers” of G. Two layers, Xi; Xj

are said to be adjacent when |i − j|=1. Note that the action of a layer on itself is
given by the matrix of �H , while the action of a layer on an adjacent layer (and only
on these is there any action) is given by identity matrices, since each vertex of any
given layer only acts on the vertex located exactly on the same position on an adjacent
layer. Therefore, the matrix of �G is Cbn(�H ), an n× n block matrix.
It is now clear, by a simple induction, that for parallelotopes one has

Proposition 3.2. The map � for the graph G=Pm1 · · · Pmd has the matrix:

�Pm1 ··· Pmd
= Cbmd(· · ·Cbm2 (Cbm1 (1)))

with respect to the standard basis of CG.

From now on, the matrix Cbmd(· · ·Cbm2 (Cbm1 (1))) corresponding to the map
�Pm1 ··· Pmd

will be denoted simply by Cbm1 ; :::; md .
In regard to the characteristic polynomial, note that Cb(A) − xI = Cb(A − xI), for

any matrix A. Using well-known facts on determinants of block matrices (see [6,17]
for simple and elementary proofs; or see Theorem 4.10, Section 4 of Chapter XV in
[9,10]), one gets:

det(Cbn(A)− xI) = det(fn+1(A − xI)) =
∏

�∈{roots of fn+1(x)}
det(A − (x + �)I):

If one denotes, as usual, the characteristic polynomial of A by +A(x), then one can
write

det(Cb(A)− xI) = ± ∏
�∈{roots of fn+1(x)}

+A(x + �):

But the product on the right-hand side is just the resultant

Resy(+A(x + y); fn+1(y))

(see [10, Section 10 Chapter V], and note that both +A(x) and fn+1(x) are monic).
All this shows:

Proposition 3.3. For any graph G, let +G(x) denote the characteristic polynomial of
�G. Then:
(a) For all n ∈ N,

+Pn(x) = ±fn+1(1− x):

(b) For an arbitrary graph H and for all n ∈ N,

+H Pn
(x) = ±Resy(+H (x + y); fn+1(y)):
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From this result, by a simple induction, one obtains the characteristic polynomial for
any parallelotope. These were obtained, in a diNerent way, for hypercubes and only
modulo 2, in [16, Theorem 5.9, Corollary 5.2, p. 131]. Note that above result is true
over Z, and therefore modulo ‘ for all primes ‘. It is very easy to determine the signs
above, which depend on n and the number of elements in H , but they are irrelevant
for all our considerations, and therefore we do not bother to make them explicit.
An important particular case is the two-dimensional rectangles case, for which we

get:

Corollary 3.4. For positive integers m and n

det(�Pm Pn
) = ±Resx(fm+1(1− x); fn+1(x)):

In particular, �Pm Pn
is reversible if and only if gcd(fm+1(1− x); fn+1(x))= 1.

Corollary 3.5. If m + 1|n + 1, then +H Pm
(x)|+H Pn

(x).

Proof. This follows at once from the bi-multiplicativity of the resultant.

De�nition 3.6. We de"ne the set S‘ by

S‘ := {n ∈ N : gcd(fn(x); fn(1− x)) �= 1 over F‘}:

By the above we have that �Pn Pn
is irreversible over F‘ if and only if the number

n + 1 belongs to S‘. It immediately follows from Corollary 3.5 that:

Corollary 3.7. The set S‘ is a semigroup under multiplication.

De�nition 3.8. We de"ne the subset of primitive elements in S‘ as follows:

P‘ := {n ∈ S‘ : if m|n and m ∈ S‘ then m= n}:

In other words, primitive elements are generators of the semigroup S‘. For any
element n∈P‘, the automaton �Pn−1 Pn−1

is irreversible. Furthermore, for such n any
nontrivial con"guration from the all-oN state to the all-oN state on the grid Pn−1 Pn−1

(i.e. an element in the kernel of the corresponding map �) cannot be constructed from
those on Pd−1 Pd−1, where d is a divisor of n. We call such an irreversible additive
cellular automaton primitive. We will extensively study the elements in P‘ later.

Remark. Some interesting results are also known about the kernel of �Pm Pn
. In [20]

Sutner shows that the dimension of this kernel is precisely the degree of the polynomial
gcd(fm+1(x); fn+1(1− x)) when ‘=2. This result can be shown to hold for all primes
‘. Using this fact together with Proposition 2.7, one can easily prove some otherwise
mysterious relations between the numbers dn := dim(Ker(�Pn−1 Pn−1

)). For example,
the numbers d‘km and dm are related (the relation, which depends on whether ‘ �=3; 5 or
not, generalizes the one conjectured by Sutner [18]), and so are d(‘k−1)=2 and d(‘k+1)=2,
for all k.
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4. Irreversibility and roots of unity

Throughout this section, the primitive mth root of unity e2-i=m is denoted by .m. The
aim of this section is to study elements in S‘, using number theory over cyclotomic
"eld extensions of Q. In particular, we will "nd all the elements in the intersection of
all S‘.
The Chebyshev polynomial Un−1(x) of the second kind is known to be factorized

as

Un−1(x) =
n−1∏
k=1

(
2x − 2 cos

k-
n

)
=

n−1∏
k=1

(2x − .k
2n − .−k

2n ):

This identity will show a connection between Chebyshev polynomials and cyclotomic
"eld extensions.

Proposition 4.1. The automaton �Pm1 ··· Pmd
is irreversible if and only if

m1∏
k1=1

· · ·
md∏

kd=1
(1− /k1

1 − · · · − /kd
d ) ≡ 0mod ‘;

where /ki
i = .ki

2(mi+1) + .−ki
2(mi+1).

Proof. Here, we consider all the matrices as ones de"ned over Z, not over F‘. Note
that the matrix Cbm1 ; :::; md can be de"ned over Z in the same way as that for F‘. It is
clear �Pm1 ··· Pmd

is irreversible if and only if the determinant of the matrix Cbm1 ; :::; md

is zero modulo ‘.
It is easy to check that the determinant of Cbm1 ; :::; md is

det(Cbm1 :::; md) =
m1∏

k1=1
det(Cbm2 ;:::; md − /k1

1 Ir1 )

=
m1∏

k1=1

m2∏
k2=1

det(Cbm3 ;:::; md − (/k1
1 + /k2

2 )Ir2 )

...

=
m1∏

k1=1
· · ·

md−1∏
kd−1=1

det(Cbmd −(/k1
1 + · · ·+ /kd−1

d−1)Ird−1 )

=
m1∏

k1=1
· · ·

md∏
kd=1

{1− (/k1
1 + · · ·+ /kd

d )};

where Irj is the (
∏d

i=j+1 mi)× (
∏d

i=j+1 mi) identity matrix. This completes the proof.
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For any integer n¿1, �Pn Pn
can be irreversible over some F‘. Needless to say,

irreversibility depends on the prime number ‘. Unless the determinant of the matrix
Cbn; n de"ned over Z is zero, �Pn Pn

can be irreversible over only "nitely many number
of "elds F‘. The numbers n for which �Pn Pn

is irreversible over any "eld F‘ deserve
our attention. It is clear that these can be found by searching for the integers n such
that the determinants of the matrices Cbn; n de"ned over Z are zero. It turns out that a
trigonometric diophantine equation enable us to "nd all such numbers.

Lemma 4.2. Let n be a positive integer. There is an integral solution (x; y) to the
equation

cos
-x
n

+ cos
-y
n

= 1
2

if and only if the integer n is a multiple of 5 or 6.

Proof. See [3].

Theorem 4.3 (Global irreversibility). The automaton �Pn Pn
is irreversible for any

prime ‘ if and only if the integer n + 1 is a multiple of 5 or 6

Proof. This is an immediate result from Lemma 4.2.

The proposition above tells us that for any number n such that n+1 is a multiple of
5 or 6 and for any prime number ‘ we can "nd a nontrivial con"guration to an n× n
Lights Out game from the all-oN state to the all-oN state. For the cases n=4 and 5
the following are nontrivial con"gurations:

‘ − 1

‘ − 1

0

0

0

1

1

‘ − 1

‘ − 1

‘ − 1

‘ − 1

0

0

0

0

0

1

1 ‘ − 1

‘ − 1

‘ − 1‘ − 1

‘ − 1

‘ − 1

0

0

11

1

0

0

0

0

0

0

0

0

1

1

0

0

0

1

Also from these one can construct nontrivial con"gurations for all numbers of the form
5k − 1 and 6k − 1, by stacking the above con"gurations leaving a row or a column in
between any two.
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Meanwhile, it is also interesting to ask for global reversibility, i.e. for what n the
automaton �Pn Pn

is reversible over any "nite prime "eld F‘. Even though our intuition
supports the claim that any number n except 1 has a prime number ‘ such that �Pn Pn

is irreversible over F‘ and it looks easy to show, we could not "nd an elementary
proof. Instead we prove our claim using p-adic techniques.

Theorem 4.4 (Global reversibility). Only for n=1 is the automaton �Pn Pn
reversible

for any prime ‘.

Proof. Suppose that the automaton �Pn Pn
is reversible for any prime ‘. Then the

determinant of the matrix Cbn; n de"ned over Z must be ± 1. Therefore, we have

det(Cbn; n) =
n∏

k=1

n∏
l=1

(1− .k − .−k − .l − .−l) = ±1;

where .= .2(n+1). For now, we consider

an+1 :=
n∏

k=1
(1− 2(.k + .−k))

which is an integer. Since an+1 is a divisor of det(Cbn; n), we must have an+1 =± 1.
On the other hand, we see that

an+1 =
n∏

k=1

(
1− 4 cos

k-
n + 1

)
= 2n

n∏
k=1

(
1=2− 2 cos

k-
n + 1

)
= 2nFn+1(1=2):

From the recurrence Fn+2(x)= xFn+1(x)−Fn(x) with F0(x)= 0 and F1(x)= 1, we obtain

an+2 = an+1 − 4an; a0 = 0; a1 = 1:

The following lemma completes the proof.

Lemma 4.5. Let {bn} be the sequence of integers de:ned by

bn+2 = bn+1 − 4bn; b0 = 1; b1 = 1:

Then, there is no n¿2 for which bn =± 1.

Proof. This can be proved by the exactly same method for Lemma 6.1 [2, pp. 67–70].
For the proof, we use local "eld Q17 instead of Q11.

To close this section we prove two statements about the properties of additive cellular
automata on square grids from the point of view of cyclotomic "eld extension theory
(all we use here is covered in Chapters 12 and 13 of [7]).
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Proposition 4.6. The following are equivalent:
1. �Pn Pn

is irreversible.
2. The prime ‘ divides the integer

n∏
k=1

n∏
l=1

(1− .k − .−k − .l − .−l);

where .= .2(n+1).
3. There are elements x and y in F‘m − {1;−1} such that

x +
1
x
+ y +

1
y
= x2(n+1) = y2(n+1) = 1;

where m is the order of l in (Z=nZ)∗.

Proof. (1)⇔ (2): This is an immediate consequence from Proposition 4.1.
(2)⇒ (3): Let q=

∏n
k=1

∏n
l=1(1− .k − .−k − .l − .−l). Suppose that ‘ is factored

into p1p2 · · ·pt over Z[.], where each pi is a prime in Z[.]. Since ‘|q and the "eld
F‘m ∼= Z[.]=(p1) (in fact, you can use any pi), q is zero in F‘m . Therefore, there are
integers 16i; j6n such that 1− (.i + .−i + .j + .−j)= 0 in F‘m .
(3)⇐ (2): Let x and y be elements in F‘m − {1;−1} satisfying the given equations.

Then, there are integers 16i; j6n such that x= .i +(p1) and y= .j +(p1), where p1

is a prime factor of ‘ over Z[.]. The condition x + 1
x + y + 1

y =1 implies .i + .−i +
.j + .−j ∈ 1 + (p1). Therefore,

p1|(1− .i − .−i − .j − .−j)

over Z[.]. This implies

NrQ(.)=Q(p1)|NrQ(.)=Q(1− .i − .−i − .j − .−j);

where NrQ(.)=Q is the norm map of the "eld extension Q(.)=Q. It is clear that the
norm NrQ(.)=Q(1 − .i − .−i − .j − .−j) divides the integer q4. Therefore, the norm
NrQ(.)=Q(p1) divides q4. Since NrQ(.)=Q(p1)= ‘m and ‘ is a prime, ‘ divides q.

Proposition 4.7. Let p be a prime number greater than 5. If ‘ is a primitive root
modulo prime number p, then �Pp−1 Pp−1

is reversible.

Proof. Assume that this was not so. Then one would have

‘

∣∣∣∣∣
p−1∏
k;l=1

(1− .k
2p − .−k

2p − .l
2p − .−l

2p ) :

The fact that ‘ is a primitive root modulo p implies that it remains prime in Z[.p] =Z
[.2p]. Therefore one must have, for some k; l ∈ {1; : : : ; p − 1},

‘|(1− .k
2p − .−k

2p − .l
2p − .−l

2p ):
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If one chooses a; b ∈ Z so that 1= (p + 2)a + 2pb, from .p+2
2p =−.p one gets

.2p =(−.p)a. Hence

‘|(1± .ak
p ± .−ak

p ± .al
p ± .−al

p ):

Using the Galois automorphism .p �→ .ak
p , this reduces to:

‘|(1− .p − .−1
p − .j

p − .−j
p );

for some j∈{1; : : : ; p − 1}, which is clearly false when p¿5.

This result shows that p =∈S‘, when ‘ is a primitive root modulo the prime p¿5.
It would then follow from a proof of Artin’s conjecture on primitive roots (see [11])
that there are in"nitely many primes outside S‘. By a result of Heath-Brown (see [11]
again) one gets that this is true for at least one of the sets S2, S3, S5.

5. In�nitude of primitive irreversible �-automata

This section is devoted to study P‘. The main task here is to show the set P‘ is
in"nite for ‘=2 and 3. For convenience we say the polynomial fn(x)∈ F‘[x] is singular
if �Pn−1 Pn−1

is irreversible, or equivalently gcd(fn(x); fn(1− x)) �=1, i.e. n ∈ S‘.

Lemma 5.1. If ‘=2 or 3, then the polynomial f(‘p−1)=(‘−1)(x) is singular, for all
primes p¿3 (for ‘=3 this holds for p¿2).

Proof. In general, if p does not divide ‘−1, then gcd((‘p−1)=(‘−1); ‘2−1)=1, and
therefore gcd(f(‘p−1)=(‘−1)(x); f‘−1(x)f‘+1(x))= 1, which implies (see Proposition 2.7)
that all the roots of f(‘p−1)=(‘−1)(x) are in F‘p\F‘. But then the same is true for the
roots of f(‘p−1)=(‘−1)(a − x), for any a∈ F‘.

When ‘=3, each of these ‘ polynomials has (‘p−‘)=(‘−1) roots (they are square-
free), and therefore at least two must have a common root. Using an automorphism of
F‘[x] together with the fact that f(‘p−1)=(‘−1)(−x)=±f(‘p−1)=(‘−1)(x), one concludes
that for some a∈ F∗‘ , gcd(f(‘p−1)=(‘−1)(x); f(‘p−1)=(‘−1)(a − x)) �=1. This means that
either gcd(f(‘p−1)=(‘−1)(x); f(‘p−1)=(‘−1)(1−x)) �=1, or gcd(f(‘p−1)=(‘−1)(x); f(‘p−1)=(‘−1)

(2 − x)) �=1. In the "rst case we are done; on the second just use the automorphism
of F‘[x] determined by x �→ x − 1.
The case ‘=2 was proved in [5]. Here is an alternative (shorter) proof: in this

case the polynomial f(‘p−1)=(‘−1)(x) is no longer square-free, but is the square of a
square-free polynomial (Proposition 2.11) and has therefore (‘p−‘)=2 roots in F‘p\F‘.
If it were not singular, then it would follow from Proposition 2.7 that f2p+1(x)=
(1− x)2f2p−1(1− x). Using the recurrence relation and (c) of Lemma 2.6, we get

x2
p
= f2p−1(x) + (1− x)2f2p−1(1− x):

Now, if a is a root of f2p−1(x), then substituting x by a and 1− a in the equality just
obtained (and recalling that a∈ F2p , so that a2

p
= a), one gets that a=(1− a)3. Hence

f2p−1(x) | ((x − 1)3 + x)2, which is impossible if p¿3.
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Remark. This lemma shows that a Mersenne prime is in P2. In [5] it is shown that
the polynomial f2k+1 ∈ F2[x] is also singular. This implies that a Fermat prime is also
in P2.

The in"nitude of the set P‘ for ‘=2 and 3 easily follows from this lemma.

Theorem 5.2. For ‘=2 and 3 the set P‘ is in:nite.

Proof. Suppose not. Then we can choose a prime number p greater than all the ele-
ments in P‘. Since all prime divisors of (‘p − 1)=(‘ − 1) are congruent to 1 modulo
p, all its divisors except 1 are greater than the biggest element in P‘. However, one
of the divisors of (‘p − 1)=(‘ − 1) must be in the set P‘. This is a contradiction.

As we see, the in"nitude of P‘ for any prime ‘ can be obtained by proving the
following conjecture:

Conjecture 5.3. For any prime ‘¿3 and any odd prime p the polynomial f(‘p−1)=(‘−1)

(x) is singular.

We do not expect that the conjecture has a simple proof. In the sense of arithmetical
progressions, what we can do as the second best thing might be to consider whether
f(‘p−1)=2(x) is singular or not. This question is answered aUrmatively by the following:

Proposition 5.4. For all primes ‘¿23, the polynomials f(‘−1)=2(x) and f(‘+1)=2(x) are
singular.

Proof. It follows from Lemma 2.5 that

f(‘−1)=2(x)f(‘+1)=2(x) =
∏

a∈F‘\{±2}
(x − a):

In particular, both these polynomials split over F‘.
Now, for each a∈ F‘\{± 2}, let b∈ F‘2\{0;± 1} be a solution of the quadratic

equation a= b + b−1. Then, using the identity right below Proposition 2.3 we get

f(‘−1)=2(a)= 0⇔ b(‘−1)=2 − b−(‘−1)=2 = 0 ⇔ b‘−1 = 1

⇔ b ∈ F‘ ⇔
(

a2 − 4
‘

)
= 1;

where ( ··) is the Legendre symbol, i.e. the quadratic character of F‘.
Note that it follows from the two previous paragraphs that

f(‘+1)=2(a) = 0 ⇔
(

a2 − 4
‘

)
= −1:
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The idea is to show that, for each of the two polynomials under consideration, there
is an element a∈ F‘\{± 2} such that both a and 1 − a are among its roots. We start
by noting that, for ‘¿7,

F‘ \ {±2} =
{
1
2

}
∪ {−1; 3} ∪ ⋃

a∈S
{a; 1− a};

where S = {0; 4; 5; : : : ; (‘ − 1)=2}.
Now, if f(‘−1)=2(x) is non-singular then 1

2 is not among its roots. This implies that(
( 12 )

2−4
‘

)
=(−15=‘)=−1, which means (−3=‘)=−(5=‘). Therefore −1 and 3 cannot

both be roots of f(‘−1)=2(x). Since this polynomial has degree (‘−3)=2 and the number
of elements in S is equal to (‘−5)=2, it follows that if f(‘−1)=2(x) is non-singular then
for every b∈ S either b or 1− b, but not both, is among its roots. Therefore:(

b2 − 4
‘

)
= −

(
(1− b)2 − 4

‘

)
; for every b ∈ S: (∗)

Similarly, if f(‘+1)=2(x) is non-singular, then 1
2 is not one of its roots, and again by

considering its degree it also follows that (∗) must be satis"ed. Hence if f(‘−1)=2(x)
and f(‘+1)=2(x) are not both singular then (∗) holds.
If ‘¿23 it is easy to see that 7; 9; 10∈ S, and one gets from (∗) that:

b = 9⇒
(
7 · 11

‘

)
= −

(
3 · 5
‘

)
;

b = 10⇒
(
2 · 3
‘

)
= −

(
7 · 11

‘

)
;

which together imply that (5=‘)= (2=‘). Taking now b=7 in (∗) gives the desired
contradiction.
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