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SUMMARY

Germinal centers (GCs) are specialized microenvi-
ronments where antigen-activated B cells undergo
proliferation, immunoglobulin (Ig) class switch re-
combination, somatic hypermutation (SHM), and
affinity maturation. Within GCs, follicular dendritic
cells (FDCs) are key players in driving these events
via direct interaction with GC B cells. Here, we
provide in vivo evidence that FDCs express and
upregulate Toll-like-receptor (TLR) 4 in situ during
germinal center reactions, confirm that their matura-
tion is driven by TLR4, and associate the role of FDC-
expressed TLR4 with quantitative and qualitative
affects of GC biology. In iterative cycles of predic-
tions by in silico modeling subsequently verified by
in vivo experiments, we demonstrated that TLR4 sig-
naling modulates FDC activation, strongly impacting
SHM and generation of Ig class-switched high-
affinity plasma and memory B cells. Thus, our data
place TLR4 in the heart of adaptive humoral immu-
nity, providing further insight into mechanisms
driving GCs arising in both health and disease.

INTRODUCTION

The central function of B cells during innate or adaptive immune

responses to infections is the production of antimicrobial Ig. The

initiation of the innate response is through so-called danger

signals, provided by activation of host pattern recognition

receptors (PRR) via pathogen-associated molecular footprints

(Akira et al., 2001). The most commonly used PRR in mammals

are Toll-like receptors (TLR) that sustain innate immune

responses by promoting secretion of proinflammatory cytokines

(Akira et al., 2006). TLRs are also involved in adaptive immunity,

promoting, for example, the maturation of dendritic cells (DCs)
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(Lee and Iwasaki, 2007). Although the existence of a direct axis

between TLRs and B cells to promote humoral responses, inde-

pendently of TLR4 function on DCs and T cells, is contentious

(Pasare and Medzhitov, 2005; Nemazee et al., 2006; Meyer-

Bahlburg et al., 2007), TLR signaling has been reported to

promote auto-Ab production (Marshak-Rothstein, 2006).

The cellular expression of TLRs is broad, including leukocytes

(Banerjee and Gerondakis, 2007) and stromal, endothelial, or

epithelial cells (Gribar et al., 2008; Iwamura and Nakayama,

2008). Recently, TLR4 expression has also been observed on

FDCs (El Shikh et al., 2007), a radio-resistant cell type located

in primary follicles and the light zone of GCs. However, TLR4

function on FDC has remained elusive. FDCs play a crucial role

in the preventing GC B cell apoptosis (Kosco et al., 1992; Lindh-

out et al., 1993), promoting high-affinity Ig secretion (Aydar et al.,

2005) and enhancing signals leading to SHM (Wu et al., 2008).

FDCs activated in vitro with the TLR4 ligand lipopolysaccharide

(LPS) upregulate adhesion molecules and provoke higher

antigen (Ag)-specific Ig production when cocultured with B cells

(El Shikh et al., 2007). Understanding how the sensors of innate

immunity, such as TLR4 on FDCs, contribute to healthy humoral

responses will provide insights into how aberrant GCs are

formed and maintained during chronic diseases.

We report that endogenous TLR4 ligands are present within

GCs and thus provide a self-potentiating source of host-derived

receptor agonism. Furthermore, we explore the expression of

TLR4 by FDCs and its function during the GC reaction. To narrow

potential hypotheses to be tested in wet experiments, we

applied in silico simulations of the GC reaction, based on a

recently published mathematical model (Figge et al., 2008;

Meyer-Hermann et al., 2009). The in silico experiments identified

critical time points and experimental conditions to test in vivo.

These experiments, conducted with both genetic as well as

pharmaceutical approaches to abolish TLR4 function in FDCs,

elucidated the kinetics of FDC-expressed TLR4 and mechanisti-

cally a TLR4 dependence for the downstream production of

essential growth and differentiation factors. Loss of TLR4

signaling in FDCs resulted in a deficiency in the size and number

of GCmicroenvironments, a paucity inmutational events in B cell
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Figure 1. TLR4 Is Expressed on FDCs within the

GC and Is Upregulated as FDCs Mature

(A) Balb/c mice (n = 10) were immunized with OVA plus

LPS and 7 days later sections were prepared from LNs

and colabeled with PNA and either the anti-TLR4 (5E3)

or FDC-M1. Left and right panels represent consecutive

tissue sections.

(B) Higher magnification of area boxed in (A, left) on a

consecutive tissue section demonstrating colabeling of

TLR4 expression (5E3) on FDC networks (FDC-M2).

(C) Quantitative analysis of at least 20 sections per LN per

time point capturing the percent of FDC networks that

were TLR4+; values above columns represent the number

of TLR4+ networks observed within the total number of

FDC-M2+ networks evaluated per time point.

(D) Sections of LNs at 3 or 7 days postimmunization with

OVA and LPS (n = 6 mice/time point). Consecutive

sections were incubated with PNA and either anti-TLR4

mAb (left) or FDC-M2 (right). The day 3 and 7 photomicro-

graphs included here are used to illustrate GCwithout and

with TLR4-expressing FDC networks, respectively. The

white bar in a photomicrograph represents its relative

scale within the figure.

See also Figure S1.
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receptor maturation, and a decrease in Ag-specific high-affinity

Ig titers. Taken together, weaving in vivo and in silico results

demonstrate a central role for TLR4 in the generation of optimal

GC development and humoral responses.

RESULTS

FDCs Express TLR4
TLR4 expression during the GC reaction was assessed by

analysis of lymph nodes (LNs) obtained from immunized mice.

Seven days after immunization, the FDC network was identified

(Figure 1A, left, green labeling) in PNA+ GCs (Figure 1A, red

labeling). In the consecutive section, TLR4 expression (Figure 1A,

right, green labeling) was observed as a reticular pattern of

labeling, markedly restricted to the anatomical compartment

constituting the light zone of the GCs. Colabeling (Figure 1B)

with TLR4 and FDC mAbs demonstrated that TLR4 expression

was limited to the FDC network (yellow labeling) although not

all FDCs were positive (green labeling). Corroborating the histo-

logical observations, TLR4 mRNA was present in purified FDC

(data not shown), in contrast to GC B cells that showed no
Immunit
TLR4 labeling by histology (Figures 1B and 1D)

nor detectable mRNA (data not shown). These

in situ results demonstrate that FDC express

TLR4 in vivo.

TLR4 Expression Is Upregulated during
FDC Maturation
To investigate the kinetics of TLR4 expression

on FDC during GC development, mice were

immunized with OVA plus LPS and the draining

LNs harvested prior to, as well as 3 and 7 days

after, the immunization. Before immunization,

no TLR4 labeling was observed on any FDC

network (Figure 1C). By day 3 postimmuniza-
tion, only 16 of the 53 FDC networks colabeled for TLR4 (Figures

1C and 1D illustrating a nonlabeled example), which was then

upregulated within all networks by day 7 (Figures 1C and 1D).

Similar results were obtained with alum, a non-TLR4 agonist,

as adjuvant instead of LPS (data not shown), suggesting that

exogenous TLR4 ligands are not required to upregulate TLR4

expression on FDCs. The kinetics of TLR4 expression by FDCs

paralleled that of the FDC maturation markers, ICAM-1 (Fig-

ure S1A available online) and FcgRII and FcgRIII (Figure S1B),

indicating that TLR4 expression is associated with FDC matura-

tion. These results reveal that FDCs upregulate TLR4 expression

during maturation.

Endogenous TLR4 Ligands Are Present within the GC
Because an upregulation of TLR4 on FDCs was observed, we

hypothesized that an endogenous source of TLR4 ligands may

exist in GCs. Sources of endogenous TLR4 agonists are the

consequences of apoptosis, including oxidized phospholipids

(OxPl) (Chang et al., 1999; Miller et al., 2003; Imai et al., 2008).

Many GC B cells undergo apoptosis and are scavenged by tin-

gible body macrophages (TBM), which are in close proximity to
y 33, 84–95, July 23, 2010 ª2010 Elsevier Inc. 85



Figure 2. The Endogenous TLR4 Ligand OxPl Is Present within

the GC

Balb/c mice (n = 6) were immunized with OVA plus LPS, and 9 days later,

sections were prepared from LNs and labeled with combinations of PNA

and an anti-CD3, or FDC-M1 and EO6 (specific for OxPl).

(A) The PNA+ area (red) and anti-CD3 labeling (green) in the left panel permits

orientation of the LN sections and identification of a PNA+ GC. In the consec-

utive tissue section (right), the dotted area outlines the PNA+ zonewith the FDC

network (green) oriented at the opposite pole of the CD3+ T cell zone and

morphologically identifiable TBM associated with endogenous TLR4 ligands

(orange and yellow).

(B) Higher magnifications of the two areas within the squares of Figure 1A, de-

pictingOxPl+ (red) apoptotic bodies within the FDC network (left) and being en-

gulfed by FDC-M1+ TBM (right), producing an overlay of yellow and orange

images. The white bar in a photomicrograph represents its relative scale within

the figure.
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FDCs. Therefore, host-derived TLR4 ligands may be generated

within the GC and have access to the FDC network.

To test this hypothesis, draining LNs sections (9 days postim-

munization) were consecutively colabeled with (1) PNA and

anti-CD3 to identify the border of the GC dark zone (Figure 2A,

left) or (2) FDC-M1 (labels both FDCs and TBMs) and EO6 (labels

OxPl) (Chang et al., 1999). OxPls were detected within GCs, and

FDC networks (yellow labeling, Figure 2A, right) could be

observed within the GC (PNA-positive area in Figure 2A, left,

used to indicate, by dotted line, the GC area in Figure 2A, right).

At higher magnifications (Figure 2B), the labeling for OxPl was

intimately associated with the FDC network (Figure 2B, left) as

well as distal to the network, i.e., along the perimeter of the

GC’s dark zone (Figure 2B, right). Examining numerous sections

provided consistent evidence that both TLR4 (on FDCs) and

TLR4 ligands (OxPl in the GC) appeared in concert during the

GC response. Taken together these results indicate that endog-

enous sources of TLR4 ligands exist and are available to activate

FDC maturation during GC reactions.

Loss of TLR4 Function on FDCs Results in Altered
Maturation and Impaired GC Development
In order to evaluate the biological consequence of TLR4

signaling by FDCs on GC development, parallel experimental

approaches were applied. The first utilized was the blocking

TLR4 mAb, 5E3. The TLR4 mAb was injected 3 days after immu-

nization of mice. The absence of interference with DCmaturation
86 Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc.
and T cell priming at this time point was confirmed by comparing

expression of the maturation markers CD80 and MHC class II on

DCs which were unaffected by anti-TLR4 treatment (data not

shown).

The second approach involved generating mouse chimeras in

which TLR4 was nonfunctional on FDCs. The C3H/HeJ strain,

which carries a nonfunctional Tlr4 gene (Poltorak et al., 1998),

was used as the recipient of bone marrow (BM) from C3H/HeN

mice (i.e., WT, TLR4 sufficient). These chimeric animals were

compared to lethally irradiated C3H/HeN (WT) mice reconsti-

tuted with C3H/HeN (WT) BM. The radioresistant property of

FDCs (Humphrey et al., 1984; Phipps et al., 1981) allowed the

distinction of those effects mediated by TLR4 expression on

hematopoietic cells versus host-maintained FDCs. No TLR4

expression was observed in GCs when the C3H/HeJ strain

was used as host.

We first focused on evaluating the interdependence of TLR4,

ICAM-1, and FcgRII and FcgRIII upregulation of FDCs. After

immunization, ICAM-1 expression was enhanced on FDCs as

expected (Figure 3A). In contrast, in anti-TLR4-treated mice,

FDCs failed to upregulate ICAM-1 expression (Figures 3A and

3C), as well as when the C3H/HeJ strain was reconstituted

with WT BM (Figure 3B). However, the expression of FcgRII

and FcgRIII was unaltered in either approach (data not shown).

Because the ICAM-1 and LFA-1 axis (expressed on FDCs and

GC B cells, respectively) is pivotal for robust GC responses

(Koopman et al., 1991, 1994; Kosco et al., 1992), we speculated

that blocking TLR4 function would have a profound effect on

GC development. Thus, we explored the consequences of de-

creased ICAM-1 expression resulting from the neutralization of

TLR4 signaling by applying a hybrid agent-based mathematical

model of the GC reaction (Figge et al., 2008; Meyer-Hermann

et al., 2009). The model (Figure 4) assumes that lower ICAM-1

expression reduces the probability of B cell-FDC interactions,

thus altering the frequency of Ag uptake by B cells from FDCs.

In these simulations, the initial phase of GC B cell expansion is

independent of FDC-ICAM-1 expression (Figure 3D). However,

from day 6, when B cells are undergoing affinity-dependent

selection on FDC-retained Ag, a dose-dependent relationship

is exhibited (Figure 3D). Thus, higher expression of ICAM-1 on

FDC is associated with larger GCs.

To validate our theoretical approach, we performed in vivo

experiments measuring the number of GC B cells per LN when

impairing TLR4 function in FDC. Indeed, the number of GC B

cells was reduced, suggesting a dependence of the overall

efficiency of the GC reaction on intact TLR4-mediated signaling

in FDCs (Figures 3E and 3F). Interfering with TLR4 signaling also

compromised the size (Figures 3H and 3J) and number (Figure 3I)

of GCs per LN. Hence, although not being able to rule out causal

relationships to other factors, the in silico-generated data were

able to predict that the number of GCB cells per LNwould corre-

late in vivo with ICAM-1 expression on FDCs (Figure 3G), giving

us confidence to further exploit the modeling prior to designing

in vivo protocols.

Attenuation of TLR4 Responses on FDCs Alters
Both Primary and Secondary Humoral Responses
Figure 5A shows the theoretical kinetic dose-response curve of

cumulated output cells per GC as ICAM is varied. With time,



Figure 3. TLR4 Signaling by FDCs Shapes

FDCMaturation and the Extent of GC Reac-

tions

(A) ICAM-1 expression is upregulated on FDCs

upon maturation and blocked by anti-TLR4 treat-

ment. Balb/c mice treated with anti-TLR4 or

isotype control (n = 5/group) were immunized

s.c. with OVA plus LPS, and 7 days later sections

were prepared from the LNs and labeled with

FDC-M2 and anti-ICAM-1. Unimmunized mice

were used as control (n = 5). The values are the

intensity of expression of the FDC network,

analyzed with the AxioVision Rel. 4.6 software.

Numbers above the bars correspond to the

number of FDC networks analyzed.

(B and C) ICAM-1 expression on FDCs was

assayed by flow cytometry with LNs of mice

immunized with OVA plus LPS for 10 days. C3H

chimeric mice (B) or Balb/c mice treated with

anti-TLR4 or isotype control (C) were evaluated

(10 mice/group) and the results are representative

of two independent experiments.

(D) Time course of simulating the number of GC B

cells per GC as a function of FDC-associated

ICAM-1 expression.

(E and F) The number of GC B cells was assayed

by flow cytometry with the same cells as

described in (B) and (C) above.

(G) Linear regression curve obtained from the

results displayed in (B), (C), (E), and (F) demon-

strating the correlation between the number of GC

Bcells and amount of ICAM-1 expression on FDCs.

(H–J) Evaluation of LNs obtained from Balb/c mice

treated with TLR4 mAb or isotype mAb control

10 days postimmunization. Photomicrographs (H) of representative cryosections labeled with PNA and FDC-M2. Five mice were used per group for which

the LNs were entirely cut, immunolabeled, and analyzed to assay the number (I) and the size of the GC (J) with (5E3) or without (isotype control) TLR4 neutral-

ization. The white bar in a photomicrograph represents its relative scale within the figure.

Results represent mean ± SEM.
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the model predicts that the number of output cells (e.g., Ag-

specific plasma cells) will decrease as a function of lower

ICAM expression. Consequently, Ag-specific antibody (Ab) titers

and Ig class switch from IgM to IgG isotypes should be lower

when TLR4 is lacking. Indeed, a substantial reduction in the

anti-OVA primary and secondary IgM (Figure 5B) and secondary

IgG responses (Figure 5C) were observed when TLR4 was

nonfunctional on FDCs (WT in Tlr4�/� BM chimeras compared

to WT in WT). Similar results were obtained with anti-TLR4-

treated mice for OVA plus LPS or OVA plus alum immunizations

(data not shown). The TLR4-dependent effect on IgM titers was

obvious at later stages of the response (e.g., after day 6) as

predicted by the model, when the output from GCs should

have been considerably affected. In contrast, the early phase,

when IgM is produced by extrafollicular plasma cells, i.e.,

a GC-independent pathway (MacLennan et al., 2003), was unaf-

fected by impairing TLR4 function (Figure 5B). Together these

mathematical and experimental results infer that TLR4 expres-

sion impacts on the production of plasma cells in GCs.

TLR4 Neutralization Abates High-Affinity Ig Responses
Because FDC-B cell contacts influence the selection of clones

displaying high affinity for the Ag, we modeled the influence of

ICAM-1 expression on FDCs for the generation of high-affinity

GCB cells. Together with a decreased output of cells (Figure 5A),
the simulations predicted that suboptimal ICAM-1 expression on

FDCs would be sufficient to affect affinity maturation leading to

an overall decreased number (Figure 5D) but not to a changed

fraction (Figure 5E) of high-affinity GC output cells.

To test this prediction, high-affinity Ab titers were measured

after a primary immunization and while neutralizing TLR4. These

animals displayed weaker total and high-affinity IgG1 responses

(Figure 5F). However, in contrast to simulation data, the high-

affinity compartment was particularly impacted as reflected

by a strongly reduced ratio of high to total anti-NP IgG1 titers

by day 21 (Figure 5G). In comparison to IgM, TLR4 neutralization

affected high-affinity IgG1 titers preferentially at later time points

as shown by the altered ratio of high-affinity IgG to IgM

(Figure 5H) during the GC reaction (days 14 and 21 postimmuni-

zation; p < 0.0001, 2-way ANOVA test). This effect was also seen

with total IgG1 versus IgM titers, although the difference was less

pronounced (data not shown). These results imply that TLR4

signaling mainly affects GC function (where high-affinity IgG1

develops) rather than extrafollicular site development, where

short-lived IgM-secreting plasma cells are produced. In addition,

this altered ratio in IgG1/IgM production could reflect a defect in

Ig isotype switching, consistent with the function of FDCs in the

GC reaction. Finally, in order to evaluate the prolonged impact of

TLR4 neutralization on different IgG subtypes, sera from mice

receiving a booster immunization were further screened. In these
Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc. 87



Figure 4. Illustration of the Hybrid Agent-Based Model as Applied in the Computer Simulations of GC Reaction

(A) The B cell follicle in which GCs occur is represented by a three-dimensional spatial grid. B cells (blue) migrate on the spatial grid, performing a persistent

random walk or through a chemotactic gradient.

(B) B cells proliferate and undergo SHM with probability PSHM/division. Migrating B cells interact with Ag-presenting FDCs (green) with probability PBC-FDC.

(C) The interaction probability PBC-FDC depends on the distance between the expressed Ab of the B cell (colored star) and the position of the Ag (yellow star) in

shape space. The shape space has four dimensions and distances are measured as the shortest path between two points. In addition to the affinity-dependent

contribution, PBC-FDC is biased by the ICAM-1 expression on FDCs represented by probability PICAM. This probability is varied in the simulations tomimic reduced

ICAM-1 expression as a consequence of an impairment of TLR4 signaling.

(D) The impact of this impairment on the rate of SHM is taken into account by the probability PSHM. Mutations correspond to moves in the shape space that are

performed with probability PSHM/division. The affinity-dependent competition between B cells for survival signals from FDCs is taken into account, since the

probability PBC-FDC is a function of the distance between Ab and Ag in shape space.
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experiments, the titers for total as well as high-affinity Ag-

specific IgG1 (Figures 5I and 5J) as well as IgG2a (Figures S2A

and S2B) and IgG2b (Figures S2C and S2D) were substantially

impaired. Thus, the generation of high-affinity antibodies was

consistently more severely impacted than that of low-affinity

antibodies. These results suggest that TLR4 expression on

FDCs impacts affinity maturation of Ig responses.

Impairment of TLR4 Function on FDCs Reduces SHM
Themodel predicted that reduced ICAM-1 expression would not

alter the fraction of high-affinity output cells (Figure 5E), yet a

decrease was observed through in vivo experimentation, so we

explored other potential parameters in silico that might explain

this discrepancy between the model and biological experiment.

As shown in Figure 6A, in our model the fraction of high-affinity

output cells will decrease as a function of mutation frequency

rates per cell division (not the absolute number of mutations)

(Figure 6A, solid black and gray lines). Combining reduced

SHM with reduced ICAM-1 expression has only a weak additive

effect on the fraction of high-affinity output cells (Figure 6A,

dashed-dotted black and gray lines). Also, the number of GC B

cells per GC remains unaltered by reduced SHM frequencies

(Figure 6B; compare the two solid lines or the two dashed-dotted

lines for ICAM-1 reduced by a factor of 0.4). In order to determine

the robustness of phenotypes other than the fraction of high-
88 Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc.
affinity output cells, we further reduced the SHM rate and found

that other phenotypes were modified only when the SHM rate

was reduced to 10% of control (Figure 6B, dotted line). Thus,

in a reasonable range, reduced SHM rates selectively impact

on the fraction of high-affinity output cells produced in GCs.

Note that if the mutation rate is changed via the B cell prolifera-

tion rate, the in silico-observed impact extends to other pheno-

types. In conclusion, the simulation results would agree with

the experiments (including the observed reduction in the fraction

of high-affinity cells) when assuming that the suppressed TLR4

signaling would concurrently inhibit ICAM-1 and SHM in vivo.

Experiments were then designed to test these in silico predic-

tions in vivo. The rearranged VH186.2 gene, which characterizes

the heavy chain of the anti-NP Ab, was specifically amplified with

cDNA from GC B cells isolated from immunized C3H chimeric

mice as well as naive B cells isolated from nonimmunized

chimeric mice (used as the background mutation control). As

shown in Figure 6C, the rate of nucleotide (Nt) mutations in the

CDR regions of the VH186.2 gene was reduced by 50% in the

GC B cells obtained from the chimera deficient for TLR4 function

on their FDCs (6310�2 versus 14310�2 for mice sufficient for

TLR4) confirming the in silico prediction. Whereas the pattern

of Nt substitutions did not change between the two groups (Fig-

ure 6D), AID hotspots were less susceptible to mutations

(Figure 6E), suggesting an alteration of AID activity in GC B cells



Figure 5. TLR4 Signaling by FDCs Modifies the Humoral Response and High-Affinity Ig Production

(A) Time course of simulating the number of output cells (plasma cells) generated per GC as a function of varying FDC-associated ICAM-1.

(B and C) Reconstituted C3H chimeric mice (n = 15/group) were immunized with OVA plus LPS and boosted with OVA at day 21. Sera were collected weekly and

Ag-specific IgM (B) and IgG (C) titers were established by ELISA. The results are representative of three independent experiments.

(D and E) Time course of simulating the number (D) and fraction (E) of high-affinity plasma cells leaving the GC as a function of varying FDC-associated ICAM-1.

(F–H) Balb/c mice treated with the anti-TLR4 or isotype control (n = 10/group) were immunized with NP-OVA plus LPS, sera were collected weekly, and the

NP-specific IgG1 (F) titers were established by ELISA. High-affinity NP-specific Ig to the total amount of Ig (G) or the high-affinity NP-specific IgG1 to IgM (H)

ratios plotted over the time course for titers incurred by the primary immunization. Data are representative of three independent experiments.

(I and J) Balb/c mice (n = 10/group) were immunized with NP-OVA plus LPS, boosted after 10 days with NP-OVA in PBS, and treated with the anti-TLR4 or isotype

control. Sera were collected, NP-specific IgG1 (I) titers were established by ELISA, and the ratio of high-affinity NP-specific IgG1 to the total IgG1 is plotted over

the time course after the primary (10 days) and secondary (10+4; 10+7 days) immunization (J).

Results represent mean ± SEM. See also Figure S2.
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Figure 6. TLR4 Signaling by FDCs Influ-

ences Rates of SHMduring the GCReaction

(A and B) Time course of simulating the fraction of

high-affinity output cells (A) and the number of GC

B cells generated per GC (B) as function of varying

the rate of mutation with (+) and without concom-

itant alteration in ICAM-1 expression on FDCs.

(C–G) LNs of C3H chimeric mice, immunized with

NP-OVA plus LPS and boosted with NP-OVA,

were obtained 10 days after second immunization

(n = 8/group). 106 GC B cells were sorted by flow

cytometry. Naive CD19+IgD+ B cells from LNs of

nonimmunized littermate chimeras were sorted

to serve as the reference controls. cDNA from

each groupwas amplified by nested PCR to obtain

the VH186.2 gene and 40 individual clones were

sequenced.

(C and F)Mutation rates in nucleotides (Nts; C) and

amino acids (Aa; F) in the overall, CDR, and Ig

framework regions. 2-wayANOVA tests performed

between the ‘‘WT in WT’’ and the ‘‘WT in KO’’

groups indicated statistical differences in the

mutation rate (p = 0.002 for the Nts and

p < 0.0001 for the Aa), KO defining the Tlr4�/�

genotype.

(D) Percentage of Nt substitutions within the

VH186.2 gene.

(E) Mutation rates in AID hotspots and coldspots

of the overall VH186.2 gene. W = A or T; R = A or

G; Y = C or T; S = G or C. 2-way ANOVA tests

indicated statistical differences between the ‘‘WT

inWT’’ and the ‘‘WT in KO’’ groups for the hotspots

(p < 0.0001) but not for the coldspots.

(G) Ratios of replacement (R) versus silent (S)

mutations in the framework regions (FW) and

CDRs.

Results represent mean ± SEM.
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of animals with defective TLR4 on their FDCs. These differences

in Nt sequences were translated into changes in amino acids (Aa)

(Figure 6F) without affecting the ratio of replacement/silent muta-

tions (Figure 6G).

Interestingly, when TLR4 was defective on FDCs, 15% of the

clones shared identical Nt sequences (3/20), whereas 32%

were found to be identical in mice sufficient for TLR4 (6/19).

This phenomenonwas also confirmedwhen translating Nt codes

into Aa sequences (15% of redundancy for the TLR4-deficient

mice versus 37% for the TLR4-sufficient mice). This result

reinforces the importance of TLR4 function on FDCs for affinity

maturation. In summary, these experiments confirmed the

in silico prediction, suggesting that a lack of TLR4 signaling on

FDCs negatively impacts the efficiency of SHM in the GC, thus

explaining the strongly reduced ratio of high-affinity Ab titers

found in vivo (Figures 5F–5J).

Lack of TLR4 Function in FDCs Alters
the Gene Expression Profile of FDCs
In order to further understand the effects of impairing TLR4

signaling by FDCs, the expression of genes involved in FDC

network maintenance (LTbR), cell adhesion (ICAM-1, VCAM-1,

CD44), GC formation (CCL19, CCL21, CXCL12, CXCL13, and
90 Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc.
RGS-1), isotype switching (IL-6), and humoral responses (IL-10

and IL-15) were investigated. Purified FDCs from immune mice

treated with the anti-TLR4 displayed lower mRNA expression

for ICAM-1, but not for other adhesion molecules tested, i.e.,

CD44 and VCAM-1 (Figure 7A). LTbR mRNA expression by

FDCs was also decreased (Figure 7B), as well as mRNA expres-

sion of the cytokines IL-1b, IL-6, IL-10, and IL-15 (Figure 7C) and

the chemokines CCL19, CCL21, and CXCL12 (Figure 7D).

Next, the effect of impairing FDC-associated TLR4 signaling

on gene expression in GC B cells was investigated with the

previously described chimeric mice. None of the apoptosis-

related genes tested were altered (Figure 7E). This result was

predicted by the in silico model (Figures S3A and S3B) and

confirmed by Annexin V labeling on GC B cells frommice treated

with the TLR4 mAb. mRNA encoding the proliferation marker

Ki67 was downregulated in the GC B cells from mice with

nonfunctional TLR4 on FDCs (Figure 7F) as well as the mRNA

for AID, albeit only by 20% (Figure 7F).

Finally, the mRNA for RGS-1, a protein involved in desensitiza-

tion to prolonged chemokine exposure, was also downregulated

(Figure 7F). Because investigating the effect of this parameter,

i.e., an alteration in chemokine receptor desensitization in vivo,

would require currently unavailable tools, we decided to model



Figure 7. TLR4 Signaling by FDCs Impacts the Expression of Genes Critical for GC Reactions

(A–D) LNs fromBalb/cmice treatedwith the anti-TLR4 or isotype control (n = 20 LNs/group) were obtained 7 days after immunization withOVA plus LPS. From 105

FDCs isolated by flow cytometry, RNA extraction and cDNA synthesis were performed. Q-PCRs were done twice in quadruplicate for genes involved in GC

function.

(E and F) LNs of C3H chimeric mice (WT inWTmice are defined as FDC Tlr4+/+; WT in KO as FDC Tlr4�/�) were obtained 10 days after immunization with NP-OVA

plus LPS (n = 8 LNs/group). From 106 GC B cells isolated by flow cytometry, RNA extraction and cDNA synthesis were performed. Q-PCRs were done twice in

quadruplicate for genes involved in GC function.

(G and H) Time course simulating the number of GCB cells (G) and the fraction of high-affinity output cells (H) with (dotted lines) or without (full lines) reduced SHM

rate for different desensitizationmodels. In the reference simulation (black lines), B cells, after upregulation of the chemokine receptor, desensitize in a chemokine

concentration-dependent way and after 6 hr at the latest. Then, the concentration-dependent desensitization is switched off (no desens, blue lines) or

desensitization is fully blocked (no limit, red lines).

Results represent mean ± SEM. See also Figure S3.
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this in silico (Figures 7G and 7H). The effect associated with the

downregulation of RGS-1 expression in GC B cells wasmodeled

with three considerations (Figures 7G and 7H), that is, desensiti-

zation (reference), desensitization only after 6 hr (no desens), and

a total absence of chemokine receptor desensitization (no limit).

Comparing the results demonstrated that lacking some sort of

a chemokine receptor desensitization process would lead to a

reduction in the number of GC B cells (Figure 7G) but would

not have a substantial effect on the fraction of high-affinity output

cells (Figure 7H). The effect of suppressed desensitization, thus,

correlates with that observed for ICAM-1 inhibition. Taken

together, these results suggest that RGS-1 is candidate for a

critical protein regulated by FDC-associated TLR4 signaling.
DISCUSSION

DCs and FDCs are central to immune responses: both are

implicated in exposing immunogenic epitopes of pathogens to

T and B cells via peptides associated with major histocompati-

bility complexes (MHC) or in the form of whole Ag as immune

complexes (ICs) on complement and Fc receptors. The matura-

tion of both cell types has been reported to be mediated via

TLR4 triggering (Lee and Iwasaki, 2007; El Shikh et al., 2007).

The direct consequences of altering DC maturation are well

described and lead to a defect in T cell adaptive immune

responses (Banchereau and Steinman, 1998). In the present

study, we provide evidence that FDCs express and upregulate
Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc. 91
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TLR4 in situ during germinal center reactions, confirm that their

maturation is driven by TLR4, and associate the role of FDC-ex-

pressed TLR4 with quantitative and qualitative effects of GC B

cell responses.

Demonstrating that TLR4 expression during the GC reaction

was restricted and overlapping with the FDC-specific Ab, FDC-

M2, in a immunohistochemical kinetic study conducted on tissue

sections is a striking result. The highly limited degree of colabel-

ing within the microenvironment on the well-defined FDC

network demonstrates a role of TLR4 signaling by radioresistant

FDCs, at least during the phases of the GC reaction. However,

although we acknowledge that these data are consistent with

FDCs mediating these effects, it is not possible to exclude the

contribution of additional radioresistant cell types that express

TLR4 at levels that are undetectable by fluorescencemicroscopy

and may be biologically important. Our results aim to resolve the

controversy occurring in the literature (Pasare and Medzhitov,

2005; Nemazee et al., 2006; Meyer-Bahlburg et al., 2007) and

exclude that the humoral response is not influenced by TLR4

signaling by FDCs. Interestingly, a very recent paper has

described the influence of TLR4 signaling in B cells (Hwang

et al., 2009). In that study, the authors reported enhanced migra-

tion and proliferative proprieties of ex vivo LPS pretreated B cells

although without alteration of the secondary IgG response. We

did not observe a restricted access to the GC when inhibiting

TLR4 signaling by FDCs, but rather a functional impairment of

GC function, so we speculate that the role of TLR4 on B cells

and FDCs may be totally different and affect different aspects

of the timing for TLR4 signaling on each population: TLR4

signaling on B cells would influence the migration of B cells

into the microenvironment, impacting on eventual proliferation,

whereas TLR4 signaling on the FDCs alters molecules important

to generate high-affinity, isotype-switched, Ag-specific Abs.

Interestingly, as observedwith DCs, a direct effect of impairing

TLR4 function on FDCs is also an inhibition of their maturation,

observed by a decrease in ICAM-1 expression, the adhesion

molecule involved in their interaction with B cells via LFA-1

(Koopman et al., 1991). We speculated that such a defect in

ICAM-1 expression would alter the GC reaction and addressed

this question by modeling the consequences of a reduced

binding probability of centrocytes to FDCs in silico. We found

in vivo and in silico a reduction in GC B cells, associated with

a decreased humoral response and high-affinity B cell number.

Our simulations suggested that SHM should also be impaired

in TLR4-deficient mice, which was confirmed in vivo. Further-

more, the expression of LTbR in TLR4-deficient FDCs was

changed. The LTa-LTbR axis is required for GC formation (Mat-

sumoto et al., 1996b), SHM, and affinity maturation (Matsumoto

et al., 1996a). In accordance, our results lead us to think that the

LT-a-LTbRaxismay be affected by impaired TLR4 triggering and

that alteration of LTbR expression on FDCs, probably secondary

to loss of FDCmaturation, would accelerate FDC network decay,

simultaneously affecting several parameters of FDC-mediated

GC function.

One other consequence of interfering with FDC maturation is

the impairment of their cytokine production. Indeed, we

observed an alteration of the expression of IL-1b (involved in

GC B cell proliferation) and IL-10 (which drives B cell differentia-

tion toward plasmablasts). The expression of two other cyto-
92 Immunity 33, 84–95, July 23, 2010 ª2010 Elsevier Inc.
kines produced by activated FDCs (Husson et al., 2000), namely

IL-6 (involved in isotype switch [Van et al., 1994]) and IL-15

(which helps GC B cell proliferation [Park et al., 2004]), was

also reduced. Concurrently with the inhibition of expression of

these cytokines by FDCs, the downregulation of proliferation

markers Ki67 and AID (the enzyme involved in SHM) was

observed in the GCB cells, highlighting the possible role of these

cytokines in affecting these parameters. It is, however, hard to

imagine that this small inhibition of AID expression could be

responsible for the observed 50% reduction of SHM. It is, there-

fore, likely that other mechanisms may be involved, such as an

alteration in AID activity, suggested by a decreased number of

mutations in AID hotspots as well as a decrease in the expres-

sion of essential partners of AID, e.g., the protein kinase A alpha

regulatory subunit (PKAr1a) (Basu et al., 2005), or other mole-

cules involved in SHM, like uracyl-DNA glycosylase (UNG)

(Di Noia and Neuberger, 2002) or Rev1 (Nelson et al., 1996).

Impairment of TLR4 signaling in FDCs did not inhibit the

expression of CXCL13, the major FDC-secreted chemokine,

whose regulation was independent of ICAM-1, TLR4, and

LT-a-LTbR. Even though CCL19 and CCL21 have not yet been

reported to be expressed by FDCs, the mRNA of these chemo-

kines appear to be decreased when TLR4 signaling was blocked

or inhibited. This result may be related to the purity of the FDC

preparation (i.e., 90%). In parallel, we observed that the mRNA

expression of RGS-1, amolecule involved in chemokine receptor

desensitization, was reduced by almost 50% in GC B cells from

chimeric mice lacking TLR4 function on FDCs. However, in silico

simulations indicate that only stronger disruptions of chemokine

receptor desensitization will impact on the organization of B cells

and affinity maturation. Thus, FDC TLR4 signaling does not

appear to impact GC B cell migration to a substantial extent.

It is tempting to speculate as to how these alterations in gene

expression, resulting from the impairment of FDC TLR4 function,

contribute to the alteration of GC function. For instance, a

decrease in IL-10 would drive a shift from generating plasma

cells toward memory B cells. Thus, IL-10 would impact on the

Ig titers but leave the number of GC B cells mainly unaffected.

Similarly, according to the simulations, ICAM-1 expression is

not correlated with the fraction of high-affinity cells but induces

an unspecific reduction of the GC B cell population whereas a

50% reduction of the SHM rate does not affect the number of

GC B cells but specifically reduces the fraction of high-affinity

cells. However, the combined effect of ICAM-1 and SHM adds

up to the observed experimental result. Because of the inher-

ently interwoven actors, it is difficult to disentangle their indi-

vidual role and mathematical simulations help in that respect.

On a more general note, our results illustrate that experiments

in biology can take advantage of mathematical modeling. Even

though mathematics cannot claim that a mechanism is neces-

sary, the modeling allows us to state that it is sufficient to identify

specific phenotypes and by this to help design focused and

conclusive research. Not only is this resource friendly and rapid

but it is also ethically appealing in that the number of in vivo

experiments could be significantly decreased by predicting

which parameters were most likely to be relevant. Thus, innova-

tive computer simulations allow a systematic analysis of

complex systems and the deduction of causal relationships

between manipulated parameters and observable effects.
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A potential scenario to explain our observations is to suggest

that as apoptotic bodies arise during a GC reaction, they trigger

activation of FDCs through TLR4. As a consequence, cytokines

would be produced, affecting various downstream events culmi-

nating in the production of high-affinity Ig. IL-1b and IL-15 would

aid in GC B cell proliferation, IL-10 would aid in the generation of

plasmablasts, and IL-6 would enhance Ig isotype switch and

SHM. Our results therefore delineate a concept in which endog-

enous ligands, such as the remnants of dying cells providing

OxPl, as well as heat shock proteins (Wheeler et al., 2009), and

even HMGB-1 would serve an important function for the overall

efficiency of the GC reaction by activating FDCs via TLR4.

The body’s capacity to successfully battle pathogens

depends on raising Abs that have a strong binding capacity

and appropriate Ig backbone. Generating these Abs occurs

spatially and temporally in germinal center reactions. TLR4

senses elements of pathogens and inflammation igniting the

immune system into action. The work presented here shows

that TLR4 activation will induce the onset of germinal center

formation and set up the microenvironment to induce B cells to

undergo SHM and Ig class switch. The TLR4 signaling occurs

not in the germinal center B cell, but rather in the FDC. TLR4

signaling by FDCs shapes their maturation and creates mole-

cules necessary for germinal center output. Iterative cycles of

modeling these components facilitated the investigative

research by directing experiments along certain hypotheses.

Creating pathogen-specific Abs are central to vaccine strategies

and uncontrolled, exaggerated Ab responses are a hallmark of

many autoimmune diseases, thus demonstrating that TLR4

signaling in FDCs sets the stage for new therapeutic strategies

that will apply across many fields of medicine.
EXPERIMENTAL PROCEDURES

Animals

Experiments were performed in accordance with Swiss experimental animal

regulations, with 8-week-old Balb/c (Janvier Laboratories, Le Genest-St-Isle,

France), C3H/HeJ (Jackson Laboratory, Bar Harbor, ME), or C3H/HeN

(Charles River Laboratory, L’Arbresle, France) mice.

Irradiation and Chimera Generation

C3H/HeJ or C3H/HeN mice were lethally irradiated (800 rad), checked for

absence of leukocytes in blood 24 hr later, and intravenously (i.v.) transplanted

with 5 3 106 BM cells from C3H/HeJ or C3H/HeN donor mice. Successful

grafting was determined by flow cytometry of peripheral blood 4 weeks

after transplantation. Immunizations were performed 6–8 weeks after BM

transplant.

Immunization and Treatment

All immunizations were performed subcutaneously behind the neck. For the

primary immunization, a mixture of 100 mg of OVA (Sigma, Saint-Louis, MO)

and 250 mg of LPS (E. coli, strain 0111:B4, Sigma) was injected. Three weeks

later, mice received a booster immunization with 25 mg of OVA in PBS. To

assay low- and high-affinity Ab production, Balb/c mice were immunized

with a mixture of 20 mg of NP-OVA (Biosearch Technologies; Novato, CA)

and 150 mg of LPS or primed and boosted at day 10 with 5 mg of NP-OVA in

PBS. Balb/c mice were administered daily intraperitoneal (i.p.) doses of

100 mg of the blocking, nondepleting anti-mouse TLR4 mAb, 5E3, generated

in our laboratory (Daubeuf et al., 2007) or with an isotype control starting

3 days after the primary immunization. To measure the SHM rate, chimeric

C3H mice were immunized with a mixture of 20 mg of NP-OVA and 150 mg of

LPS, then boosted after 4 weeks with 5 mg of NP-OVA in PBS.
ELISA

96-well plates (NUNC, Rochester, NY) were coated overnight at 4�C with

NP7-BSA or NP23-BSA (Biosearch Technologies) (10 mg/ml) for the affinity

ELISAs or with OVA (2 mg/ml) for regular ELISAs. The whole protocol is detailed

in the Supplemental Experimental Procedures.
Histology

LN samples were prepared, sectioned, and immunostained as previously

described (Furtado et al., 2007) and as detailed in the Supplemental

Experimental Procedures.
Flow Cytometry

Cells from LNs were obtained by collagenase/DNase digestion, followed by

1 hr incubation at 37�C to remove adherent macrophages. Directly conjugated

Abs were incubated at 4�C in FACS buffer (PBS/BSA 1%) for 1 hr and indirect

labeling was followed by a 30 min incubation time via secondary conjugated

Abs. To exclude dead cells, propidium iodine (PI) was added before the

analysis performed on the FACSCalibur flow cytometer (BD).
Sorting by Flow Cytometry

After enzyme digestion and adherence step procedure, as detailed above to

isolate cells from immunized LNs, FDCs or GC B cells were further purified

by cell sorting. The isolated cells were colabeled with a cocktail for (CD21/

35) and FDC-M2 to sort the FDC population, or PNA, CD19, and Fas to sort

the GC B cells. Sorting was performed with the FACS Vantage (BD) and cells

were collected in RNAlater (Ambion, Austin, TX). Cell sorting containing a purity

higher than 90% were kept for RNA extraction.
RNA Extraction and cDNA Generation

RNA from FDCs was extracted with the RNAqueous-Micro Kit (Ambion)

according to the manufacturer’s instructions. 500 ng of RNA was reverse

transcribed with the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA).
Quantitative PCR

Q-PCR was conducted as previously described (Furtado et al., 2007) and as

detailed in the Supplemental Experimental Procedures.
Somatic Hypermutation

Because the anti-NP response is known to predominantly use the VH186.2

gene (Jacob et al., 1991; Rajewsky et al., 1987), this heavy V gene usage

was analyzed to assess SHM. GC B cells were sorted from LNs of the

C3H chimerae, 10 days after the second immunization. In parallel, naive

CD19+/IgD+ B cells from LNs of nonimmunized littermate chimeras were

sorted to serve as references, because the germline sequence of the

VH186.2 gene in C3H strain is unknown. Cell sorting, RNA isolation, cDNA

synthesis, amplification of the VH186.2 gene, and cloning of the PCR products

are performed according to the procedure detailed in the Supplemental

Experimental Procedures.
Mathematical Modeling

Computer simulations were performed covering the full time course of a GC

reaction at the level of individual cells that migrate and interact in the three-

dimensional spatially resolved follicle. The used simulation is a hybrid agent-

based model that was developed and validated since 2001 (Meyer-Hermann

et al., 2001) and has proven to have predictive power in various circumstances

(Meyer-Hermann et al., 2009) and detailed in the Supplemental Experimental

Procedures.
Statistics

To evaluate statistical differences, the unpaired two-tailed Student’s t or

two-way Anova tests were applied as indicated. p values less than 0.05

were considered statistically significant and the following designation used:

*p < 0.05; **p < 0.01; and ***p < 0.001.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at doi:10.1016/
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