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The continuity and uniqueness properties of optimal estimators with respect to
data are considered for different regularizations. It is found that there is a weak
stability for optimal estimators as set-valued mappings under a weak regularization.
For stronger regularization results are obtained that give stability in stronger topolo-
gies and the finiteness of the set of optimal estimators. Finally, we give conditions
that imply uniqueness of optimal estimators and Lipschitz continuity with respect
to data. © 1995 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

The dependence of solutions of identification problems with respect to
perturbations of the data is studied in this paper. Of particular interest
is the behavior of solutions to so-called regularized output least squares
estimation problems. To fix ideas, we direct our attention to the following
well-studied model. Let {2 be a bounded open domain in R” with a Lipschitz
boundary I" over which is posed the elliptic boundary value problem

=V-(@aVu)=f in{}

u=20 onl.

(1.1)

The so-called weak formulation of (1.1) seeks a function u € W}3(Q)
such that

LlaVu~V¢pdx=(f,<p) 1.1y

for all ¢ € W,?(Q}). We assume unless specified otherwise that
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fe w1y 1.2)
and that
a€ L*(Q) (1.3)
with
O<up=asuy a.e. inf}, (1.4)

where u, and u, are constants. In general, we suppress the dependence of
the function spaces on () and use | to denote the L*(Q2)-norm, ||| to
denote the W*?(Q))-norm for k = —1, 2, v, etc. We note that

vl = (f, weto ae)

is a norm on W}? because of Poincaré’s inequality

lell = il Ve

which holds for all ¢ € W{? where «, is a positive constant independent
of ¢. For ¢ € W22 we also will use the inequality

el = il ellwe2
which holds for } C R", n = 1, 2, 3, and with «; a positive constant that
is independent of ¢ |2, 17].

In applications [21] it often occurs that the coefficient a is unknown. The
data available to deduce a are frequently only available as measurements
z of u. The problem then is to construct an estimate of the coefficient a
from the data z. This problem has been studied extensively in the literature
[5-7, 9-13, 18, 20, 21] using many different approaches. For uniqueness
and continuity we refer the reader to [5] but mention the following. In [18],
Eq. (1.1) is treated as a first-order hyperbolic equation in the unknown
coefficient a. Continuous dependence and uniqueness results of a are
proved. In this and much of the work it is assumed that there are sufficient
data to allow reliable evaluation of functions and their derivatives. Alterna-
tively, it is often assumed in least square approaches that the data is available
only as a function in L2 In fact, in many applications the first assumption
is too strong while the second is weaker than is actually the case. Neverthe-
less, it is known [6] that even with an abundance of data, in general, the
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estimation of the coefficient 4 is an ill-posed problem. However, we mention
[12] in which sufficiently strong conditions are imposed that imply there is
a unique solution.

In most applications data are not available in great quantity. For situa-
tions in which data are sparse the regularized output least squares method
provides a versatile approach to gain information about a. The regularized
output least squares method is formulated as a minimization problem to
find the coefficient 2 minimizing a fit-to-data functional given by

J(a) = |Cu(a) — z|Z + BN(a) (1.5)

for 8 > (O over an admissible set (J,,. Here Z is an observation space satis-
fying

Z is a separable Hilbert space. (1.6)

The data z belong to Z. The state w(a) associated with a coefficient a is
observed by means of a linear mapping C from the state space into Z. The
regularized output least squares estimation problem is thus formulated as

(E.8) Find ay € Q.; C Q such that J(ay) = inf{/(a): a € Q..}.

It is well known that, by suitably selecting the regularization term SN(a),
the behavior of the problem may be improved at the expense of smoothing
[13,21]. The purpose of this study is to investigate the continuity properties
of the solution set of (E.) with respect to perturbations of the data z with
relation to the regularization. As we shall discuss later, this work is related
to that in [7, 20] which is based on the stability results of [3] from optimiza-
tion theory. However, because of property (B) discussed below, we obtain
a stronger result for regularizations of the form (1.10). For the weak case
of (1.9) we obtain set-valued continuity properties in weak topologies that
often arise in optimization problems (cf. [4]).

In the remainder of this section, we introduce necessary notations and
assumptions, and indicate the existence of a solution to (E.B). We also
introduce in Definition 1.7 the notion of stability with respect to the data
for a problem (E.S)(z) that we use. In Section 2 we obtain results for weak
regularizations in which upper semicontinuity of the set-valued mapping
z > ((z) is established and thereby obtain a stability result for the set
Q(z) of solutions of (E.3)(z) with respect to a metric induced by the weak
Q topology. In Section 3 we examine the consequences of including a
stronger regularizing term. We obtain the upper semicontinuity of the set-
valued mapping z — Q(z) or certain of its subsets and establish conditions
that imply the stability in the sense of Definition 1.7 for the metric associated
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with the norm topology. Also, conditions are obtained implying there are
at most finitely many solutions to (E.8). These conditions are justified by
the nondegenerate nature of the physical problem. Finally, in Section 4 we
consider the set of stationary points of (E.8) under the condition that the
constraints are inactive (again justified by the physical nondegeneracy of
the problem). Sufficient conditions for uniqueness are obtained that are
related to the sufficiency conditions from optimization theory. These condi-
tions should be useful in the design and implementation of experiments.
In formulating our problems we delineate the following properties for

0. Qu4, and N().

(Q1) Q is a Hilbert space that embeds compactly in L2
The set of admissible coefficients Q,, satisfies

(Q2) Q.. C Q N {a € L™ a satisfies (1.4)}.
To prove existence, we stipulate the following assumptions

(Q3) QO = {a € Q.4: N(a) = K} is bounded in Q for any K > 0.

(N) aw> N(a)isanonnegative functional that is lower semicontinuous
with respect to the weak topology on Q.

The following properties involving the observation space Z and the obser-
vation operator C are useful.

(A) C is a continuous linear mapping from W}? into Z, and

(B) z € Z,C Z where Z, is a Hilbert space that embeds compactly
into Z.

Remark 1.1. Property (B) merits discussion. Indeed, in many treatments
it is assumed that, for example, Z = L? and the observations are elements
in L. However, in applications the data z are obtained by means of a finite,
say N, set of measurements. If one wishes to take Z to be a function space,
these data are then interpolated in some manner to obtain z as a function.
The result, although certainly in Z, is, in fact, in a finite-dimensional sub-
space Z, of Z. On the other hand, if one does not interpolate the data
reside in Z = RY and Z, = Z. Clearly, in both cases (B) is satisfied.

It is well known that Eq. (1.1) is associated with the continuous bilinear
form on W}~

(e, t/f;a)=anqu'Vd/dx

that may be associated with a continuous linear operator A : W% — W12,
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If we denote by A, the linear operators associated with coefficient a, €
Q... the following two results are true.

LEMMA 1.2, If a; — a in L' with a,, satisfying (1.4), then
|lAwu — Aull-, —0

as k — o for every u € Wj2.

Lemma 1.3, Let {Axi-, be a sequence of continuous linear operators
.
from W()'z into W2 such that for every ¢ € W(l)'z

Ak, ¢ — As,¢

|1 —0

as ky, kx — = and there is a positive constant p, for which

(Are, @) Z pollVel? (1.7)

for all k. Then there exists a continuous linear operator A from W}? into
W12 such that Ay¢ — A in W2 for every ¢ € W§? and that satisfies
inequality (1.7). If f € W12, then for each k there exists a unique u; €
Wi and there exists a unique u € W}* such that Ay, = [ and Au = f,
respectively. Moreover, u;, — u in Wl? as k — .

We refer the reader to [9] for proofs.

Remark 1.4. Since the measure of {1 is finite, we note that convergence
in L? implies convergence in L'.

ProprosITION 1.5.  Under (Q1) and (Q2), if {a,}i-| is a sequence in Q.4
such that a; — a weakly in Q, then a € Q,, and u(a,) — u(a) in W}2,

Proof. Since a, — a weakly in @, it follows that there exists a subse-
quence {ak’},-i, such that a; — a in L? and a;, — a almost everywhere in
Q. Thus, a € Q.. In fact, by a subsequence of a subsequence argument,
we see that @, — a in L? implies the convergence of the sequence
{u(ai)¥i=1 to u(a) in W§? from Lemmas 1.2, 1.3, and Remark 1.4. Hence,
the mapping a — u(a) is continuous from Q,, with the weak Q topology
to W} with the norm topology. |

ProrosiTiON 1.6.  Under assumptions (Q1)-(Q3), (N), and (A), there
exists a solution to (E.B) for any B > 0.

Proof. We set
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d = inf{J(a) :a € Q.4},
where d = 0 from (N). Let £ > 0 and consider the set
O={a€ Qu:d+e=la)
It is clear that
d = inf{J(a):a € Q}. (1.8)
Since 8 > 0, we see that fora € Q
e +dz=J(a) Z BN(a);
O is contained in a closed ball By in Q. That Q is closed in the weak Q
topology follows from (Q3) and (N). But Q is reflexive so B, is weakly
compact. Hence, (J must be compact in the weak Q topology.
The mapping a — [[Cu(a) ~ z|}% is continuous from the weak Q topology
on Q to R by Proposition 1.5 and assumption (A). Hence, from assumption
(N), it follows that the mapping a — J(a) is lower semicontinuous with

respect to the weak Q topology on Q into R. Therefore, we see that

d+e=limJ(a,) = J(a)

and ¢ € Q. Since the mapping a — J(a) is lower semicontinuous with
respect to the weak Q topology and Q is compact in this topology, it follows
that the functional J(-) assumes the value d on Q. |

Of interest are the cases in which the function N(-) is the seminorm

N(a) = [ali, (1.9)

where
[eli = fn Vel dx
with |[V¢| = (Vo V)2 and Q = W!? and the seminorm

N(a) = [al} (1.10)(0)

where
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(ol = [l + [, 2 () dx
ij=1
and QO = W?2 We also use the notation

[e: ¢l = | Vo Vipdx

and

n

o, ¢ = [e. o)1 + f 0 { 2 (@) l/f“.\-,)} dx.

ij=1
For O = W?? we also consider
N(a) = |lal5. (1.10)(ii)

Since W< embeds in C%cl/(Q)) for Q C R", n = 2, 3, we may weaken the
constraints on the admissible set by taking

Qu={a€Q:a=p,>0inQ}. (1.11)

For the most part results for (1.10)(i) and (i1} are much the same. However,
there are some important differences that we shall note in Sections 3 and 4.

We view the regularization embodied by the inclusion of a term of the
form (1.9) as a basic case in the sense that W'? seems to be the lowest
integer order Sobolev space that is a Hilbert space in which existence of
a solution to (E.B) holds. Further, there apparently is no increase in regular-
ity of the optimal estimator due to regularization even for those optimal
estimators strictly satisfying the constraints. For (1.10)(i) and (1.10)(ii) with
Q C R" and n = 2, 3, W?? is the lowest order integer Sobolev space
that is a Hilbert space embedding compactly into C°cl(€2)). Hence, the
inequalities in the definition of Q,, hold pointwise in £} and not just almost
everywhere. This embedding allows us to weaken the constraints on Q,,
as we indicated above. Accordingly, estimation problems with space dimen-
sion 2 or 3 are often formulated in this space.

To consider the continuous dependence of (E.8) on z, we introduce
notation to emphasize the dependence of our problems on the data z.

(E.B)(z) Find a, € Q,, such that J(a., z) = inf{J(a, 2): a € Q.4}

where
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J(a, z) = [[Cu(a) - z| + BN(a)
and
Qu={a€Q:uw=a=pu, ae inl}
Although above we have shown that this problem has a solution under the
assumptions (Q1)—(Q3), (A), and (N), there is no guarantee that there is
a unique solution. Hence, we introduce the notation

Q(z) = {a: ais a solution to E.B)(z)}.

In [10] problems (E.3) under strong regularization assumptions and under
the assumption

there is a unique @ € Q4 such that (@) = 7 (1.12)

demonstrate that for every € > ( there exists & > 0 such that for § < §,
and for B sufficiently small (determined by §)

lz = 2lz=6=a, —allp=e.

In [7, 20} under strong regulation but without assumption (1.12), it is shown
that while there may be multiple solutions to an estimation problem, for
certain 8 there is a number R such that if there is a local minimizer a, of
J(a, z) within distance R of a, , then

a: — a flo = Kllz — z[#*.

These results on the stability of (E.8)(z) depend on results of Alt [3} in
minimization theory that rely on sufficiency conditions for optimality [16,
22]. For the case (E.8) with 8 = 0, that is, without the benefit of regulariza-
tion, these conditions can be verified for certain examples [20]. These results
do not depend on the data being in the attainable set to the uniqueness of
the optimal solution.

For this paper we use the following as our definition of stability with
respect to data. It should be noted that this definition applies to solutions
of (E.8)(z) and not just local minimizers as above.

DeriNiTION 1.7, The problem (E.B)(z) is stable at z, € Z, C Z if there
exists a monotone increasing function p:R — R with p(0) = 0 and metrics
do(-, -) on Q,4 and dy(-. -) on Z, such that if a, is a solution of (E.8)(z),
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that is, a; € Q(z) with z € Z,, then there is a solution a, of (E.8)(z,) with
the property that

do(a:, az“) = p(do(z, 20))-

2. ContiNnuITY RESULTS IN WEAK TOPOLOGIES

In this section we investigate the continuity properties of the set-valued
mapping z — Q(z). It is found that with assumption (B), in addition to
assumptions (Q1)—(Q3), (N), and (A) that are needed for existence, the
set-valued mapping z — Q(z) is upper semicontinuous from %, defined
below with weak Z, topology to Q,, with the weak @ topology. To this
end, we recall the following definition [4].

DermniTioN 2.1, Let X and Y be Hausdorff topological spaces and let
x — F(x) be a set-valued mapping form X into subsets of Y. The mapping
F is said to be upper semicontinuous at x, if for every neighborhood N of
F(xp) there exists a neighborhood M of x, such that F(M) C N.

For our application we let Z, be a subspace of Z satisfying assumption
(B), and let Y be Q,, with the weak Q topology. Let & belong to Q,, and
let i be a positive number. Consider %, in Z, defined by

Fo=1{z € Zyliz — zllz, = }.

We take X = %, with the weak Z, topology. From the compact embedding
of Z, into Z there exists a positive number k, such that for any z € Z,

Izl = k()“Z“z“-
Since B > 0, it follows that
J(@,z) 2 BN(a,)
and for z € %,
2(ICu(@)|Z + k3(llzollz, + m)?) + BN(a) = BN(a.). 2.1)

Define 0, = U.es, O(z). We have the following.
LEMMA 2.2, Under assumptions (Q1)-(Q3), (N), (A), and (B), the map-
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ping z — O(z2) is a set-valued mapping such that for each z € % the set
Q(z) is compact in the weak Q topology. Further, the set Q, is compact in
the weak Q topology.

Proof. For z € %, it follows from (2.1) that Q(z) is norm bounded.
Further, Q,, C Q.4 is bounded in Q. Now it follows that if Q,, is weakly
closed and weakly sequentially compact, then (, is weakly compact [8, 19].
We show that (), is sequentially compact since the arguments demonstrating
that the set 9, is closed are similar. Moreover, the arguments for Q(z)
follow in an obvious manner.

Let {a,}7-, be a sequence in Q,. Then there exists a sequence {z,};-,
belonging to &, such that a;, € Q(z,) for cach £. Now from (2.1) and since

®

Zx € %, it follows that there exist subsequences {a; }2, and {z, }7=; such
that a;, — a weakly in Q and z;, — z strongly in Z from assumption (B).
Since O embeds compactly into 1> from (Q1), there is a subsequence
{ai }i=\ such that

a, — ain L? and almost everywhere in €.
Hence, a belongs to 0,; and from Proposition 1.5
u(ay ) — u(a) in W)=,

From assumptions (N), (A), and (B) with

Ja, 2i) = llear,) — 2o |z + BN(ax,)
we see that

lim J(ay,, z4,) = J(a, 2).

Furthermore, if # € Q,, is an arbitrary element, then from (B)

J(@ z) =limJ(a, z;) = lim J(ag, 2y ),

and we conclude that a € Q(z) € 0,. |

Lemma 2.3, Under assumptions (Q1)-(Q3), (N), (A), and (B), the map-
ping z —> Q(2) is a closed mapping of ¥, with the weak Z, topology into
0, C Q.4 with the weak Q topology.

Proof. 'The graph of Q is given by
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G(Q) ={(z,a):a € Q(2)}

so that G(Q) C %, X @,. To show that Q is closed, we show that G(Q)
is closed in %, X @, wiith the weak topology inherited from Z, and Q.
Since %, X Q~,, is bounded in Z; X (), it is a metric space with respect to
the weak topology. Hence, to show that G(Q) is closed it suffices to show
that the limit points of sequences in G(Q) are in G(Q). Let {(z4, ax)}i-1 be
a sequence converging weakly to (z, a) in Z, X X. In this case from the
compactness of the embeddings of Z;, into Z and Q into L?, there exists a
subsequence (zx,. 4;,) such that

a;, — ain L? and almost everywhere in Q.

and

=2 inZ.

The arguments are now essentially the same as in the previous lemma. |

Since z — Q(z) is a closed mapping from Z, to a compact space 0, C
Q.4 we have the following [4, p. 42].

THEOREM 2.4.  Under assumptions (Q1)-(Q3), (N), (A), and (B), the
mapping 7 — Q(z) of ¥, with its weak Z, topology into Q, C Q,, with the
weak Q topology is upper semicontinuous.

CoROLLARY 2.5. Let assumptions (Q1)-(Q3), (N), (A), and (B) hold.
Let dz (-, ) and dy(-, -) be the metrics on %, and Q,. respectively, with the
weak topologies. Then given € > 0 there exists a & > 0 with the property
that if dz(z, 20) < & there is az, € Q(zo) such that dy(a,, a,)) < e.

Proof. Since ((zo) is compact in the weak topology, it is totally
bounded. Hence, given & > 0, Q(zo) may be covered by finitely many balls
Q; ={(a: dyla, a.)) < €} where a; € Q(zo) for i = 1 ... n. The set N =
Ui-» Q; is a neighborhood of Q(z,). From the upper semicontinuity there
exists a neighborhood M of z; such that Q(M) C N. Thus, there is a § >
0 such that {z: dz(z, zo) < 8} N &, is contained in the neighborhood M.
The result now follows. |

COROLLARY 2.6.  Under the assumptions above let dz (-, -} and do(-, *)
be the metrics on %4 and Q,, respectively, with the weak topologies. There
is a number 8, and a monotone increasing function g: [0, 8,) — R’ for which
€(0) = O such that for any a, € Q(z) where z € ¥, there is a, € Q(z0)
such that
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dQ(azs az(,) = S(dﬂ”(z’ Z[l))'

Remark 2.7. The above results hold for example taking N(a) to be the
seminorm in (1.9) with Z = L? and Z, = W2

Remark 2.8. We may take N(a) to be of the form in (1.10)(i) or (1.10)(it)
with Z = Lz and Z() = W(I)'z.

Remark 2.9. 1If we set
J(a) = [V (u(a) — 2)|% + BN(a)

then the results follow for Z = W§? and Z, = W{2 N W22,

3. CoNTINUITY PROPERTIES OF SUBSETS OF (J(Z) IN STRONGER
ToOPOLOGIES

In the previous section we saw that under assumption (B) the set-valued
mapping z — Q(z) of ¥, into 0, is upper semicontinuous in the weak
topology. In this section we consider set-valued mappings of the form z
Q(z) where Q(z) C Q(z). Our interest here is to obtain conditions implying
this mapping is upper semicontinuous from %, with weak Z; topology to
0, equipped with the metric that is induced by the norm on Q. These
results allow us to obtain stronger stability results than those based only
on optimizatoin theory. They are, in fact, a consequence of the regularity
properties the optimal estimators enjoy for problems regularized by func-
tionals of the form (1.10)(i) and (ii). We also study some of the properties
of certain subsets O(z) of Q(z). For example, we obtain conditions implying
that there are finitely many elements in Q(z). This property is significant
for the application of algorithms such as simulated annealing [1].

Since @ = W22 embeds compactly into C(c/(Q)) for R” with n = 2 or
3, we take O = W?2? with

Qu={a€Q:puzazu>0} 3.1)()
and
Qua={a€ Q:az uy>0} (3.1)(i1)

for (1.10)(ii).
We note that for ¢ € Q,,, the problem
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-V-(aVw)=¢g in {2
w=20 onl

with I Lipschitz and g € L” satisfies the estimate

Wil = Clao. flall2)lg] (32)

(see [2]) where C(uy. |lall,) indicates a positive constant depending only on
the lower bound u, and the W?2-norm of the coefficient a.

In applications, observation functions are often obtained by the interpola-
tion of pointwise measurements using, for example, tensor products of
linear or cubic splines. We assume then that

Z=1? and Zy = W2 (3.3)()
and
Z =W} and Zy= Wi N w22 (3.3)(i)

with C = identity. In the first case

J(a) = |lu(a) - 2| + Blal3. (3.4)(H)
or
J(a) = |u(a) — 2| + Bllall3 (3.4)(ii)
and in the second
J(a) = |V(u(a) — 2)IP + Bla)3. (3.4)(iii)
Recall that
Qu={a€Q:u Zazpu,>0) (3.5)()
and
Qu={a€ Q:azu,>0} (3.5)(ii)

and the estimation problem is given as the following minimization prob-
lem.
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Find a, € Q.4 such that

. (3.6)
J(ay, z) = inf{J(a, 2):a € Q..
Here we again may define the mapping of Z, into the collection of subsets
Of Qad by

7> Q(z) = {a: a solves (3.6) for data z}.

By using the regularity of the solution of (3.6), we obtain conditions
implying upper semicontinuity of the set-valued mapping z — Q(z) from
Z, with its weak topology to Q,, with the strong Q topology. Further, by
applying the results from optimization, we can determine conditions under
which Q(z) or certain subsets O(z) have at most finitely many elements.
Moreover, these subsets are stable with respect to the perturbation of data
in the sense defined in Definition 1.1. We focus our analysis on (3.6) with
(3.4)(1) and (3.5)(i), and we will point out the consequences of having N(a)
be a norm.

We utilize regularity properties of solutions of (3.6) (cf. [13, 21]) to
demonstrate compactness of Q(z). Our approach is to use the Kuhn-Tucker
Theorem to obtain an Euler-Lagrange equation giving a necessary condi-
tion for the solution of (3.6). To this end, set Y = W*2 X W*? for v € (I,
2] and define the function

G:Q—Y

by

Gla) - [“"“ e ]

ia— w

where i represents the embedding mapping from W?? into W*2 We note
that Y is a Hilbert space and has a positive cone with a nonempty interior.
It is obvious that if a € Q,,, then a is a regular point for the constraint
G(a) = 0 in the sense of [15] (see also [16, 22]). That is, for any a € Q4
there is an A € Q such that

Mo —ia—ih
G(a) + DG(a) (k) = [ia—y,, +ih] < 0.

Clearly, choosing # = —a + (u, + wo)/2 satisfies the condition.
The Kuhn-Tucker Theorem [15] implies the following.
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Prorosimion 3.1, There exists a Lagrange multiplier A = (A, Ay) belong-

ing to Y* = (W*2)* X (W*2)* such that A = 0 and such that every solution
ay of (3.6) satisfies

(G(ap), ) = 0, 3.7

and is a stationary point of the Lagranian associated with X. That is, if a, is
a solution of (3.6), then

DL(ay, A) (h) =0 (3.8)

for every h € Q where
L(ag, Ay = J(ay) + (G(ap), A). 3.9
Remark 3.2. Since W?? is dense in W*?, it follows from (3.8) and the

regular point condition that each solution a, of (3.6) has a unique La-
grange multiplier.

Remark 33. The Lagrange multipliers A, i = 0, 1, belong to (W"?)*
the dual space of W*2, Since W'? is a closed subspace of W*2, there exist
elements Ay, A, € W2, the dual space of W2, such that (A;, k) = (A,, h),
with i = 0, 1, for all A € W2

The derivatives of J can easily be seen to be given by
DJ{a) (h) = 2(V(u(a) — 2),Vuv) +2B[a, h]; (3.10)
and
D (a) (h,h) = 2(V(u(a) — 2),Vw) + 2|Vu|P + 28 [K]3. (3.11)
From (3.8), (3.9), and (3.10), we have

(V(u(ay) — 2). Vo) + Blag, h]: — (Ap, Y + (A, h) =0 (3.12)

for all h € W§°. Recalling the weak formulation of (1.1)', we have with
¢ =u

o ||V u” = “f”ﬂ (3.13)

The Fréchet derivative of u(ay), v = Du(ay) (h), must satisfy
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fnaVv-V<pdx=—fﬂhVu(a)W’cpdx (3.14)

for any ¢ € W§? (cf. [13]). Further, the second derivative is given by w =
D?u(ay) (h, h) and satisfies the equation

j“an-wdx=—2thVu-V<pdx (3.15)

forevery ¢ € W{? where v = Du(ay) (h) satisfies Eq. (3.14). Using inequality
(3.13), we may obtain the following estimates on the solutions v and w of
(3.14) and (3.15), respectively. Thus, we find the estimates
IV oll = w0 o Al 114 (3.16)

and

IV wlf =2 «F g™ HlE I £1L-s- (3.17)

Introduce the adjoint equation
=V (aVp)=-A(u(a) ~ ) in

with boundary conditions

p=0 onT.

The weak formulation is given by
fﬂan'V(pdx=f“V(U(an) —2)-V pdx (3.18)

for every ¢ € Wi Setting ¢ = p in Eq. (3.14) and ¢ = v in Eq. (3.18),
we have

fn V(u(ay) - 2)- Vv dx = —fuh YV u(ay) -V pdx. (3.19)

By substitution of Eq. (3.19) into Eq. (3.12), we see that any optimal
estimator aj is a solution of a variational formulation of a Neumann bound-
ary value problem. Hence, we may use Eq. (3.12) and interpolation theory
to deduce smoothness of the optimal estimators [2, 14]. In this way we
obtain the following result (cf. [13, 21]).
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ProprosITION 3.4,  Let Q have a C* boundary. Then any solution a, of
the minimization problem (3.6) belongs to W**2 for v > 1. Further, the
following estimate holds

laolls—. = C(B. f. z. o) + Ally-,

where C(B, f, z, wo) is a positive constant depending on the indicated param-
eters.

Remark 3.5. The same result holds for the functional (3.4)(i). If a solu-
tion a, of (3.6) satisfies w; > ay, > w,, then by (3.7) A = 0. It follows that
in the cases of (3.6)(i) and (3.4)(ii) a, € W*2 while the regularity results
for (3.4)(iii) are unchanged.

The above regularity result holds for any solution of (3.6). The only
restriction is the smoothness of the boundary of 2 that is necessary in order
to apply regularity theory for elliptic operators. Denote the set of Lagrange
multiplers for the minimization problem (2.6) by A. The embedding
W42 — W22 for v € (1, 2) is compact. Hence, if the set A is bounded in
Y*, then we may deduce compactness of Q(z). We have the following from
Proposition 3.4.

THEOREM 3.6, Let Q) have a C* boundary and let the set A of Lagrange
multiplers of (3.6) be bounded in Y*. Then the set Q(z) is compact in Q.

Proof. 1t suffices to show that Q(z) is closed in Q and sequentially
compact. We show that Q(z) is closed since sequential compactness follows
from Proposition 3.4 and arguments similar to those of the closedness of
the set Q(z). To this end, let {a,};-; be a sequence of solutions of (3.6)
such that @, — ap in Q as kK — «. Then it follows from Lemmas 1.1 and
1.2 that the corresponding sequence of solution {4 }i-, to (1.1)’ converges
in V to u = u(ay). Also, since convergence in Q implies convergence in
CYcl(Q)), it follows that a, € Q,,. Hence, for

J(a,2) =d =inf{J(a,2):a € Qua},
we see that
d = J(aka Z) - J(a()w Z)

as k — o, Thus, J(ay, z) = d and ay € Q(z). |

We consider the set
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0(z) = {a € Q(2): p > a(x) > uy for all x € cl(Q)}

and denote the condition
(PND) O(z) # Q.

If a € O(z), then from (3.7) the corresponding Lagrange multiplier is
zero. Hence, if (PND) holds, there are solutions in Q(z) that have a zero
Lagrange multiplier. Moreover, from Remark 3.5 members of O(z) belong
to W2 for v € (2, 4) and thus are continuous in ¢/(Q). It follows that for
sufficiently large N the set

OM2)={a € O(2): s — LINZ a = o + 1/Nin cl(2)}

is nonempty. Set O(z) = Qa(z). It is easy to see that O(z) is compact in Q.

Remark 3.7. The condition (PND) may be justified on physical grounds
in that it embodies an assumption that the problem is nondegenerate. That
is, the ‘“‘actual coefficient 4 (which may not even belong to the space Q)
is bounded away from zero. Indeed, the specification of u, is the quantifica-
tion of the physical nondegeneracy of the problem for the purpose of its
mathematical formulation. As much, it may be too large. It seems reason-
able that if the lower bound g, is reduced sufficiently, then there are
solutions to the estimation problem that strictly satisfy the inequalities. If
this were not the case, then no matter how small u, there would exist
solutions of (3.6) assuming the value u,. This would contradict the nonde-
generacy of the physical system. If w, does reflect some knowledge of the
physical properties of the system, reducing w, only enlarges the admissible
set and thus does not exclude the physically meaningful parameters. For
example, in the case of porous media, nondegeneracy implies that there is
nonzero permeability everywhere and the material contains no imperme-
able blocks. In fact, if a block were impermeable, we could simply exclude
it from the domain (1.

We now determine conditions under which the mapping z — Q(z) (or
to subsets of Q(z)) is upper semicontinuous as a set-valued mapping from
the weak topology of Z, into Q. To this end let n > 0 and set

gzU = {Z € Z(): IlZ - Z()”z“ = T)}

ProposITION 3.8.  If the Lagrange multipliers A, for (3.6) are uniformly
bounded in (W*2)* with respect to z € ¥, then the set
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2,= J 2@
€,
is a bounded set in W*? for v € (2, 4). Hence, Q, is compact in W?2.

Proof. 'This follows from the regularity of the optimal estimators and
the estimate of Proposition 3.4. |

Proposirion 3.9.  The set-valued mapping z — Q(z) from %, with the
weak Z, topology to Q, with the metric induced by the Q-norm is a
closed mapping.

Proof. Let (z, a;,) be a sequence in Z, X Q such that z; — z weakly
in Z, and @, — a in Q. Then, it is clear that u(a, ) — u(a) in W{? and
a € Q,4. Thus, it follows that

J(a;, ) —>J(a, 2)
as k — . If a € Q,,1s arbitrary, then it also follows that
J(a, z) = J(a,,, 2x)
and
J(a, z;) — J(a, 2)
as k — . Hence, we see that
J(a, z) 2 J(a, 2)

for an arbitrary a € Q,,. Therefore, a € Q(z). 1
In conclusion we have the following result.

THEOREM 3.10. Let the set of Lagrange multipliers
A(n) = {r: z € %o}
be bounded in (W*)*, v € (2, 4). Then the mapping z — Q(z) from X,

with the weak Z, topology into Q, is upper semicontinuous.

A sufficient condition for the Lagrange multipliers to be uniformly
bounded is that (PND) be satisfied uniformly with respect to z € %,,.

(UPND) For every z € ¥,, the set
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0(z) = {a € Q(2): 1 > a(x) > p, for all x € c€(Q)} = .

If a € O(z), then the corresponding Lagrange multiplier is zero. Hence,
under assumption (UPND), for each z € ¥ there are solutions in Q(z)
that have a zero Lagrange multiplier. Thus, under (UPND) for each z €
¥, there is a nonempty subset of Q(z) with zero Lagrange multiplier.
Moreover, from Remark 3.5 members of Q(z) belong to W*2 and thus are
continuous in c€({}). Hence, for sufficiently large N, z € %, the set

Ov(z)={a€ Q@) — l1INZaz uy+ 1/Nincl(Q)} # &

for N = N,. Set Q(z) = QN (2). It is easy to see that Q(z) is compact in
Q and Q, = U.es, Q(z) is compact as well. From the above we have
the following.

CoroLLARY 3.11.  Let (UPND) hold. Then the mapping z > Q(2) is
upper semicontinuous from %, with the weak Z, topology to Q" C Q. with
the strong Q topology.

Having determined conditions under which Q(z) and certain of its subsets
are compact and the mapping z — Q(z) is upper semicontinuous, we now
obtain a stability result. As a side observation we also determine conditions
such that there are, in fact, finitely many elements in Q(z) or Q(z). We
emphasize (3.4)(i) and (3.4)(iii) with (3.5)(i) as an admissible set since the
case (3.4)(ii) and (3.5)(ii) is straightforward. We begin by emphasizing the
natural condition (if we are to observe anything at all the forcing term
must be nonzero).

(C)y feE W 2and f#0.

Define the functional for i = 0, 1
M(h) = HUH%

where v is the solution of Eq. (3.14).

Lemma 3.12.  If f satisfies condition (C), then the mapping h — M,(h)
for i =0, 1is a continuous function on W*? and has the property that if
h = constant, then M,(h) = 0.

Proof. The continuity follows from the continuity properties of the
mapping h — v defined by means of Eq. (3.14) and from the estimate
(3.16). Further, from (3.14) we observe that

[, avv-Vudc=~[ nval ax.
Q 0
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Now if M;(h) = 0 fori = 0 or 1, it follows from Poincaré’s inequality that
v = 0 almost everywhere in ). Hence, from the above, we see that

jn h|Vul? dx = 0.

Now |Vu| > 0 on a set of positive measure. Otherwise, Eq. (1.1)’ implies
that (f, ¢) = 0 for every ¢ € W}, contradicting condition (C). We conclude
that if 4 is a constant, then # = 0. |

Under condition (C) the following holds (cf. [17, p. 27]).
CoroLLARY 3.13.  Let (C) hold. The functional defined by i = 0, 1

h— (Mi(h) + [h]})'?

is equivalent to the W2-norm ||h|,. That is, there exist positive constants ¢,
and ¢, such that

cdlhllz = (Mi(h) + [h)3)'"* = ci|lAl2.

We now introduce the condition

(D) V,LL?)C() - ZR()K%HU([I) - Z”,‘anfl >0fori=0or 1, where Ko = Kp
ifi =0and &k, = 1ifi = 1, and where v = min{g, 1}.

Remark 3.14. Condition (D) is a condition on how well the data and
the model fit, the size of [[u(a) — z||;, and the size of || f]-,. For experimental
design with fixed 8 and an a priori bound on the term |ju(a) — z|;, (D) may
be satisfied by taking || f]|-, to be sufficiently small. We note that at worst
we have the estimate

lu(a) = 2l = |lu(a)ll; + izl

so that fori =1

() — 2]} = i)llfllq +

and fori =20

lu(a) — zllo = (xo/mo)ll fl-1 + [2lo-

In either case |ju(a) — z|; = C(f, z) which is bounded.
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ProrosiTioN 3.15.  Let B > 0 and let conditions (C) and (D) hold. Then
there exists a positive constant & such that

D (a)(h, h) = 8|h|}3 (3.20)

forany h € Q.

Proof. The second Fréchet derivative of J is given by (3.11). Hence,
we have the estimate with 8 > Q0 fori =0 or 1

D (a)(h, h) = 2(Joll? = llu(a) — zll{wll: + B[AJ3).
From Poincaré’s inequality we see that
D (a)(h, h) = 2(|pll} — &ollu(a) — 2l Vwl| + B[A)3).

Finally, it follows from (3.17) that

Ds(ayth = 2 e = 2Rt - i (L) i ) i

(G

where v = min(8, 1), and the result follows by selecting § > 0 such that

32 (et~ 2ot — 24 (L) 151 )

Remark 3.16. We observe that the result of Proposition 3.15 implies
that a solution a, of (3.6) satisfying (D) is isolated.

Define the following subsets of Q(z):
Qs(z) = {ay € Q(2): a, satisfies (3.20)}.

From (3.11), (3.20), and Proposition 1.1, we observe the following.

Remark 3.17. In the norm case (3.4)(ii), condition (D) may be re-
placed by

5<2 (B~ 2xetuca — 2 (L) 1) (3.21)

(}

since the estimates of Corollary 3.13 are no longer necessary.



LEAST SQUARES OPTIMAL ESTIMATORS 75

The following is easily proved.
Lemma 3.18. Q4(z) is closed in Q(z).

THEOREM 3.19.  Ler € have a C* boundary, let conditions (C) and (D)
hold, and suppose that the set of Lagrange multipliers A are bounded in Y*.
Then for each § > 0, Qxz) has at most finitely many elements.

Proof. From Theorem 3.6 and Lemma 3.12 it follows that Q4z) is a
compact set in Q. Further, from Remark 3.16 the elements of Qxz) are
isolated. If there were infinitely many elements in Q4(z), then from the
compactness there must be a cluster point g, € Qs(z). But then g, is not
isolated giving a contradiction. |

CoroLLARY 3.20. Let Q) have a C* boundary and let (C) hold. If there
exists &, > 0 such that

veops — 2Roilu(a) = 2| fll-1 > & (3.22)

holds for each a € Q(z) and if Q(z) = Q(z) holds, then Q(z) has only
finitely many elements.

We now establish sufficient conditions that depend only on uy ¢, z, and

f for (3.22) to hold for the cases (3.4)(i) or (3.4)(iii) in which N(a) is a

seminorm, To this end let « = o be a constant such that « € Q,,. Then
for any a, € Q(z), J(a) = J(ay). Since N(a) = 0, it follows that

le(a) — 2ll = lle(ao) — 2]l (3.23)

Consider now the problem

find ¢ € W2 such that

[, Vu-ve=(f 9

for every ¢ € W2 It is clear that u(a) = o'y, and we formulate the
minimization problem

find oy € [y, 1] such that
j(a()) = I‘a(;l(p - ZHIZ = lnf{](a)' a € Qad}s (324)

where j(@) = a|¢|} — 2a7'(#, 2); + [z]}. Under condition (C).
and set &' = (¢ 2)i/[|Yll}. Thus oy’ = &' if

i # 0
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| > A1 = -1
Mo =@ =My,
. (3.25)
ay' = ug! ifa' > ug',
and
o5l = uy! ifa ' <uil

ProrosiTion 3.21. Let ) have a C* boundary, let (C) hold, and suppose
that Q(z) = Q(2). If

v — 2Roxileg ¥ = 2l fl-0 > 0, (3.26)

where o is the solution of (3.24), then Q(z) has only finitely many elements.
Proof. Let 8, > 0 be such that

vug — 2Roxillae 't — 2|l fll-1 > So.

From (3.23) inequality (3.25) holds for any a, € Q(z), and the result follows
from Corollary 3.2. |

Remark 322. We note that &' depends only on the relation of z with
f (or its solution ). Suppose data z and ¢ are such that

(E) (o2);>0

and condition (C) holds. By choosing u, sufficiently large we may satisfy
the right inequality in (3.25). The constraint involving p, is one that implies
that the problem is nondegenerate. It is not unreasonable to use the solution
of (3.23) without constraints but under condition (E) to specify . Let us
consider the case in which wg! = &'. In this case we have

j(en) = llulen) = 2l = (I2IFwl? = (2. D/l
Furthermore, if kcondition (E) holds, oy = u, and
1> 2¢5 ko 2) (lF AT — (2, 3D Al )] (3.27)

holds, then there exists 8 € (0, 1) such that (3.25) holds.
Remark 3.23. For the case i = 1, it is clear that (E) holds if and only if

(f,.z) > 0. (E)
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Also, noting that || f||.; = ||Vl and (V¢, Vz), = (f, 2), inequality (3.27) be-
comes

1> 265" w2’V AR = £ 2D 211
Remark 3.24. We can give an interpretation of (E)'. Let p be given by
p=u(@ — z fora € Q.4 Then we may think of p as a measurement error.
If the data and the model equation are reasonable, then there is some 4

in Q4 such that pis small. Note in [10] it is assumed that there is a coefficient
@ such that p = 0. Now it follows that for any ¢ € V

j“a-Vu(a)-wp dx = {f, .
Hence, we have
[,@%G+p) Vedr=(fo,
and setting ¢ = z,
[, av@+p)-Vzdx=(f2).
If (E)’ does not hold, then
fﬂ avz)? dx = —fﬂ aVp-Vz dx.

Hence, we find that

V2]l = (1! o)V .-

This inequality implies the measurements are dominated by the error of
the measurement. It follows that if

vzl > (ui/ua)Voll,

then condition (E)" holds.

In order to apply the results on stability of Alt [3] (see also [7, 20, 21]),
it is necessary for the fit-to-data functional and the constraint function to
satisfy a Lipschitz condition. We state this as the following proposition
since it is straightforward to check.
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LeEmMA 3.25. There exist constants K, and K, that may depend on a,
and z, such that

|J(a1»21) — Jay, Zz)| = Kl(”al —

[+ llzi — zal)
and
IG(a)) — G(@)|, = Killay — aaf».

We now have the following result (cf. [7, 20, 21]).
ProposiTioN 3.26.  Let (D) hold. There is a positive number r such that
if there is a solution a; € Q(2) such that

a. € Q(z0) N Blay, 1),

where B(ay, r) = {a € Q: |la — ayllp = r} then

”az - flo”Q = K“Z - ZU”!/,/Z’

where k is a constant dependent on ay, r, and the Lipschitz constant C.

Remark 327. The above result gives stability with respect to the data
z if there exists a local minimum solution of (3.6) within a certain neighbor-
hood of aq.

We now use the results on the upper semicontinuity of the mapping
z — Q(z) to obtain the following.

THEOREM 3.28.  Let 9Q) be C*, let the set of Lagrange multipliers A(%,)
be bounded in (W**)*, and let (C) and (D) hold. Then there exists a neighbor-
hood M C Z, of z, such that for any z € M each a, € Q(z) satisfies

la; = agllo = Cllz — zoll%;

for some element a, € Q(z,).

Remark 3.29. Recall that if 9Q is C* and Q(z) = Q(z) holds, then the
mapping z — Q(z) is upper semicontinuous.

Hence, we have the following for the nondegenerate case.

TueoREM 3.30.  Suppose that 8 is C*, (C) and (D), and Q(z) = O(2).
Then there exists a neighborhood M C Z, of z, such that for any z € M
each a, € Q(z) satisfies
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lla: = aollo = Cllz = zallZ;
for some ay, € Q(zo).
Finally we observe the following in addition to Theorem 3.30.

Cororrary 3.31.  Let ) have a C* boundary. Let (C) and (D) hold,
and suppose that Q(z) = (Q(z). Then there is a neighborhood M C Z, of
2o such that for each z € M, the set Q(z) has only finitely many elements.

4. UNIQUENESS AND CONTINUOUS DEPENDENCE

We consider the functional (1.5) with (E.B8) and N(a) satisfying (1.10(i1)
and (1.11). We assume that there is a physically nondegenerate (PND)
solution @ > uy. Hence, the associated Lagrange multiplier is zero, and
such a solution a satisfies the system of equations

~V-(@Vu)=f inQ

u=20 on Q) (4.1)
-V-(aVp)=u- in ()
and the variational equation
B(a, h), = f  (Vu-Vp)hdx (4.3)

for all & € W22, In fact, the system (4.1)~(4.3) characterizes all stationary
points a, of J(-) such that a, > py. Hence, we define the following set

Q,(z) ={a € W22 ais a solution of (4.1)~(4.3) and a = u}.

It is clear that if Q(z) = O(z), then Q(z) C Q,(2).

In this section we examine the continuity properties of the mapping
z — (,(z) and obtain upper semicontinuity. In addition we obtain a condi-
tion similar to but more stringent than that for sufficiency (D) implying
uniqueness for the solution of (4.1)-(4.3). If Q(z) = O(z). then there exists
a unique solution of the estimation problem and that solution is Lipschitz
continuous with respect to perturbations of the data.

We begin by showing that the set of solutions of (4.1)—(4.3) is bounded
in W22,
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ProrosiTion 4.1.  Ifa € Q(z). then

llall. = = s Al (Ga A1+ woresll2])-

™|~

Proof. From standard elliptic estimates we see that

\ERTE
Mo
and
VPl = wdpa’llfl-1 + xomes Iz
From (4.3) we have

1

3 Fllvalivel

llaoll, =

and the estimate follows. |
The following shows that Q,(z) is weakly compact.

ProrposiTion 4.2, If {ai}ii-, is a sequence in W?? such that a, € Q,(2)
for each k, then there is a subsequence a, — a weakly in W*? where the
limit a satisfies Eqs. (4.1)-(4.3).

Proof.  Since W22 embeds compactly in C(c€((Q)), it follows from the
previous lemma that there is a subsequence {a, }72, such that

a,, — a weakly in W22 and C%c€(Q2)).

Hence, a Z w,. Further, it is also clear that the subsequence may be chosen
such that

u,, — uweakly  in W§?

and

pi,— p weakly in Wi?n w22

from elliptic regularity estimates [2, 14]. This convergence is sufficiently
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strong to pass to the limit in (4.1)—(4.3). Hence, the limiting functions a,
1, and p form a solution of the system (4.1)-(4.3). |

Remark 43. From the above propositions it follows that if Q(z) =
O(z), then Q,(z) is nonempty and weakly compact in W22,

Let % = {z: ||z — zo| = n} denote the closed ball in L2 of radius n centered
at zpand Q! = U ez Q,(z). From elliptic regularity theory we have the fol-
lowing.

PROPOSITION 4.4.  Let Q(z) = O(z). Then the set Q] is nonempty and
compact in W*2.

Proof. From regularity theory we have seen that if a € Q ], then

lallw v, 2 = C(zp, 0. f)

for v € [2, 4). It follows that if Q7 is closed and sequentially compact then
it is compact. This is straightforward and is shown in a manner similar to
the proof of Proposition 4.2. |

By a similar proof, we have the following.

PropOSITION 4.5.  Let Q(z) = O(z). The mapping z — Q,(z) from ¥
with the weak L* topology into Q7 with the strong W22 topology is closed.

The above results imply the following.

THEOREM 4.6.  Let Q(z) = Q(z). The mapping z — Q,(z) from B with
the weak L? topology into Q1 with the W2 topology is upper semicontinuous.

We now wish to determine conditions such that there is a unique solution
to the system (4.1)—(4.3). These results require a weaker norm for the data
term than in [12] although we determine uniqueness if the constraints are
inactive. To this end, suppose that (a,, u,, p;) and (a3, us, p,) are both
solutions of (4.1)-(4.3). Define @« = a; — a;,v = u; — u, p = p, — p,, and
{ = z; — z,. We see that (e, v, p) is a solution of the system

V- (@, V0)=V-(«Vu;) inQ

4.4
v=20 on 3} (44)
~V-(a;Vp) =V - (aVp} +tv+¢ in {1 45
p=0 on a4} (45)

Bla, h), = fﬂ (Vo -Vpy + Vi - Vp)h dx (4.6)

for any h € W22 The following estimates clearly hold
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Vol = wo?killedl2lI Al 4.7)
IVell = i >xokilodl2(ler — 2]l + woll FIl) + womealIZ] (4.8)
Bllad = x1(IVol[[[Vpil + [Vaea] [V l]). (4.9)

From (4.7)-(4.9) we see that

lledl = % wtuo I A2l = 2|l + woll Al- Hledl
B (4.10)
+ EU il Al
Accordingly, we specify the condition
C = C(llus = zil. £, po. B)
(F)

= E Y kiua A 2w = 2l + ol Al < 1.

Thus, inequality (4.10) yields the inequality

lledz = {xorall Al /(1 = C)Broid]

and implies the result.

THeoreM 4.7. If conditions Q(z) = Q(z) and (F) hold, then system
(4.1)-(4.3) has a unique solution.

CorOLLARY 4.8. If Q(z) = O(z) and condition (F) holds, the mapping
Z > Q.(2) is single valued and Lipschitz continuous.

Remark 4.9. We note that (F) is similar to condition (D) and the inequal-
ity in the proof of Proposition 3.15. Hence, a comment similar to that of
Remark 3.14 holds indicating that, for fixed 8, condition (F) prescribes a
condition on the relation of model output to the data. Further, condition
(F) may be satisfied as well by choosing ||f]|_; sufficiently small.
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