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INTRODUCTION

In this paper we discuss the class of essentially finitely generated Lie
algebras, defined by analogy with the module-theoretic concept found in

w xGoodearl 6 . This concept proves to be an extremely useful tool for
elucidating the structure of semisimple Lie algebras with Min-c. In particu-
lar it permits us to answer in the affirmative one part of an open question,

w xnamely, Question 4 of Aldosray and Stewart 2 .
In Section 1 we establish some fundamental properties of the class EE ff gg

of essentially finitely generated Lie algebras, including the crucial property
of E-closure. We also prove an L-module analogue of this result

In Section 2 we apply the concept of essentially finitely generated
algebras to prime ideals of Lie algebras with Min-c. Our main result is an

w xaffirmative answer to part of Question 4 of Aldosray and Stewart 2 .
Specifically, we prove that if a Lie algebra contains finitely many prime
ideals with zero intersection, then L is essentially finitely generated. When
L is semisimple, this implies that L g Min-c, and the answer to the open
question follows.

Throughout this paper, all Lie algebras considered are of finite or
infinite dimension over a field k of arbitrary characteristic, unless other-
wise specified. Most notation used is standard, and may be found in

w x w x w xAldosray 1 . Aldosray and Stewart 2]4 , or Amayo and Stewart 5 . Thus
we write I F L if I is a subalgebra of L and I e L if I is an ideal of L.

Ž .The centralizer of I in L is written C I . The subalgebra generated by aL
² :subset X : L is denoted X , and the ideal generated by a subset X : L

² :L � 4 ² :Lis denoted X . If X s x is a singleton we write x in place of
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²� 4:Lx . Throughout this paper whenever we speak of an ideal of L being
finitely generated we mean that it is finitely generated as an ideal of L,
rather than finitely generated as a subalgebra of L. A Lie algebra L is
semisimple if it has no nonzero abelian ideals.

An ideal Ce L is a centralizer ideal if there exists an ideal I e L such
Ž .that C s C I . An ideal K e L is a complement ideal if there exists anL

ideal I e L such that K l I s 0 and if J = K, J e L, and J l I s 0, then
J s K. That is, K is maximal subject to K l I s 0. We say that K is a
complement to I. We require two related chain conditions: L g Min-c if L

Ž w x.has the minimal condition for centralizer ideals Aldosray and Stewart 2
and L g Max-CI if L has the maximal condition for complement ideals
Ž w x. Ž .Aldosray and Stewart 3 . An ideal Ee L is essential written E ess L if
E intersects every nonzero ideal of L nontrivially. An element x g L is

² :Lregular if x is an essential ideal of L.
Ž .Any other notation is defined as needed. The end or absence of a

Ž .proof is signalled by a box B .

1. ESSENTIALLY FINITELY GENERATED
LIE ALGEBRAS

w xBy analogy with ring theory 6 , we make the following definition:

Ž .DEFINITION 1.1. a A Lie algebra L is essentially finitely generated if
L contains a finitely generated essential ideal. We denote the class of all
essentially finitely generated Lie algebras by EE ff gg.
Ž .b An L-module M is essentially finitely generated o¨er L if M contains

a finitely generated essential L-submodule.

Ž .Note that b is equivalent to M being essentially finitely generated as a
Ž . Ž .U L -module, where U L is the universal enveloping algebra of L.

EXAMPLE 1.2. The class EE ff gg is neither Q-closed nor I-closed. To see
� < 4this, let L be the infinite Heisenberg algebra with basis z, x , y i g Ni i

w xsuch that x , y s z and all other elements commute. Then L g EE ff ggi i
² : ² < :since z is essential. Let I s z, x i g N e L. Then since both LrIi

and I are infinite-dimensional abelian, neither lies in EE ff gg.

In contrast to this example, we have:

PROPOSITION 1.3. If L g EE ff gg and 1 is a complement ideal of L, then
LrI g EE ff gg.

Proof. Let J be a finitely generated essential ideal of L. The I q
w Ž .x ŽJ ess L by Aldosray and Stewart 2, Lemma 2.1 e . Hence I q

. w Ž .x Ž .J rI ess LrI by Aldosray and Stewart 3, Lemma 6.4 b . Since I q J rI
is clearly a finitely generated ideal of LrI, it follows that LrI g EE ff gg.
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Ž .PROPOSITION 1.4. a . If I and J are ideals of L, with I ess J ess L, then
I ess L.

Ž .b If L is semisimple, I ess L, and I : B F L, then I ess B.
Ž .c If L is semisimple and I, J are ideals of L such that I : J and

I ess L, then I ess J and J ess L.

Ž .Proof. a Suppose that 0 / K e L. Then K l J / 0. However, K l
Ž .J e J, so K l J l I / 0, whence K l I / 0. Therefore I ess L.

Ž . Ž .b Let K e B and suppose that K l I s 0. Then K : C I s B lB
Ž . Ž .C I . However, L is semisimple and I ess L, so C I s 0. ThereforeL L

K s 0 and I ess B.
Ž . Ž . w xc Lemma 2.1 e of Aldosray and Stewart 3 implies that J ess L.

Ž .Moreover, I ess J by the foregoing b .

COROLLARY 1.5. Let I be an ideal of L such that I is essentially finitely
generated. Then L is essentially finite generated if either of the following holds:

Ž .a I ess L.
Ž . Ž .b C I s 0.L

Ž . ² :IProof. a Let J s x , . . . , x be a finitely generated essential ideal1 k
of I and consider the ideal K of L generated by J. We have J : K s
² :Lx , . . . , x : I, so K ess I. However, I ess L, so K ess L by Proposition1 k

Ž .1.4 a . Therefore L g EE ff gg.
Ž . Ž . Ž .b Since C I s 0 implies that I ess L, part a implies that L gL

EE ff gg.

We now prove that the class EE ff gg is E-closed.

THEOREM 1.6. Suppose that I e L and both I and LrI g EE ff gg. Then
L g EE ff gg.

² :I ² :LProof. Let J s x , . . . , x ess I, and again define K s x , . . . , x1 k 1 k
: I. Then K is a finitely generated ideal of L. Moreover J : K, so

² :L Ž .K ess I. Let N s y , . . . , y be such that N q I rI ess LrI. This im-1 t
plies that N q I ess L. We claim that N q K ess L. Certainly N q K is
finitely generated. We complete the proof by showing that N q K ess N q

Ž .I, after which we can apply Proposition 1.4 a to conclude that N q K ess L.
Ž .Consider the natural homomorphism a : N q I ª IrN lI defined by

Ž . Ž . Ža n q i s N l I q i for n g N, i g I. That a is well defined is
. Ž . Ž .the content of the second isomorphism theorem. Then a K ess a 1

y1Ž Ž .. y1Ž Ž ..since K ess I. Therefore a a K ess a a I s N q I. However,
y1Ž Ž ..a a K s N q K.
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COROLLARY 1.7. EE ff gg is closed under finite direct sums.

There is an analogue of Theorem 1.6 for L-modules, which we shall
require later:

THEOREM 1.8. Suppose that I e L, and both I and LrI, considered as
L-modules, are essentially finitely generated o¨er L. Then L g EE ff gg.

Proof. This follows exactly as in the proof of Theorem 1.6, replacing
essential ideals by essential submodules and noting that a is an L-module
homomorphism. There is a slight simplification because, in a notation
analogous to that used in the proof of Theorem 1.6, we have J s K.

REMARK 1.9. If L g EE ff gg, then L need not satisfy Min-c. For if L is the
Ž .McLain algebra L Z o¨er any field F, then L g EE ff gg _ Min-c.F

PROPOSITION 1.10. L g EE ff gg if and only if L does not contain an infinite
direct sum of ideals.

Ž .Proof. Consider L as a U L -module and apply the arguments of
w xGoodearl 6, Proposition 3.13 .

Ž .COROLLARY 1.11. a L g EE ff gg if and only if L g Max-CI.
Ž .b If L is semisimple, then L g EE ff gg if and only if L g Max y c.

2. SEMISIMPLE ALGEBRAS WITH Min-c

Next, we apply our results to give a new characterisation of semisimple
Lie algebras with Min-c.

THEOREM 2.1. Let L be a semisimple Lie algebra. Then L g Min-c if
and only if e¨ery prime ideal is essentially finitely generated o¨er L.

Proof. First we assume L g Min-c and prove that every prime ideal P
is essentially finitely generated. If P is not a minimal prime ideal, then

w xP ess L by Aldosray and Stewart 3, Proposition 2.12 . Therefore P con-
w xtains a regular element p of L by Corollary 2.3 of Aldosray 1 . Hence

² :L ² :Lp is a finitely generated essential ideal of L, and since p : P it
follows that P is essentially finitely generated over L.

Otherwise we may assume that P is a minimal prime ideal, so that
Ž . w Ž .xP q C P ess L by Aldosray and Stewart 3, Proposition 2.6 a . ThereforeL
Ž .P q C P contains a regular element x of L by Corollary 2.3 of AldosrayL

w x ² :L Ž .1 , so that x ess L. However, L is semisimple, so P l C P s 0 andL
Ž .P q C P is a direct sum. Therefore we can write x uniquely as x s a q b,L

Ž . ² :L ² :L ² :L ² :Lwhere a g P, b g C P . Now x s a q b : a q b , andL
² :L ² :La l b s 0 by directness of the sum.
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² :LWe claim that a is an essential ideal of P. Suppose that J e P and
² :L ² :LJ l a s 0. Since J : P we also have J l b s 0. Therefore

w ² :L x w ² :L x w ² :L xJ, a s 0 and J, b s 0, so that J, a q b s 0 and hence
w ² :L x Ž² :L.J, x s 0. Therefore J : C x . However, L is semisimple andL
² :L Ž² :L. ² :Lx ess L, so C x s 0, implying that J s 0. We deduce that a isL
essential in P, and hence that P is essentially finitely generated over L.

Now we assume that every prime ideal P is essentially finitely generated
and prove that L g Min-c. Let P be a prime ideal of L. If P is not

w xminimal prime, then P ess L by Aldosray and Stewart 3, Proposition 2.12 .
However, P g EE ff gg, so L g EE ff gg by Corollary 1.5.

If on the other hand P is a minimal prime ideal of L, then we claim that
P is a maximal centralizer ideal of L. This is proved for L g Min-c in

w xAldosray and Stewart 2, Lemma 4.2 , but here we do not know that
Ž .L g Min-c so we must use a different argument, as follows. Since C P /L

Ž Ž ..0 and P is a prime ideal, it follows that P s C C P and P is aL L
Ž .centralizer ideal. Now suppose that P s C I and that there exists anL

Ž . w Ž . x w Ž . xideal J / 0 such that C J ) P. Then C J , J s 0, therefore C J , JL L L
Ž .: P. Since C J ­ P, the primeness of P implies that J : P. However,L

w x Ž .J, P s 0, so J : z P s 0 by semisimplicity, a contradiction.1
w x Ž² :L.By Theorem 3.4 of Aldosray 1 we have P s C x for someL

² :L Ž² :L. ² :Lnonzero uniform element x g L. Hence P l x s C x l x sL
² :L0 by semisimplicity. Therefore the sum P q x is direct. Now let I be a

² :Lfinitely generated essential ideal of P and let p : P q x ª P be a
y1Ž . ² :Lprojection. Then p I is a finitely generated essential ideal of P q x ,

² :Land P q x is an essentially finitely generated ideal of L. Furthermore,
² :L Ž ² :L. ŽP q x ess L, for if K e L and K l P q x s 0, then K : C P qL

² :L. Ž . Ž² :L. Ž .x s C P l C x s C P l P s 0 by semisimplicity. There-L L L
fore L g EE ff gg by Corollary 1.5. However, for semisimple L, this implies

Ž .that L g Min y c by Corollary 1.11 b .

Finally we apply the machinery developed in this paper and in Aldosray
w x1 to answer, in the affirmative, part of Question 4 of Aldosray and

w xStewart 2 . This asks whether a semisimple Lie algebra is in Min-c if the
intersection of finitely many maximal centralizers is zero. In fact we prove
a slightly more general result. Theorem 2.3: a Lie algebra is in EE ff gg if the

Žintersection of finitely many prime ideals is zero. Recall that a Lie algebra
.L is prime if 0 is a prime ideal of L. This result implies the answer to

Ž .Question 4 because EE ff gg s Max-CI by Corollary 1.11 a . Moreover, for
semisimple Lie algebras Max-CI s Max-c s Min-c by Theorem 4.1 of

w x w xAldosray and Stewart 4 and Lemma 2.1 of Aldosray and Stewart 2 , and
w xa maximal centralizer is prime by Lemma 4.1 of Aldosray and Stewart 2 .
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LEMMA 2.2. Let L be a prime Lie algebra. Then e¨ery nonzero ideal of L
is essential.

Proof. Let 0 / I e L and suppose that I l J s 0, where J e L. Then
w xI, J s 0. Since L is prime and I / 0 we must have J s 0. Therefore
I ess L.

THEOREM 2.3. Suppose that a Lie algebra L contains finitely many prime
ideals P , . . . , P such that P l ??? l P s 0. Then L g EE ff gg.1 k 1 k

Proof. Consider the descending chain
L = P = P l P = ??? = P l ??? l P s 01 1 2 1 k

and, by omitting redundant P if necessary, assume that k is the firsti
positive integer for which P l ??? l P s 0. We claim that every factor1 k

P l ??? l P r P l ??? l PŽ . Ž .1 t 1 tq1

is essentially finitely generated when considered as an L-module. If so,
then Theorem 1.8 and induction on t implies that L g EE ff gg.

Ž .To prove the claim, let P l ??? l P s Q. Then Qr Q l P is iso-1 t tq1
Ž .morphic as an L-module to Q q P rP , which is an L-submodule oftq1 tq1

LrP , a prime Lie algebra. By the choice of k we may assume thattq1
Ž .Qr Q l P is nonzero. By Lemma 2.2, every nonzero L-submodule Xtq1
Ž .of Q q P rP is essential in LrP . Choose X to be any nonzerotq1 tq1 tq1

Ž .one-generator submodule: then Q q P rP is an essentially finitelytq1 tq1
generated L-module.
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