Essentially Finitely Generated Lie Algebras

Falih A. M. Aldosray

Department of Mathematics, Umm Al Qura University, Makkah, POB-7296, Saudi Arabia

metadata, citation and similar papers at core.ac.uk

Received April 8, 1996

INTRODUCTION

In this paper we discuss the class of essentially finitely generated Lie algebras, defined by analogy with the module-theoretic concept found in Goodearl [6]. This concept proves to be an extremely useful tool for elucidating the structure of semisimple Lie algebras with Min-c. In particular it permits us to answer in the affirmative one part of an open question, namely, Question 4 of Aldosray and Stewart [2].

In Section 1 we establish some fundamental properties of the class \mathscr{Efg} of essentially finitely generated Lie algebras, including the crucial property of *E*-closure. We also prove an *L*-module analogue of this result

In Section 2 we apply the concept of essentially finitely generated algebras to prime ideals of Lie algebras with Min-c. Our main result is an affirmative answer to part of Question 4 of Aldosray and Stewart [2]. Specifically, we prove that if a Lie algebra contains finitely many prime ideals with zero intersection, then L is essentially finitely generated. When L is semisimple, this implies that $L \in Min$ -c, and the answer to the open question follows.

Throughout this paper, all Lie algebras considered are of finite or infinite dimension over a field **k** of arbitrary characteristic, unless otherwise specified. Most notation used is standard, and may be found in Aldosray [1]. Aldosray and Stewart [2–4], or Amayo and Stewart [5]. Thus we write $I \leq L$ if I is a subalgebra of L and $I \triangleleft L$ if I is an ideal of L. The centralizer of I in L is written $C_L(I)$. The subalgebra generated by a subset $X \subseteq L$ is denoted $\langle X \rangle$, and the ideal generated by a subset $X \subseteq L$ is denoted $\langle X \rangle^L$. If $X = \{x\}$ is a singleton we write $\langle x \rangle^L$ in place of

 $\langle \{x\} \rangle^L$. Throughout this paper whenever we speak of an ideal of *L* being finitely generated we mean that it is finitely generated as an ideal of *L*, rather than finitely generated as a subalgebra of *L*. A Lie algebra *L* is *semisimple* if it has no nonzero abelian ideals.

An ideal $C \triangleleft L$ is a *centralizer ideal* if there exists an ideal $I \triangleleft L$ such that $C = C_L(I)$. An ideal $K \triangleleft L$ is a *complement ideal* if there exists an ideal $I \triangleleft L$ such that $K \cap I = 0$ and if $J \supseteq K$, $J \triangleleft L$, and $J \cap I = 0$, then J = K. That is, K is maximal subject to $K \cap I = 0$. We say that K is a *complement to* I. We require two related chain conditions: $L \in$ Min-c if L has the minimal condition for centralizer ideals (Aldosray and Stewart [3]). An ideal $E \triangleleft L$ is *essential* (written E ess L) if E intersects every nonzero ideal of L nontrivially. An element $x \in L$ is *regular* if $\langle x \rangle^L$ is an essential ideal of L.

Any other notation is defined as needed. The end (or absence) of a proof is signalled by a box (\blacksquare) .

1. ESSENTIALLY FINITELY GENERATED LIE ALGEBRAS

By analogy with ring theory [6], we make the following definition:

DEFINITION 1.1. (a) A Lie algebra L is essentially finitely generated if L contains a finitely generated essential ideal. We denote the class of all essentially finitely generated Lie algebras by \mathscr{Efg} .

(b) An L-module M is essentially finitely generated over L if M contains a finitely generated essential L-submodule.

Note that (b) is equivalent to M being essentially finitely generated as a U(L)-module, where U(L) is the universal enveloping algebra of L.

EXAMPLE 1.2. The class \mathscr{E}_{fg} is neither *Q*-closed nor *I*-closed. To see this, let *L* be the infinite Heisenberg algebra with basis $\{z, x_i, y_i | i \in \mathbb{N}\}$ such that $[x_i, y_i] = z$ and all other elements commute. Then $L \in \mathscr{E}_{fg}$ since $\langle z \rangle$ is essential. Let $I = \langle z, x_i | i \in \mathbb{N} \rangle \triangleleft L$. Then since both L/Iand *I* are infinite-dimensional abelian, neither lies in \mathscr{E}_{fg} .

In contrast to this example, we have:

PROPOSITION 1.3. If $L \in \mathscr{E}_{fg}$ and 1 is a complement ideal of L, then $L/I \in \mathscr{E}_{fg}$.

Proof. Let *J* be a finitely generated essential ideal of *L*. The *I* + *J* ess *L* by Aldosray and Stewart [2, Lemma 2.1(e)]. Hence (I + J)/I ess L/I by Aldosray and Stewart [3, Lemma 6.4(b)]. Since (I + J)/I is clearly a finitely generated ideal of L/I, it follows that $L/I \in \mathscr{E}/\mathscr{G}$.

PROPOSITION 1.4. (a). If I and J are ideals of L, with I ess J ess L, then I ess L.

(b) If L is semisimple, I ess L, and $I \subseteq B \leq L$, then I ess B.

(c) If L is semisimple and I, J are ideals of L such that $I \subseteq J$ and I ess L, then I ess J and J ess L.

Proof. (a) Suppose that $0 \neq K \triangleleft L$. Then $K \cap J \neq 0$. However, $K \cap J \triangleleft J$, so $(K \cap J) \cap I \neq 0$, whence $K \cap I \neq 0$. Therefore I ess L.

(b) Let $K \triangleleft B$ and suppose that $K \cap I = 0$. Then $K \subseteq C_B(I) = B \cap C_L(I)$. However, L is semisimple and I ess L, so $C_L(I) = 0$. Therefore K = 0 and I ess B.

(c) Lemma 2.1(e) of Aldosray and Stewart [3] implies that J ess L. Moreover, I ess J by the foregoing (b).

COROLLARY 1.5. Let I be an ideal of L such that I is essentially finitely generated. Then L is essentially finite generated if either of the following holds:

- (a) I ess L.
- (b) $C_L(I) = 0.$

Proof. (a) Let $J = \langle x_1, \ldots, x_k \rangle^I$ be a finitely generated essential ideal of I and consider the ideal K of L generated by J. We have $J \subseteq K = \langle x_1, \ldots, x_k \rangle^L \subseteq I$, so K ess I. However, I ess L, so K ess L by Proposition 1.4(a). Therefore $L \in \mathscr{Efg}$.

(b) Since $C_L(I) = 0$ implies that I ess L, part (a) implies that $L \in \mathscr{E} / \mathscr{G}$.

We now prove that the class \mathscr{E}_{fg} is *E*-closed.

THEOREM 1.6. Suppose that $I \triangleleft L$ and both I and $L/I \in \mathscr{Efg}$. Then $L \in \mathscr{Efg}$.

Proof. Let $J = \langle x_1, \ldots, x_k \rangle^I$ ess I, and again define $K = \langle x_1, \ldots, x_k \rangle^L$ $\subseteq I$. Then K is a finitely generated ideal of L. Moreover $J \subseteq K$, so K ess I. Let $N = \langle y_1, \ldots, y_l \rangle^L$ be such that (N + I)/I ess L/I. This implies that N + I ess L. We claim that N + K ess L. Certainly N + K is finitely generated. We complete the proof by showing that N + K ess N + I, after which we can apply Proposition 1.4(a) to conclude that N + K ess L. Consider the natural homomorphism α : $N + I \to I/N(\cap I)$ defined by $\alpha(n + i) = (N \cap I) + i$ for $n \in N$, $i \in I$. (That α is well defined is the content of the second isomorphism theorem.) Then $\alpha(K)$ ess $\alpha(1)$ since K ess I. Therefore $\alpha^{-1}(\alpha(K))$ ess $\alpha^{-1}(\alpha(I)) = N + I$. However, $\alpha^{-1}(\alpha(K)) = N + K$. COROLLARY 1.7. \mathscr{E}_{fg} is closed under finite direct sums.

There is an analogue of Theorem 1.6 for L-modules, which we shall require later:

THEOREM 1.8. Suppose that $I \triangleleft L$, and both I and L/I, considered as L-modules, are essentially finitely generated over L. Then $L \in \mathscr{Efg}$.

Proof. This follows exactly as in the proof of Theorem 1.6, replacing essential ideals by essential submodules and noting that α is an *L*-module homomorphism. There is a slight simplification because, in a notation analogous to that used in the proof of Theorem 1.6, we have J = K.

REMARK 1.9. If $L \in \mathscr{Efg}$, then L need not satisfy Min-c. For if L is the McLain algebra $L_F(\mathbb{Z})$ over any field F, then $L \in \mathscr{Efg} \setminus \text{Min-c.}$

PROPOSITION 1.10. $L \in \mathscr{E}_{fg}$ if and only if L does not contain an infinite direct sum of ideals.

Proof. Consider L as a U(L)-module and apply the arguments of Goodearl [6, Proposition 3.13].

COROLLARY 1.11. (a) $L \in \mathscr{Efg}$ if and only if $L \in Max-CI$. (b) If L is semisimple, then $L \in \mathscr{Efg}$ if and only if $L \in Max - c$.

2. SEMISIMPLE ALGEBRAS WITH Min-c

Next, we apply our results to give a new characterisation of semisimple Lie algebras with Min-c.

THEOREM 2.1. Let L be a semisimple Lie algebra. Then $L \in Min$ -c if and only if every prime ideal is essentially finitely generated over L.

Proof. First we assume $L \in$ Min-c and prove that every prime ideal P is essentially finitely generated. If P is not a minimal prime ideal, then P ess L by Aldosray and Stewart [3, Proposition 2.12]. Therefore P contains a regular element p of L by Corollary 2.3 of Aldosray [1]. Hence $\langle p \rangle^L$ is a finitely generated essential ideal of L, and since $\langle p \rangle^L \subseteq P$ it follows that P is essentially finitely generated over L.

Otherwise we may assume that P is a minimal prime ideal, so that $P + C_L(P)$ ess L by Aldosray and Stewart [3, Proposition 2.6(a)]. Therefore $P + C_L(P)$ contains a regular element x of L by Corollary 2.3 of Aldosray [1], so that $\langle x \rangle^L$ ess L. However, L is semisimple, so $P \cap C_L(P) = 0$ and $P + C_L(P)$ is a direct sum. Therefore we can write x uniquely as x = a + b, where $a \in P$, $b \in C_L(P)$. Now $\langle x \rangle^L = \langle a + b \rangle^L \subseteq \langle a \rangle^L + \langle b \rangle^L$, and $\langle a \rangle^L \cap \langle b \rangle^L = 0$ by directness of the sum.

We claim that $\langle a \rangle^L$ is an essential ideal of *P*. Suppose that $J \triangleleft P$ and $J \cap \langle a \rangle^L = 0$. Since $J \subseteq P$ we also have $J \cap \langle b \rangle^L = 0$. Therefore $[J, \langle a \rangle^L] = 0$ and $[J, \langle b \rangle^L] = 0$, so that $[J, \langle a + b \rangle^L] = 0$ and hence $[J, \langle x \rangle^L] = 0$. Therefore $J \subseteq C_L(\langle x \rangle^L)$. However, *L* is semisimple and $\langle x \rangle^L$ ess *L*, so $C_L(\langle x \rangle^L) = 0$, implying that J = 0. We deduce that $\langle a \rangle^L$ is essential in *P*, and hence that *P* is essentially finitely generated over *L*.

Now we assume that every prime ideal P is essentially finitely generated and prove that $L \in Min$ -c. Let P be a prime ideal of L. If P is not minimal prime, then P ess L by Aldosray and Stewart [3, Proposition 2.12]. However, $P \in \mathscr{Efg}$, so $L \in \mathscr{Efg}$ by Corollary 1.5. If on the other hand P is a minimal prime ideal of L, then we claim that

If on the other hand *P* is a minimal prime ideal of *L*, then we claim that *P* is a maximal centralizer ideal of *L*. This is proved for $L \in \text{Min-c}$ in Aldosray and Stewart [2, Lemma 4.2], but here we do not know that $L \in \text{Min-c}$ so we must use a different argument, as follows. Since $C_L(P) \neq 0$ and *P* is a prime ideal, it follows that $P = C_L(C_L(P))$ and *P* is a centralizer ideal. Now suppose that $P = C_L(I)$ and that there exists an ideal $J \neq 0$ such that $C_L(J) > P$. Then $[C_L(J), J] = 0$, therefore $[C_L(J), J] \subseteq P$. Since $C_L(J) \notin P$, the primeness of *P* implies that $J \subseteq P$. However, [J, P] = 0, so $J \subseteq \zeta_1(P) = 0$ by semisimplicity, a contradiction.

 $\subseteq P$. Since $C_L(J) \not\subseteq P$, the primeness of P implies that $J \subseteq P$. However, [J, P] = 0, so $J \subseteq \zeta_1(P) = 0$ by semisimplicity, a contradiction. By Theorem 3.4 of Aldosray [1] we have $P = C_L(\langle x \rangle^L)$ for some nonzero uniform element $x \in L$. Hence $P \cap \langle x \rangle^L = C_L(\langle x \rangle^L) \cap \langle x \rangle^L =$ 0 by semisimplicity. Therefore the sum $P + \langle x \rangle^L$ is direct. Now let I be a finitely generated essential ideal of P and let $\pi: P + \langle x \rangle^L \to P$ be a projection. Then $\pi^{-1}(I)$ is a finitely generated essential ideal of $P + \langle x \rangle^L$, and $P + \langle x \rangle^L$ is an essentially finitely generated ideal of L. Furthermore, $P + \langle x \rangle^L$ ess L, for if $K \triangleleft L$ and $K \cap (P + \langle x \rangle^L) = 0$, then $K \subseteq C_L(P +$ $\langle x \rangle^L) = C_L(P) \cap C_L(\langle x \rangle^L) = C_L(P) \cap P = 0$ by semisimplicity. Therefore $L \in \mathscr{E}_{fg}$ by Corollary 1.5. However, for semisimple L, this implies that $L \in M$ in - c by Corollary 1.11(b).

Finally we apply the machinery developed in this paper and in Aldosray [1] to answer, in the affirmative, part of Question 4 of Aldosray and Stewart [2]. This asks whether a semisimple Lie algebra is in Min-c if the intersection of finitely many maximal centralizers is zero. In fact we prove a slightly more general result. Theorem 2.3: a Lie algebra is in \mathscr{Bfg} if the intersection of finitely many prime ideals is zero. (Recall that a Lie algebra L is *prime* if 0 is a prime ideal of L.) This result implies the answer to Question 4 because $\mathscr{Bfg} = Max$ -CI by Corollary 1.11(a). Moreover, for semisimple Lie algebras Max-CI = Max-c = Min-c by Theorem 4.1 of Aldosray and Stewart [4] and Lemma 2.1 of Aldosray and Stewart [2], and a maximal centralizer is prime by Lemma 4.1 of Aldosray and Stewart [2].

LEMMA 2.2. Let L be a prime Lie algebra. Then every nonzero ideal of L is essential.

Proof. Let $0 \neq I \triangleleft L$ and suppose that $I \cap J = 0$, where $J \triangleleft L$. Then [I, J] = 0. Since *L* is prime and $I \neq 0$ we must have J = 0. Therefore *I* ess *L*.

THEOREM 2.3. Suppose that a Lie algebra L contains finitely many prime ideals P_1, \ldots, P_k such that $P_1 \cap \cdots \cap P_k = 0$. Then $L \in \mathscr{Efg}$.

Proof. Consider the descending chain

 $L \supseteq P_1 \supseteq P_1 \cap P_2 \supseteq \cdots \supseteq P_1 \cap \cdots \cap P_k = \mathbf{0}$

and, by omitting redundant P_i if necessary, assume that k is the first positive integer for which $P_1 \cap \cdots \cap P_k = 0$. We claim that every factor

$$(P_1 \cap \cdots \cap P_t)/(P_1 \cap \cdots \cap P_{t+1})$$

is essentially finitely generated when considered as an *L*-module. If so, then Theorem 1.8 and induction on *t* implies that $L \in \mathscr{Efg}$.

To prove the claim, let $P_1 \cap \cdots \cap P_t = Q$. Then $Q/(Q \cap P_{t+1})$ is isomorphic as an *L*-module to $(Q + P_{t+1})/P_{t+1}$, which is an *L*-submodule of L/P_{t+1} , a prime Lie algebra. By the choice of k we may assume that $Q/(Q \cap P_{t+1})$ is nonzero. By Lemma 2.2, every nonzero *L*-submodule X of $(Q + P_{t+1})/P_{t+1}$ is essential in L/P_{t+1} . Choose X to be any nonzero one-generator submodule: then $(Q + P_{t+1})/P_{t+1}$ is an essentially finitely generated *L*-module.

ACKNOWLEDGMENTS

This paper was written during a visit to the Mathematics Institute at the University of Warwick. The author thanks Professor Ian Stewart for helpful conversations and the Mathematics Institute for hospitality.

REFERENCES

- 1. F. A. M. Aldosray, Uniform and regular ideals of Lie algebras, to appear.
- F. A. M. Aldosray and I. N. Stewart, Lie algebras with the minimal condition for centralizer ideals, *Hiroshima Math. J.* 19 (1989), 397–407.
- 3. F. A. M. Aldosray and I. N. Stewart, Ascending chain conditions on special classes of ideals of Lie algebras, *Hiroshima Math J.* 22 (1992), 1–13.
- F. A. M. Aldosray and I. N. Stewart, Closed ideals of Lie algebras, *Hiroshima Math. J.* 24 (1994), 613–625.
- 5. R. K. Amayo and I. N. Stewart, "Infinite-Dimensional Lie Algebras," Nordhoff, Leyden, 1974.
- K. R. Goodearl, "Ring Theory (Nonsingular Rings and Modules)," Dekker, New York, 1976.