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We discuss the capacity of the Gaussian channel with feedback. In general it is 
not easy to give an explicit formula for the capacity of a Gaussian channel, unless 
the channel is without feedback or a white Gaussian channel. We consider the case 
where a constraint, given in terms of the covariance functions of the input 
processes, is imposed on the input processes. It is shown that the capacity of the 
Gaussian channel can be achieved by transmitting a Gaussian message and using 
additive linear feedback. 

1. INTRODUCTION 

The following model for a Gaussian channel with feedback is considered: 

Y(f) = Q(t) + X(t), O<r<T(<CO), (1) 

where X(.) is a Gaussian process expressing a noise, and Q(t) and Y(f) are 
an input signal and the output signal, respectively, at time t. Q(t) is a causal 
function of a message 0 to be transmitted and the output process Y(.). In 
general, some conditions are imposed on the messages and the input 
processes. We denote by A the class of all pairs (8, @) satisfying the given 
conditions. Denote by I(@, Y) the mutual information between a message 0 
and the output process Y = {Y(f); 0 < t < T}. Then the capacity C(A) of the 
Gaussian channel under the constraint specified by A is defined by 

C(A) = sup{l(O, y); (0, @) E A 1. 

In this paper, we consider the case where the constraint A is prescribed by 
the covariance functions of the input processes. A typical example is the so- 
called average power constraint. The main purpose is to show that the 
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capacity C(A) is achieved by transmitting a Gaussian message with additive 
feedback. Using additive feedback, an input process @(,) is expressible as 

Q(t) = o(t) + Y(t), O<t<T, (2) 

where !P(,) is a causal function of the output process Y(.). Define a 
Gaussian class Ag by 

/4g = ((0, @) E A; @ is given by (2) and (O(.), Y(.), Y(.)) 

forms a Gaussian system}. 

Then it is shown that the capacity C(A) is attained in the class Ag: 

C(A) = C(&) (3) 

(Theorem 2). Furthermore, when the capacity is finite, we can analyze more 
detailed structure of the Gaussian message and the additive feedback by 
which the capacity is achieved (Theorem 1, Theorem 2). 

Channel (1) is called a white Gaussian channel when the noise X(.) is a 
Brownian motion. Result (3) for the white Gaussian channel with feedback 
was known previouly ]8, lo]. Ebert [3] gave the result (3) in the case where 
the noise X(.) is equivalent (or mutually absolutely continuous) to a 
Brownian motion. In the case of the Gaussian channel without feedback, (3) 
has also been known [ 1,7]. 

We can get the analogous result for the discrete time Gaussian channel 
with feedback [9]. 

We will give the precise description of the results in Section 2. In 
Section 3, the proofs will be given. 

2. STATEMENT OF THE RESULTS 

Let (0,X, P) be a basic probability space. The noise X= {X(t); 
0 < I < T) is a zero mean separable Gaussian process defined on (a, ST, P) 
such that ],TE[X2(t)] dt < co. A message 0 is a random variable, defined on 
(0, S, P), taking values in some measurable space, in general. However, we 
may regard messages 0 = {o(t); 0 < t < T} as stochastic processes. A model 
for a Gaussian channel with feedback is given by (I), where @ = {Q(t); 
0 < t < T) and Y = {Y(t); 0 Q t< T} are an input process and the 
corresponding output process defined on (J&F, P), respectively. It is 
reasonable to assume the following conditions (A. 1 )-(A.3): 

(A.l) 0 is independent of X, 

(A.2) For each t, Q(t) is X(O)“*(Y)-measurable, where K(Y) (resp. 
jr(@)) is a u-algebra generated by Y(u), 0 < u < c (resp. O(u), 0 < n < q3; 
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(A.3) Stochastic equation (1) has a unique solution Y(.). 

The condition (A.2) means that the channel is with feedback. The 
feedback is additive type if input processes are given by (2), where !P(y(t) is 
.5( Y)-measurable. 

We consider the case where the constraint for the input is given in terms 
of the covariance. That is, whether a process @ can be an input to the 
channel or not is determined only by the covariance function of @. In 
mathematics, the constraint can be formulated as follows. Let R be a family 
of symmetric nonnegative definite functions (i.e., covariance functions) 
R(s, t) defined on [0, T12 such that llR(t, tj dt < co. We define a class A(iR) 
of all admissible pairs (0, @) of a message 0 and an input process @, and 
the corresponding Gaussian class Ag(lR) by 

A@) = { (0, @); (0, @) satisfies (A. 1 )-(A.3) and 

the covariance function of @ belongs to R ), 

Ag(W) = { (0, @) E A(lR); @ is given by (2) and 

(O(.), Y(.), Y(.)) forms a Gaussian system}. 

Every separable Gaussian process has a canonical representation in the 
sense of Hida-Cramer [4]. We will be concerned with the case where the 
canonical representation of the Gaussian process X has no discrete spectrum, 
namely, we assume that X has a canonical representation of the form 

x(t) = ~ Jo Fi(t, U) dBi(U), O<t<T, 
i=l 0 

(4) 

where Fi(t, u), i = l,..., N, are canonical kernels and dB,(.), i = l,..., N, are 
mutually independent white Gaussian noises with continuous spectral 
measures, 

dmJt> =E[IdBi(t)l’], i = l,..., N, 

such that m,+i is absolutely continuous with respect to m, (i = l,.... N - 1). 
We denote by R* the class of all covariance functions of the form, 

R(s, t) = 5 1’ (’ Fi(S, U) Fj(t, U) ‘C~(U, U) dmi(u) dm,/(U), (5) 
i..i=l 0 0 

where T(U, U) E (rij(K u)>i,j= i . . . . . N is a symmetric nonnegative definite 
function defined on [0, T12, satisfying 

;: r I rl 0 
rii(~q U) dmi(U) < 03. (6) 

683110/3-4 
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Hereafter, for brevity, we denote by IL the family of all T(U, v) = 
(rii(u, u))i.i= 1.....,v such that 

.t \’ TT 
-ii 

Y&, 0) dm,(u) drni(U) < 00. 
i,j=l 0 '0 

(7) 

Denote by <Z’(X) the reproducing kernel Hilbert space (RKHS) 
corresponding to the Gaussian process X. It is known [4] that if 

P(@(., w) E.sr(X)\ = 1, (8) 

then the process @ is represented as 

M 
@(t, 0) = c I ’ Fi(f, u, Pit4 O) dmi(u)7 a.e. 0, 

i=l 0 

with vi, i= l,..., N, such that 

2 j’at(f9 W) dmi(t) < O”Y a.e. 0. (10) 
i=l 0 

When the process @ in (9) is Gaussian, it is also known that (10) is 
equivalent to the following condition 

(11) 

Thus, when @ is a Gaussian process, condition (8) is equivalent to that the 
covariance function of @ belongs to iR*. 

First of all, we sate the following: 

THEOREM 1. Let R E IR* and (0, CD) E A((R}), and assume that @J 
satisfies (8). Then there exists a Gaussian pair (O,, ‘Do) E Ag( (R }) having 
the following properties: 

(B. 1) The processes (p, ,..., qN, B, ,..., BN) and (qol ,..., qoN, B, ,..., BN) 
have same covariance, where (rp, ,..., up,,,) and (qo, ,..., qON) are related to the 
processes @ and Qo, respectively, by (9); 

(B.2) Almost all sample paths O,(., w) of the process 0, belong to 
Aqq; 

(B.3) Ye(t) = Qo(r) - o,(t) is oj the firm, 

Ye(t) = - ‘$ j’ 1” Fi(t, U) l,(U, U) dZoj(V) dm,(u), 
i.j= 1 0 0 

(12) 
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where Zo,i(.), j = l,..., N, are given by 

yO(t) = @o(l) t x(t) = jJ ,f' Fi(ty U) dZOi(U)y 
i=l 0 

(13) 

and l(u, u) G (li,(u, v)) E IL is a Volterru kernel (i.e., l,(u, v) = 0 for u < u). 

Then main purpose is to show that the capacity of the Gaussian channel is 
achieved within the Gaussian system. We will show this dividing into two 
cases, according as IF? c lR* or I? c! R*. 

THEOREM 2. Zf (i) R c R* and the condition (8) is satisfied by every 
(0, @) E &Ii?), or if (ii) R d I?*, then 

C(W)) = WYm). (14) 

In the case (i), the capacity C(A(lR)) is achieved by transmitting a Gaussian 
message with additive feedback given by (B3). In the case (ii), the capacity 
C@(R)) is infinite and is attained by transmitting a Gaussian message 
without feedback. 

Theorem 2 is a generalization of the result due to Ebert [3]. He considered 
the case where the noise X is equivalent to a Brownian motion (namely, the 
measure induced on the function space by the process X and the Wiener 
measuree are mutually absolutely continuous), and the input processes are 
limited in the form 

Q(t) = i’ (D(U) du with /‘E[p’(t)] dt < pT 
JO Jo 

(15) 

@ > 0 is a given constant). In this case, we can analyze more detailed 
structure of the pair (0, @) by which the capacity is achieved. Due to 
Hitsuda [5], the Gaussian process X, equivalent to a Brownian motion, can 
be canonically represented as 

X(t) = B(t) t 1’ Tf (s, u) dB(u) ds, (16) 
0 0 

where B(.) is a Brownian motion and f (s, U) E L’([O, T]*) is a Volterra 
kernel. Note that the canonical kernel F(t, U) of X is 

(17) 
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and the spectral measure is Lebesgue and-that Z’(X) = F(B). Define a class 
$2, of covariance functions by 

R, = R; R(s, t) = \’ I’ T(U, V) du dv with 1’ Y(U, u) du < pT( . 
‘0 0 '0 

Then we can easily show that R, satisfies the conditions in (i) of Theorem 2. 
Thus, applying Theorem 2, the capacity C of the channel with the noise X in 
(16) and the constraint (15) is given by C = C(A(lT?,)) = C(Ag(R,)). Let 
0 = {f?(r); 0 < t < T} be a Gaussian process, independent of X, such that 
j[ E[t9’(t)] dt < co. Then we can show that the stochastic equation, 

WI = jr l@(u) - El@) I T(u)] I du + X(t), O<t<T, (18) 
0 

has a unique solution Y(.), where E[B(u) 1 ;“(Y)] is the conditional expec- 
tation (see Lemma 5 of Section 3). Giving a message 0 and an input @ 
expressed in the form 

o(t) = jr 19(u) du, O<r<T, 
0 

(19) 

w> = j’ [e(u) -w(u) I s,vlll du, O<t<T, (20) 
0 

we define a subclass &lR,) of Ag(R,) by 

A@‘,) = ((0, @) E Ag(lR,); 0 and @ are given by (19) and (20)}. 

Then we can prove that the optimal pair is found in ?&(R,). 

THEOREM 3. Under the average power constraint (15), the capacity C of 
the Gaussian channel with feedback and with the noise X equivalent to a 
Brownian motion is given by 

c = C(A(lR,)) = C(A(lR,)). (21) 

Throughout the paper, we assume that the channel is with instantaneous 
feedback. However, we should note that our results are still valid for the 
channel with time-lag feedback. 
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3. PROOF OF THE RESULTS 

In this section we will give the proofs of the theorems. Without loss of 
generality, we may assume that the expectations of processes are zero. 

First of all, we give a formula for the mutual information I(@, I’) in the 
Gaussian channel (1). Let us assume that (4) and conditions (Al)-(A3) are 
satisfied. The following result has been known. 

LEMMA 1. (i) (Hitsuda and Ihara [6]) Assume that an input @ is given 
by (9) and (11). Then I(@, Y) is given by 

I(@, u) = i $ I'E[ ( Vi(t) - @i(t)/*] dmi(t), 
i-l 0 

(22) 

where 4dt) = E[(Di(t) I Z(r)]- 
(ii) (Pitcher [ 121) Assume that the channel (1) is without feedback 

and that CD is a Gaussian process. Then I(@, Y) is Jnite if and only if @ 
satisfies (8). 

For the proof .of Theorem 1, we prepare two lemmas. 

LEMMA 2. Let IR c IF?*, (0, @) E A(IR) and @ be given by (9). Then for 
every s E [0, T] the function E[qi(s) Bj(.)] is absolutely continuous with 
respect to the measure mj, where dB,(.) is the white noise in (4). Moreover if 
we denote by h,(s, .) the Radon-Nikodym derivative: 

(23) 

then h(s, t) z (hij(s, t))i.j= ,...,. N is a Volterru kernel in IL. 

Proof: Denote by (Dij(s, t) the linear least mean square estimate of vi(s) 
based on the observation of {B,(u); 0 < u & t}. Then it is easy to show that 
there is a function h(u, v) = (h,t(u, v)) E IL such that 

@ii(s, t) = f hij(s, V) dBj(V>, i, j = 1 ,..., N. 
‘0 

Since E((vi(s) - qij(s, t)) B,(t)] = 0, it follows from (24) that 

Equation (25) means that the function E[~i(S) Bl(.)] is absolutely continuous 
with respect to m,i and the Radon-Nikodym derivative is hJs, .). If t > s and 
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(61 < t - s, then cp;(s) is independent of B,(t + 6) - B,(t), Hence hii@, t) = 0 
for t > s and h(s. f) is a Volterra kernel. 

The following property, concerning the Volterra kernel, is known. 

LEMMA 3. Let h(s, t) = (hi@, t))i,,i= ,,..., N E U be a Volterra kernel. Then 
there exists uniquely a resoluent kernel f(s, t) = (li,i(Sy t))i,,i= ,,.,,.N E li such 
that M 

’ fik(S, U) h,i(Uy t) dm,(u) = 0. 

We now proceed to the proof of Theorem 1. 

Proof of Theorem 1. Let (qO, ,.,., pDN) be an N-dimensional Gaussian 
process such that (poI ,..., qON, B, ,..., BN) is a Gaussian process with the 
same covariance as that of (cpr ,..., rp,, B, ,..., B,J, and define a process Go by 
@Jo(t) = CyzO 1; F,(t, U) ~oi(U) &i(u). We define a Gaussian process YJt) = 
CyI 1 SA Fi(t, U) dZoi(U) by 

zOi(t) = i'POi(s) dmi@) + Bi(t), O<t<T, (26) 
‘0 

to see that Y,(t) = Qo(t) +X(t). And we define a Gaussian process a,(t) = 
,Z= 1 Sb F,(t, U> eoi(U) dmi(u> by 

eOi(t) = YOitt> + $ ('lijCt, u, dzOj(u), O<t<T, (27) 
j=l 0 

where f(s, t) = (lij(S, t)) E IL is the resoivent kernel of the Volterra kernel 
hfs, t) = (h,(s, t)) given by (23). What we have to show is that (&I,, @,J 
satisfies the conditions (Al)-(A3) and (Bl)-(B3). The verifications of (A2), 
(Bl) and (B2) are straightforward. By (26) and (27), we see that 
(Z,, ,***, Z,,) satisfies the stochastic equations 

zOi(r) =f [eOi(s) - j$, 1: lijts, u, dzOj(u)] dmi(S) + Bi(t)v 
0 

i = l,..., N (28) 

from which (B3) follows. Using (23), (26), (27) and Lemma 3, we see that 
for every i and j 

E[@oi(s) B,(t)] = J‘̂ ’ [ htj(S, U) + l&s, U> 

+ “I” 
k:, 0 

lik(S, U) h,(u, U) dmk(v) 
I 

dmi(U) = 0, 
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where s A f = min(s, t). Hence (6J,, ,,.., 0,,,) is independent of (B, ,..., B,J. 
Thus (Al) is satisfied. Finally (A3) follows from the uniqueness of the 
solution of stochastic equations (28). 

We now can prove Theorem 2 in the case (i). 

Proof of Theorem 2 (case (i)). In order to prove (14) it is enough to 
show, for each fixed R E IF?, that 

W(P))) = WdiR )I)- (29) 

Let R E R c R* be given by (5) and let (0, @) E A({R}). From condition 
(8), @ is represented as (9). And it follows that 

By Theorem 1, there exists a Gaussian pair (0,) @,,) E Ag( {R ))) satisfying 
(B l)-(B3). Let Y and Y, be the outputs corresponding to the inputs @ and 
@,, , respectively. Noting that condition (11) follows from the assumption 
R c lR* and applying (i) of Lemma 1, we have 

z(“, Y) = i ,$J’ E[lPi(f> - Oi(t)121 dmi(tb r-l 0 
(30) 

Wo, Yo) = + ,$ jT E[boi(O - $oiW121 W(t), (31) 
I-1 0 

where $i(t) = E/Pi(f) I T(Y)1 and goi = E[(Pw(~) I ~t(YJls Denote by @i(t) 
(resp. &(t)) the linear least mean square estimate of pi (resp. pool(t)) based 
on the observation of {Y(U); 0 < u < t} (resp. {Ye(u); 0 < u < t}). From (Bl) 
we have 

EIIVi(f) - @df121 = EIIVOi(f) = @Oi(f121* 

Since (u, o1 ,..., poN, Y,) is Gaussian, goi = @Toi( Hence we have 

E[l~i(f)-4~(f)12] < E[l~i(f)-@~(f)121 =E[lVOi(f) -cP^Oi(f)121~ 

Combining (30~(32), we get the inequality, 

I(@, r) < Z(@,, Yo). 

(32) 

This inequality implies that 

W({Rl)) Q Wd{Rl))- 

The converse inequality is clear from the definition, and we have the desired 
equality (29). Thus the proof is completed. 
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In case (ii), for the proof of Theorem 2, we need a zero-one law for a 
Gaussian process which is a slight generalization of the result due to 
Kallianpur ] 1 1 ] and Driscoll 121. 

LEMMA 4. Let K(s, 1) be a symmetric nonnegative definition function 
defined on 10, T]* satisfying ~~~~ K2(s, t) ds dt < co, and let @ = {Q(t); 
0 < t < T) be a Gaussian process with covariance R(s, t) such that 
j”,‘R(t, t) dt < 00. Then it holds that 

P(@(.,o)EZ(K)}= 1 or P( Q(., to) E Z(K)} = 0, 

where Z(K) is the RKHS with the reproducing kernel K. 

Proof of Theorem 2 (case (ii)). Let 40 = {Q(t); 0 < t < T} be a Gaussian 
process having a function R E R\R* as the covariance and let Y(t) = 
Q(t) +X(t). We will show that 

P{@(.,o)653(X)} = 1. (33) 

On the contrary, suppose that (33) were not true. Then it follows from 
Lemma 4 that 

P{@(,, w) EcqX)} = 1. 

Hence @ can be represented as (9) with (11). Putting ri,,(s, t) = E[rp,(s) qua 1, 
i,j = l,..., N, R(s, t) is written as (5). Hence, from (1 l), we have that 
R E R*, a contradiction. Therefore (33) is true, and we know that 

I(@, Y) = co, (34) 

by (ii) of Lemma 1. Giving a message 0 = (o(t); 0 < t < T} by o(t) = Q(t), 
it is clear that (0, @) E Ag(R) and we have the desired equations C(A(R)) = 
C(Ag(R)) = 00, from (34). 

We now turn to the proof of Theorem 3. Let the noise X be equivalent to a 
Brownian motion and be given by (16). Let tI = (19(t); 0 < t < T} be a 
Gaussian process, independent of X,such that jl E[O’(t)] dt ( 00 and define 
a process Y, = (Y,(1); 0 ,< t < T} by 

Y,(t) = f t?(s) ds + X(t). 
0 

Then we can prove the following lemma, in the similar manner to the case 
where X(.) is a Brownian motion. 
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LEMMA 5. Given a Volterra kernel k(u, v) E L’([O, T12), the stochastic 
equation 

Y(t) = 1’ B(s) ds - 1’ !” k(s, u) dY(u) ds + X(t), O<t<T, 
0 0 0 

has the unique solution, 

Y2(f) = Yl(t) + 5’ (‘ I@, u) dY,(u) ds, 
0 0 

where l(u, v) E L’([O, T12) is the resolvent kernel of k(u, v). The stochastic 
equation 

Y(t) = (t 14s) - E[e(s) I K(r)11 ds + JW, O<t(T, 
0 

has a unique solution Y,(.), and d(s) = E[@(s) 1 T(Y)] is presented as 

o(s) = f h(u, v) dY(u), 
0 

where h(u, v) E L2([0, T]‘) is a Volterra kernel. Moreover it holds that 

;3;(Yl) =TF2> =TV,), O<t<T. 

Proof of Theorem 3. In order to prove Theorem 3, it is enough to show 
that for each pair (0, @) E Ag(R,) there exists a pair (O,, Qo) E A@?,) such 
that 

I(@, y) = I(@,, Yo), (35) 

where Y and Y, are the outputs corresponding to the inputs @ and eo, 
respectively. From Theorem 1, Y(.) is expressed in the form 

Y(t) = f F(t, u) [19(u) - jU l(u, s) dZ(s)] du + X(t), 
0 0 

where B(t) = j-; F(t, u) B(u) du, Y(t) = (1, F(t, u) dZ(u) and $4 v) E 
L*([O, Tj’) is a Volterra kernel. Denoting by g(u, v) E L*([O, T]*) the 
resolvent kernel of f(u, v) in (16), we define a Gaussian process 0, = 
jh 19,(u) du and a Volterra kernel k(u, v) E L2([0, T]*) by 

co(t) = e(t) + ,fh~ U) 8(U) du, (36) 
0 
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k(u, u) = qu, u) + J’“f( u, s) Qs, u) ds + [” I@, s) g(s, u) ds 
-0 ‘0 
-u -5 

+ 
J I 
o of(u, s> Q, w) g(w, u> dw ds. 

Then we get the following relations 

e(f) = 4,(t) + j’ g(& u) 4,(u) du, 

Y(t)=jl [f?o(s)o-fk(s,u)dY(u)] ds+X(t). 
0 0 

From (38) and the definition of the class R,, we know that 

joTE [ 1 e,(s)- j)WW’W~z] ds<pT. 

We now define a coding scheme by 

Y,(t) = j’ [O,(s) - d,(s)] ds + X(r) = Qo(t) t X(t), 
0 

where o,(s) = E[ B,(s) ) *(Y,)]. It follows from Lemma 5 that 

my,) = T(Y)9 O<t<T. 

Therefore, from (39), we have the inequality 

(37) 

(38) 

(39) 

(40) 

I 
T~[I~o(~)-~o(t)121dt~~T, 

0 

which means (O,, Qo) E A@,). And the desired equality (35) follows from 
(36), (37), and (40). 
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