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a b s t r a c t

Many statistical models, e.g. regression models, can be viewed as conditional moment
restrictions when distributional assumptions on the error term are not assumed. For such
models, several estimators that achieve the semiparametric efficiency bound have been
proposed. However, in many studies, auxiliary information is available as unconditional
moment restrictions. Meanwhile, we also consider the presence of missing responses. We
propose the combined empirical likelihood (CEL) estimator to incorporate such auxiliary
information to improve the estimation efficiency of the conditional moment restriction
models.We show that,when assuming responses are strongly ignorablemissing at random,
the CEL estimator achieves better efficiency than the previous estimators due to utilization
of the auxiliary information. Based on the asymptotic property of the CEL estimator,
we also develop Wilks’ type tests and corresponding confidence regions for the model
parameter and the mean response. Since kernel smoothing is used, the CEL method may
have difficulty for problems with high dimensional covariates. In such situations, we
propose an instrumental variable-based empirical likelihood (IVEL) method to handle this
problem. The merit of the CEL and IVEL are further illustrated through simulation studies.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many statistical models appear as conditional moment restrictions. For example, a linear regression model without
assumptions on the error distribution. There have been comprehensive studies on estimation and hypothesis testing for
conditionalmoment restrictionmodels, such as Chamberlain [1], Newey [7,8], Robinson [12], and Tripathi andKitamura [14].
Recently, Kitamura et al. [6] proposed an optimal empirical likelihood (EL)-based estimator, called the smoothed empirical
likelihood (SEL) estimator, that achieves the semiparametric efficiency bound.
Sometimes, in addition to the conditional moment restrictions, auxiliary information is available as unconditional

moment restrictions, particularly often in econometric studies. The following is an example in Imbens and Lancaster [5].
Consider regressing the US household expenditure on food, y, on household income, x, and suppose that E(y|x) = µ(x, θ) =
θ1 + θ2x. This can be expressed in the general form of a conditional moment restriction model as E{g(x, y, θ)|x} = 0 with
probability 1, where g(x, y, θ) = y − µ(x, θ). In this example, the national average household expenditure on food in the
US is known as µy. Then, we can write this auxiliary information as the following unconditional moment restriction on x,

0 = µy − E(y) = µy − E{E(y|x)} = E{µy − µ(x, θ)} = E{ψ(x, θ)}.
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In this paper, we consider utilization of the auxiliary information to obtain a more efficient estimator than the SEL
estimator in conditional moment restriction models. Existing relevant research includes Chaudhuri et al. [2] and Qin [10].
However, these methods do not apply to conditional restriction models as they both require to fully specify the conditional
distribution of the response given covariates. Another goal of our study is to allow our estimator for the case of missing
responses.
Let y be a response variable and x be a s-dimensional vector of covariates. The response y can be continuous, discrete, or

mixed. Andwe assume that x is continuously distributedwith density f . Suppose thatwehave a randomsamplewithmissing
responses, (xi, yi, δi), i = 1, 2, . . . , n, where all the xi’s are observed, and the indicator δi is 0 if yi is missing, and 1 otherwise.
Like in [3,15,16] and others, we assume δ and y are conditionally independent given x, namely the strongly ignorablemissing
at random (MAR) proposed by Rosenbaum and Rubin [13]. As a result, P(δ = 1|y, x) = P(δ = 1|x) =: P(x), where P(x)
is the propensity score and prescribes a pattern of selection bias in the missingness. Let z = (x′, y)′ and zi = (x′i, yi)

′, for
i = 1, 2, . . . , n. Let g(z, θ) be a known q × 1 vector function, and ψ(x, θ) be a known r × 1 vector function. Suppose that
the conditional moment restriction is given by

E{g(z, θ0)|x} = 0 with probability 1, (1.1)

and the unconditional moment restriction is

E{ψ(x, θ0)} = 0, (1.2)

where the true parameter value θ0 is interior to parameter space Θ and Θ is a compact subset of Rp. We are interested in
the inference about θ and also the mean response µy = E(y).
We propose an approach called combined empirical likelihood (CEL) to combine the information implied by conditional

moment restrictions (1.1) and unconditional moment restrictions (1.2). By combining the information from conditional
moment restrictions (1.1) and unconditional moment restrictions (1.2), we obtain a more efficient estimator of θ than the
SEL estimator proposed by Kitamura et al. [6]. Undermild regularity conditions, the CEL estimator is asymptotically normally
distributed, hence Wilks’ type tests for θ and µy can then be constructed straightforwardly.
Our approach is partly motivated by Qin [10], but advances in two major aspects. Firstly, our model assumption is

weaker than that considered in [10]. Qin required to specify the conditional distribution of y|x, whereas our approach only
requires conditional moment specification. Secondly, the theory in [10] assumes that missing values aremissing completely
at random, whereas we only assume strongly ignorable MAR. Meanwhile, we also consider hypothesis testing for model
parameter θ , which was not covered in [10].
The organization of the paper is as follows. In Section 2, we extend the SEL method to estimation in conditional moment

restrictionmodelswithmissing responses. In Section 3,we then further consider the situationwhere unconditionalmoment
restrictions are available and propose our CEL approach and its asymptotic properties.Wilks’ type test and confidence region
for the model parameter are then given. In Section 4, we apply the CEL approach to the inference of the mean response. In
Section 5, we propose an instrumental variable-based empirical likelihood (IVEL) method which uses information from the
conditionalmoments restrictions (1.1)withmissing responses and the unconditionalmoments restrictions (1.2). Simulation
studies are presented in Section 6, and we conclude our paper in Section 7. Proofs and technical conditions are presented in
the Appendix.

2. Extension of the SEL method to missing responses

In this section, we consider only conditional moment restriction models without any auxiliary information, and extend
the SELmethod in [6] to the case ofmissing responses. Suppose that, without consideringmissing responses, the conditional
moment restriction model is given by (1.1). Then in the case of missing responses, simply by replacing g(z, θ) with
g̃(z, δ, θ) = δg(z, θ), the SEL method can be extended straightforwardly. The main driving fact is that

E{g̃(z, δ, θ0)|x} = 0 with probability 1, (2.1)

when we assume MAR. We will next briefly describe our extension to the SEL method. Let

wij =
K((xi − xj)/bn)
n∑
j=1
K((xi − xj)/bn)

, (2.2)

where K(·) is a kernel function satisfying condition C3 in the Appendix, and bn is a sequence of positive numbers which
satisfies condition C8. The extended SEL estimator is obtained by maximizing

∑n
i=1
∑n
j=1wij log pij subject to

pij ≥ 0,
n∑
j=1

pij = 1,
n∑
j=1

pijg̃(zj, δj, θ) = 0, for i, j = 1, 2, . . . , n.

By the Lagrange multiplier method, we have

p̂ij =
wij

1+ λ′i g̃(zj, δj, θ)
, (2.3)
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where, for any given θ ∈ Θ , λi solves

n∑
j=1

wijg̃(zj, δj, θ)
1+ λ′i g̃(zj, δj, θ)

= 0, for i = 1, 2, . . . , n. (2.4)

According to (2.3), the SEL at θ is defined as

SEL(θ) =
n∑
i=1

n∑
j=1

Tinwij log p̂ij =
n∑
i=1

n∑
j=1

Tinwij log
{

wij

1+ λ′i g̃(zj, δj, θ)

}
,

where Tin is a sequence of trimming functions needed for technical reasons. Cheng [3], Wang and Rao [16] and Kitamura
et al. [6] used the indicator function

Tin = I

{
1
nbsn

n∑
j=1

K
(
xi − xj
bn

)
≥ bτn

}
, (2.5)

where the trimming parameter τ ∈ (0, 1) and s is given in condition C3 in the Appendix. Then, the SEL estimator of θ0 is
defined as

θ̂ = argmax
θ∈Θ

SEL(θ). (2.6)

The asymptotic distribution of θ̂ is given by the following theorem.

Theorem 2.1. Under conditions C1–C8 in the Appendix, as n→∞, we have
√
n(θ̂ − θ0)

d
−→ N(0,Σ1),

where

Σ1 = {E[P(x)D′(x, θ0)V−1(x, θ0)D(x, θ0)]}−1

with P(x) = P(δ = 1|x), D(x, θ) = E {∂g(z, θ)/∂θ |x} and V (x, θ) = E{g(z, θ)g ′(z, θ)|x}.

3. The combined empirical likelihood (CEL) method

In this section, we consider the conditional moment restriction model (1.1) with missing responses when the auxiliary
unconditional moment restriction (1.2) is available. Based on the basic fact that the joint likelihood can be decomposed into
the product of a conditional likelihood and a marginal likelihood, we propose to estimate θ by maximizing the combined
empirical log-likelihood

n∑
i=1

n∑
j=1

wij log pij +
n∑
k=1

log qk (3.1)

subject to the restrictions

qk ≥ 0,
n∑
k=1

qk = 1,
n∑
k=1

qkψ(xk, θ) = 0,

pij ≥ 0,
n∑
j=1

pij = 1,
n∑
j=1

pijg̃(zj, δj, θ) = 0, for i, j, k = 1, 2, . . . , n,

(3.2)

where wij is defined in (2.2). Intuitively, we can interpret
∑n
i=1
∑n
j=1wij log pij as the conditional empirical log-likelihood

of y given x and
∑n
k=1 log qk as the marginal empirical log-likelihood of x. The maximization of (3.1) subject to (3.2) can be

conveniently solved by Lagrange multipliers. The Lagrangian is

L(θ) =
n∑
i=1

n∑
j=1

wij log pij +
n∑
k=1

log qk −
n∑
i=1

ηi

(
n∑
j=1

pij − 1

)
− γ

(
n∑
k=1

qk − 1

)

−

n∑
i=1

λ′i

n∑
j=1

pijg̃(zj, δj, θ)− t ′
n∑
k=1

qkψ(xk, θ),
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where η1, . . . , ηn, γ , {λi ∈ Rq : i = 1, 2, . . . , n} and {t ∈ Rr} are the multipliers for the constraints (3.2). It is easily verified
that the solution is

p̂ij =
wij

1+ λ′i g̃(zj, δj, θ)
and q̂k =

1
n

1
1+ t ′ψ(xk, θ)

, (3.3)

where, for each θ ∈ Θ , t and λi solve

1
n

n∑
k=1

ψ(xk, θ)
1+ t ′ψ(xk, θ)

= 0, (3.4)

and
n∑
j=1

wijg̃(zj, δj, θ)
1+ λ′i g̃(zj, δj, θ)

= 0, for i = 1, 2, . . . , n. (3.5)

Plugging (3.3) into (3.1) and adjusting the objective function by the trimming function (2.5), we have

CEL(θ) =
n∑
i=1

n∑
j=1

Tinwij log p̂ij +
n∑
k=1

log q̂k

=

n∑
i=1

n∑
j=1

Tinwij log
{

wij

1+ λ′i g̃(zj, δj, θ)

}
+

n∑
k=1

log
{
1
n

1
1+ t ′ψ(xk, θ)

}
. (3.6)

Then, the maximum CEL estimator of θ0 is defined as

θ̃ = argmax
θ∈Θ

CEL(θ). (3.7)

The asymptotic distribution of θ̃ is given by the following theorem.

Theorem 3.1. Suppose that the conditions C1–C8 in the Appendix are satisfied. Let S11(θ) = E{ψ(x, θ)ψ ′(x, θ)}, S12(θ) =
E{∂ψ(x, θ)/∂θ}, and S21(θ) = S ′12(θ). If S11(θ0) is a finite positive definite matrix, we have, as n→∞,

√
n(θ̃ − θ0)

d
−→ N(0,Σ2),

whereΣ2 = {Σ−11 + S21(θ0)S
−1
11 (θ0)S12(θ0)}

−1 withΣ1 given in Theorem 2.1.

For two matrices A and B, we write A ≤ B if B− A is a nonnegative-definite matrix. From Theorem 3.1, we conclude the
following corollary, which shows that the CEL estimator θ̃ (3.7) is more efficient than the SEL estimator θ̂ (2.6).

Corollary 3.1. If bothΣ1 and S11(θ0) are positive definite, we haveΣ2 ≤ Σ1, and equality holds if and only if S12(θ0) = 0.

Next, we define a CEL ratio test for θ . Let CELR(θ) = CEL(θ)− CEL(θ̃). Then the null asymptotic chi-square distribution
of−2CELR(θ0) is given in the following theorem.

Theorem 3.2. Suppose that conditions C1–C8 in the Appendix are satisfied. If θ0 is the true value of the parameter, we have, as
n→∞,−2CELR(θ0)

d
−→ χ2p , where the p is the dimension of θ0.

Let χ2p,α be the (1 − α)th quantile of χ
2
p for 0 < α < 1. Then, Theorem 3.2 implies that an asymptotically 100(1 − α)%

confidence region for θ is given by Iθ,α = {θ | − 2CELR(θ) ≤ χ2p,α}.

4. Inference for the mean response

In this section we consider the CEL-based inference for the mean response µy = E(y). Denote the conditional mean by
µ(x, θ) = E(y|x). Note that we then have µy = E[µ(x, θ)]. Let φ(x, θ, µy) = µy − µ(x, θ). Similarly as in (3.6), we define

CEL+(µy, θ) =
n∑
i=1

n∑
j=1

Tinwij log
{

wij

1+ λ′i g̃(zj, δj, θ)

}
+

n∑
k=1

log
{
1
n

1
1+ tφ(xk, θ, µy)

}
,

where, for each θ ∈ Θ , t and λi solve

1
n

n∑
k=1

φ(xk, θ, µy)
1+ tφ(xk, θ, µy)

= 0, (4.1)
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and
n∑
j=1

wijg̃(zj, δj, θ)
1+ λ′i g̃(zj, δj, θ)

= 0, for i = 1, 2, . . . , n. (4.2)

Let

CELR+(µy) = sup
θ

{CEL+(µy, θ)} − sup
µ,θ

{CEL+(µy, θ)},

then we have the following results.

Theorem 4.1. Suppose that the conditions C1–C8 in the Appendix are satisfied. At the true value µy0, we have −2CELR+(µy0)
d
−→ χ21 , as n→∞.

Theorem 4.1 implies that an asymptotically 100(1−α)% confidence interval forµy is given by Iµy,α = {µy|−2CELR
+(µy)

≤ χ21,α}.

5. An instrumental variable-based empirical likelihood (IVEL) method

In this section, we discuss an alternative empirical likelihood estimator based on instrumental variables, which we call
the IVEL method. Notice that g̃(z, δ, θ0) is not correlated with any function of x in (2.1) when we assume strongly ignorable
MAR. Therefore, for a matrix of instrumental variables v(x, θ0), (2.1) implies the unconditional moment restriction

E{ϕ(z, δ, θ0)} = 0, (5.1)

where ϕ(z, δ, θ) = v(x, θ)g̃(z, δ, θ). Based on (1.2) and (5.1), it seems natural to construct an IVEL estimator as follows.
Let pi = dF(xi, yi, δi), i = 1, 2, . . . , n, where F is the joint distribution function of (x, y, δ). Then we can obtain an

empirical likelihood estimator by maximizing
n∑
i=1

log pi

subject to the constraints
n∑
i=1

pi = 1,
n∑
i=1

pih(zi, δi, θ) = 0, pi ≥ 0, i = 1, . . . , n,

where h(z, δ, θ) = (ϕ′(z, δ, θ), ψ ′(x, θ))′. Here, to guarantee the existence of the solution, it is necessary to choose v(x, θ)
such that dim(ϕ) ≥ dim(θ). By the Lagrange multiplier method, we have

p̂i =
1
n

1
1+ λ′h(zi, δi, θ)

, (5.2)

where, for any given θ ∈ Θ , λ solves

1
n

n∑
i=1

h(zi, δi, θ)
1+ λ′h(zi, δi, θ)

= 0.

According to (5.2), the IVEL at θ is defined as

IVEL(θ) =
n∑
i=1

log(p̂i) =
n∑
i=1

log
{
1
n

1
1+ λ′h(zi, δi, θ)

}
.

Then, the IVEL estimator of θ0 is defined as

θ̆ = argmax
θ∈Θ

IVEL(θ). (5.3)

Note that, under the strongly ignorable MAR assumption,

E{ϕ(z, δ, θ)ψ ′(x, θ)} = 0.

By Theorem 1 of [11], we have
√
n(θ̆ − θ0)

d
−→ N(0, Σ̆),



X. Yuan et al. / Journal of Multivariate Analysis 101 (2010) 2420–2433 2425

where

Σ̆ =

{
E
(
∂ϕ

∂θ

)′
(Eϕϕ′)−1E

(
∂ϕ

∂θ

)
+ E

(
∂ψ

∂θ

)′
(Eψψ ′)−1E

(
∂ψ

∂θ

)}−1
.

Let θ̈ denote the maximum empirical likelihood estimate in [11] based on estimating Eq. (5.1). Similarly, by Theorem 1
of [11], we have

√
n(θ̈ − θ0)

d
−→ N(0, Σ̈),

where

Σ̈ =

{
E
(
∂ϕ

∂θ

)′
(Eϕϕ′)−1E

(
∂ϕ

∂θ

)}−1
.

As shown in [1], the asymptotic variance of any n1/2-consistent regular estimator of θ0 in (2.1) cannot be smaller than Σ1,
whereΣ1 is defined in Theorem 2.1. Since θ̈ is a n1/2-consistent regular estimator of θ0 in (2.1), we have Σ̈ ≥ Σ1. Therefore,

E
(
∂ϕ

∂θ

)′
(Eϕϕ′)−1E

(
∂ϕ

∂θ

)
≤ E{P(x)D′(x, θ0)V−1(x, θ0)D(x, θ0)}.

Furthermore, we have

Σ̆ =

{
E
(
∂ϕ

∂θ

)′
(Eϕϕ′)−1E

(
∂ϕ

∂θ

)
+ E

(
∂ψ

∂θ

)′
(Eψψ ′)−1E

(
∂ψ

∂θ

)}−1
≥

{
E{P(x)D′(x, θ0)V−1(x, θ0)D(x, θ0)} + E

(
∂ψ

∂θ

)′
(Eψψ ′)−1E

(
∂ψ

∂θ

)}−1
= Σ2.

An interesting question is to find the instrument v that yields an IVEL estimator θ̆ as efficient as the CEL estimator. Using the
standard generalized method of moments (GMM) theory in [4], one can show that the lower bound Σ2 is achieved by the
‘‘optimal’’ instrument v∗(x, θ0) = D′(x, θ0)V−1(x, θ0). But because θ0 is unknown and the functional form of D and V may
not be available, an IVEL estimator using the ‘‘optimal’’ instrument v∗ is infeasible. On the other hand, from Theorem 3.1,
we know that the maximum CEL estimator θ̃ achieves the lower boundΣ2 and it avoids finding the optimal instrument.

6. Simulation studies

In this section, we conduct simulation studies to compare the CEL estimator (3.7) with the OLS estimator, the SEL
estimator (2.6) and the IVEL estimator (5.3). We simulate data from the following three models.
Model 1:

y = θ1 + θ2x+ ε, x ∼ N(1, 1), ε ∼ N(0, 1), x⊥ε,

where the notation ‘⊥’ stands for ‘independence’.
Model 2:

y|x ∼ Exp(θ1 + θ2x), x ∼ U(0, 2),

where Exp(λ) denotes the exponential distribution with mean λ.
Model 3:

y|x ∼ Exp(eθ1+θ2x), x ∼ N(1, 1).

In all three models, the true value of (θ1, θ2) is (1, 1). For each model, we consider three different MAR mechanisms.
Case 1: P1(δ = 1|x) = exp(1.50+ 1.25x)/{1+ exp(1.50+ 1.25x)}.
Case 2: P2(δ = 1|x) = exp(0.50+ 0.70x)/{1+ exp(0.50+ 0.70x)}.
Case 3: P3(δ = 1|x) = exp(0.15+ 0.25x)/{1+ exp(0.15+ 0.25x)}.
The average missing rates for Cases 1, 2 and 3 are about 0.10, 0.25, and 0.40, respectively. For each model and each of

the above three cases of missingness, we generate 1000 Monte Carlo random samples of size n = 100 and 200. For data
simulated fromModels 1 and 2, we estimate the conditional moment restrictionmodel (1.1) with g(z, θ) = y−E(y|x, θ) =
y − θ1 − θ2x, where the auxiliary unconditional moment restriction (1.2) is given by ψ(x, θ) = µy − θ1 − θ2x, while for
Model 3, we estimate the conditional moment restriction model (1.1) with g(z, θ) = y− E(y|x, θ) = y− eθ1+θ2x, where the
auxiliary unconditional moment restriction (1.2) is given by ψ(x, θ) = µy − eθ1+θ2x. The known constants µy for Models 1,
2 and 3 are 2, 2 and e2.5, respectively. We consider four estimators of θ = (θ1, θ2), the SEL estimator θ̂ , the CEL estimator θ̃ ,
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Table 1
RMSE of the OLS, SEL, IVEL and CEL estimators.

Model n Estimator Missingness
Case 1 Case 2 Case 3
θ1 θ2 θ1 θ2 θ1 θ2

1 100 OLS 0.1627 0.1141 0.1738 0.1211 0.1875 0.1312
SEL 0.1669 0.1201 0.1830 0.1302 0.1981 0.1424
IVEL 0.1386 0.1131 0.1470 0.1205 0.1560 0.1304
CEL 0.1443 0.1198 0.1567 0.1305 0.1673 0.1419

200 OLS 0.1123 0.0774 0.1270 0.0853 0.1348 0.0927
SEL 0.1142 0.0795 0.1305 0.0884 0.1396 0.0970
IVEL 0.0956 0.0771 0.1044 0.0845 0.1096 0.0926
CEL 0.0971 0.0793 0.1078 0.0880 0.1141 0.0972

2 100 OLS 0.3536 0.3854 0.4003 0.4230 0.4284 0.4745
SEL 0.3379 0.3678 0.3850 0.4098 0.4125 0.4532
IVEL 0.3510 0.3534 0.3924 0.3948 0.4433 0.4480
CEL 0.3373 0.3373 0.3810 0.3821 0.4231 0.4268

200 OLS 0.2527 0.2813 0.2858 0.3114 0.3089 0.3473
SEL 0.2397 0.2657 0.2733 0.2949 0.2939 0.3241
IVEL 0.2559 0.2587 0.2872 0.2895 0.3093 0.3111
CEL 0.2384 0.2412 0.2706 0.2728 0.2930 0.2949

3 100 OLS 0.5510 0.2724 0.5760 0.2813 0.5622 0.2915
SEL 0.2221 0.1483 0.2602 0.1643 0.2774 0.1851
IVEL 0.2968 0.1711 0.3327 0.1865 0.3660 0.2013
CEL 0.1492 0.0914 0.1705 0.0988 0.1710 0.1018

200 OLS 0.5037 0.2346 0.5272 0.2423 0.5533 0.2611
SEL 0.1700 0.1132 0.1979 0.1228 0.2003 0.1269
IVEL 0.2017 0.1238 0.2458 0.1364 0.2695 0.1473
CEL 0.1057 0.0661 0.1210 0.0694 0.1273 0.0750

Table 2
Empirical sizes of the CEL ratio tests (%) (nominal level= 5%).

Model n H0 : µy = µy0 H0 : θ = θ0
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

1 100 5.2 4.9 4.3 3.3 3.1 3.1
200 4.6 4.3 4.8 4.9 4.3 4.1

2 100 7.5 8.0 9.2 2.7 3.0 2.6
200 5.5 4.8 5.7 4.1 3.9 4.4

3 100 4.3 2.9 5.6 5.1 5.6 6.9
200 3.6 4.0 3.7 3.8 3.9 4.6

the OLS estimator θ̄ = argminθ
∑n
i=1 δig(zi, θ)

2, and the IVEL estimator θ̆ . For the IVEL estimator θ̆ , we choose (1, x)′ as the
instrumental variable, which is optimal under Model 1 but not under Models 2 and 3.
Kitamura et al. [6] reported that the performance of SEL is relatively insensitive to the choice of the trimming parameter

τ , and therefore set Tin = 1. Our simulation results (not reported here) show that our CEL approach is also insensitive to τ .
Therefore, we set Tin = 1 for the CEL estimator as well. Moreover, both the SEL and CEL estimators require to choose the
bandwidth, bn. We follow the same cross-validation procedure suggested in [6].
Table 1 shows the root mean squared error (RMSE) of the four estimators under different models andmissingness. Under

Model 1, the OLS estimator is the maximum likelihood estimate, and it has slightly smaller RMSE than the SEL estimator
as expected. However, by utilizing the unconditional moment restriction, the CEL estimator and the IVEL estimator are
more efficient than both the OLS and SEL estimator, suggested by the smaller RMSEs. In this case, the IVEL uses the optimal
instrument and gives a slightly smaller RMSE than the CEL estimator. Under Model 2, the OLS estimator always produces
larger RMSEs than the other three estimators. Compared to the SEL estimator, the CEL estimator has similar RMSEs for θ1
but consistently smaller RMSEs for θ2. Under Model 3, the CEL estimator always gives smaller RMSEs for both θ1 and θ2 than
the SEL estimator. Therefore, the simulation results show that the CEL is more efficient due to utilization of the auxiliary
information and agree with our theory that the CEL estimator is more efficient than the SEL estimator. Furthermore, under
Models 2 and 3, when the instrument is not optimal, the CEL estimator always gives smaller RMSEs for both θ1 and θ2 than
the IVEL estimator as expected.
The empirical sizes are given by the proportion of the CEL ratio statistics greater than or equal to the critical value under

H0. The critical value is χ22,0.05 = 5.9915 for −2CELR, and χ
2
1,0.05 = 3.8415 for −2CELR

+. In Table 2, tests on the model
parameter θ always has empirical sizes below the nominal level 0.05, whereas tests on µy can have sizes larger than the
nominal level 0.05 when n = 100. But when n = 200, the empirical size is close to 0.05 for all tests on µy, which agrees
well with our asymptotic theory.
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a b c

Fig. 1. Q–Q plots of−2CELR+ relative to χ21 based on 1000 simulation runs with sample size= 200. (a) Model 1, Case 1, (b) Model 2, Case 1, (c) Model 3,
Case 1.

a b c

Fig. 2. Q–Q plots of−2CELR+ relative to χ21 based on 1000 simulation runs with sample size= 200. (a) Model 1, Case 2, (b) Model 2, Case 2, (c) Model 3,
Case 2.

a b c

Fig. 3. Q–Q plots of−2CELR+ relative to χ21 based on 1000 simulation runs with sample size= 200. (a) Model 1, Case 3, (b) Model 2, Case 3, (c) Model 3,
Case 3.

In Figs. 1–6, we give the chi-square Q–Q plots for the CEL ratio statistics, i.e. −2CELR or −2CELR+, to verify their null
distributions. The plots clearly show that the test statistics closely follow the asymptotic chi-square distributions.

7. Conclusion

In this paper, we develop a CEL approach to inference for conditional moment restrictionmodels withmissing responses
and auxiliary unconditional moment restrictions. Under MAR and other mild regularity conditions, the CEL estimator is
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a b c

Fig. 4. Q–Q plots of −2CELR relative to χ22 based on 1000 simulation runs with sample size = 200. (a) Model 1, Case 1, (b) Model 2, Case 1, (c) Model 3,
Case 1.

a b c

Fig. 5. Q–Q plots of −2CELR relative to χ22 based on 1000 simulation runs with sample size = 200. (a) Model 1, Case 2, (b) Model 2, Case 2, (c) Model 3,
Case 2.

ba c

Fig. 6. Q–Q plots of −2CELR relative to χ22 based on 1000 simulation runs with sample size = 200. (a) Model 1, Case 3, (b) Model 2, Case 3, (c) Model 3,
Case 3.

consistent and asymptotically normal. It is asymptotically more efficient than the SEL estimator due to utilization of the
auxiliary unconditional moment restrictions. Wilk’s type tests and confidence intervals were also given for the model
parameter and mean response. Since kernel smoothing is used, the CEL method may have difficulty for problems with high
dimensional covariates. In such situations, we develop an IVEL approach to handle this problem. Simulation studies also
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show that CEL and IVEL provide more efficient estimates of the model parameter and the CEL-based tests correctly achieve
the nominal level.
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Appendix

In the following, unless mentioned otherwise, all limits are taken as n → ∞. The following regularity conditions are
needed for proving the theorems.

C1: E{g(z, θ0)|x} = 0 with probability 1. For each θ 6= θ0, there exists a set Xθ ⊆ Rs such that Pr{x ∈ Xθ } > 0, and
E{g(z, θ)|x} 6= 0 for every x ∈ Xθ .

C2: The probability P(δ = 1|x) is bounded away from zero, i.e. infx P(δ = 1|x) ≥ c0 for some c0 > 0.
C3: For x = (x(1), . . . , x(s)), let K(x) =

∏s
i=1 κ(x

(i)). Here κ : R → R is a continuously differentiable p.d.f . on [−1, 1].
Also, κ is symmetric about the origin, and is bounded away from zero on [−a, a] for some a ∈ (0, 1). It also satisfies∫
|x · log |x||1/2κ(x)dx <∞.

C4: (1) E{supθ∈Θ ‖g(z, θ)‖m1} <∞ for somem1 ≥ 8.
(2) E{supθ∈Θ ‖ψ(x, θ)‖m2} <∞ for somem2 ≥ 3.

C5: (1) f (x) is the density function of x, 0 < f (x) ≤ supx∈Rs f (x) < ∞, f ∈ C2(Rs), supx∈Rs ‖∇xf (x)‖ < ∞, supx∈Rs
‖∇xxf (x)‖ <∞.

(2) E‖x‖1+% <∞ for some % > 0.
(3) θ 7→ g(z, θ) is continuous onΘ with probability 1, and E{supθ∈Θ ‖∂g(z, θ)/∂θ‖} <∞
(4) θ 7→ ψ(x, θ) is continuous onΘ with probability 1, and E{supθ∈Θ ‖∂ψ(x, θ)/∂θ‖} <∞.
(5) (θ, x) 7→ ‖∇xx{E[g(l)(z, θ)|x]f (x)}‖ is uniformly bounded onΘ × Rs for 1 ≤ l ≤ q.

C6: There exists a closed ball B0 around θ0 such that for 1 ≤ i, a ≤ q, 1 ≤ b ≤ r , and 1 ≤ j, k ≤ p,
(1) θ 7→ D(x, θ), θ 7→ V (x, θ), θ 7→ ∂ψ(x,θ)

∂θ
and θ 7→ S11(θ) are continuous on B0 with probability 1.

(2) inf(ξ ,x,θ)∈Rq×Rs×B0 ξ
′V (x, θ)ξ > 0 and sup(ξ ,x,θ)∈Rq×Rs×B0 ξ

′V (x, θ)ξ <∞, where ‖ξ‖ = 1. inf(ζ ,θ)∈Rr×B0 ζ
′S11(θ)ζ >

0 and sup(ζ ,θ)∈Rr×B0 ζ
′S11(θ)ζ <∞, where ‖ζ‖ = 1.

(3) With probability 1, supθ∈B0 ‖∂g
(i)(z, θ)/∂θ‖ ≤ d1(z), supθ∈B0 ‖∂

2g(i)(z, θ)/(∂θ (j)∂θ (k))‖ ≤ l1(z), supθ∈B0 ‖∂ψ
(b)(x,

θ)/∂θ‖ ≤ d2(x) and supθ∈B0 ‖∂
2ψ (b)(x, θ)/(∂θ (j)∂θ (k))‖ ≤ l2(x) hold for some real valued functions d1(z), l1(z),

d2(x) and l2(x) such that E(d
η

1(z)) <∞ for some η ≥ 4, E(d2(x)) <∞, E(l1(z)) <∞ and E(l2(x)) <∞.
(4) supx∈Rs ‖∇x{D(ij)(x, θ0)f (x)}‖ <∞ and sup(x,θ)∈Rs×B0 ‖∇xx{D

(ij)(x, θ)f (x)}‖ <∞.
(5) supx∈Rs ‖∇x{V (ia)(x, θ0)f (x)}‖ <∞ and sup(x,θ)∈Rs×B0 ‖∇xx{V

(ia)(x, θ)f (x)}‖ <∞.
C7: When solving (3.5) for λ1, . . . , λn, we only search over the set {γ ∈ Rq : ‖γ ‖ ≤ cn−1/m1} for some c > 0; when solving

(3.4) for t , we only search over the set {ν ∈ Rr : ‖ν‖ ≤ cn−1/m2} for some c > 0, wherem1 andm2 are defined in C4.
C8: Let m = max(m1,m2), τ ∈ (0, 1), % ≥ max{1/η + 1/2, 2/m + 1/2}, η > 2, bn → 0, and β ∈ (0, 1/2) such that

n1−2β−2/mb2s+4τn → ∞, n%b2τn → ∞, n
%−1/ηbτn → ∞, n

%−2/mbτn → ∞, n
1−2βb5s/2+6τn → ∞, n2%−1/η−1/m−1/2b2τn →

∞, and n2%−3/m−1/2b3τn →∞.

Most of the above conditions were assumed for the SEL estimator in [6]. Additional conditions are on the missing data
mechanism and the unconditional moment restrictions. Condition C1 guarantees the identifiability of θ0. Condition C2
implies that responses cannot be missing with probability 1 anywhere in the domain of the x variable. Condition C3 is a
standard assumption for kernel methods. It is also assumed in [6]. Parts (1) and (2) of C4 are needed to prove the consistency
of the multiplier t and λi. C5 and C6 contain a set of boundedness and moment conditions that are used to show the
consistency of the CEL estimator θ̃ . C7 restricts themultipliers λi to an n−1/m1-neighborhood of the origin and t to an n−1/m2-
neighborhood, which is needed to establish the asymptotic normality of θ̃ . C8 collects the conditions on %, η, bn under which
the consistency and asymptotic normality results hold.
Before proving the theorems, we need a few lemmas first.

Lemma A.1. Suppose that conditions C1 and C4–C6 hold. Then t(θ0) = S−111 (θ0)
1
n

∑n
k=1 ψ(xk, θ0)+ op(n

−1/2), and ‖t(θ0)‖ =
Op(n−1/2) = op(1).

Proof. See the proof of Theorem 1 in [9]. �

Lemma A.2. Suppose that the conditions C1–C6 and C8 hold. We have θ̃
p
−→ θ0.
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Proof. Note that θ̃ maximizes the objective function

Gn(θ) = −
1
n

n∑
i=1

n∑
j=1

Tinwij log
{
1+ λ′i(θ)g̃(zj, δj, θ)

}
−
1
n

n∑
k=1

log
{
1+ t ′(θ)ψ(xk, θ)

}
= Gn1(θ)+ Gn2(θ),

where λi(θ) = argmaxγ
∑n
j=1wij log(1+ γ

′g̃(zj, δj, θ)) and t(θ) = argmaxν
∑n
k=1 log(1+ ν

′ψ(xk, θ)).
By the proof of Theorem 3.1 in [6], for each δ > 0, there exists a strictly positive number H1(δ) such that

Pr

{
sup

θ∈Θ\B(θ0,δ)
Gn1(θ) > −n−1/m1H1(δ)

}
<
δ

4
, (A.1)

and

Pr
{
Gn1(θ0) < −d2nH1(δ)

}
<
δ

4
, (A.2)

where n1/m1d2n → 0.
Similarly, we can show that there exists a strictly positive number H2(δ) such that

Pr

{
sup

θ∈Θ\B(θ0,δ)
Gn2(θ) > −n−1/m2H2(δ)

}
<
δ

4
. (A.3)

Next, we evaluate Gn2(θ) at the true value θ0. By Lemma A.1, we have for some r ∈ (1/m2, 1/2), ‖t(θ0)‖ = Op(n−1/2) =
op(n−r). Then, we obtain

Gn2(θ0) ≥ −t ′(θ0)
1
n

n∑
k=1

ψ(xk, θ0) = op(n−r)Op(1) = op(n−r).

Therefore, for all large n, we have

Pr
{
Gn2(θ0) < −n−rH2(δ)

}
<
δ

4
. (A.4)

Letm = max(m1,m2) and H(δ) = min{H1(δ),H2(δ)}. Since Gn(θ) = Gn1(θ)+ Gn2(θ), by (A.1) and (A.3), we have

Pr

{
sup

θ∈Θ\B(θ0,δ)
Gn(θ) > −n−1/mH(δ)

}

≤ Pr

{
sup

θ∈Θ\B(θ0,δ)
Gn1(θ) > −n−1/m1H1(δ)

}
+ Pr

{
sup

θ∈Θ\B(θ0,δ)
Gn2(θ) > −n−1/m2H2(δ)

}
≤
δ

2
.

On the other hand, by (A.2) and (A.4), we have

Pr {Gn(θ0) < −anH(δ)} ≤ Pr
{
Gn1(θ0) < −d2nH1(δ)

}
+ Pr

{
Gn2(θ0) < −n−rH2(δ)

}
≤
δ

2
,

where an = c(δ) · max(d2n, n
−r) and c(δ) = {H1(δ) + H2(δ)}/H(δ). We can show that n1/man → 0. Thus, for any δ > 0,

there exists a positive integer n0(δ) such that Pr{θ̃ ∈ B(θ0, δ)} ≥ 1− δ for all n > n0(δ). The proof is then complete. �

Lemma A.3. Assuming that the conditions C1 and C4–C6 hold, let

B =
n∑
k=1

[∇θψ(xk, θ0)]t(θ0)
1+ t ′(θ0)ψ(xk, θ0)

.

Then we have

n−1/2B = n−1/2S21(θ0)S−111 (θ0)
n∑
k=1

ψ(xk, θ0)+ op(1).
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Proof. By Lemma A.1, we have

n−1/2B = n−1/2
n∑
k=1

[∇θψ(xk, θ0)]t(θ0)
1+ t ′(θ0)ψ(xk, θ0)

= n1/2
(
1
n

n∑
k=1

∂ψ(xk, θ0)
∂θ

)′ (
S−111 (θ0)

1
n

n∑
k=1

ψ(xk, θ0)+ op(n−1/2)

)

= n−1/2S21(θ0)S−111 (θ0)
n∑
k=1

ψ(xk, θ0)+ op(1). �

Lemma A.4. Suppose that the conditions C1–C8 hold. Then, we have

sup
θ∈B0
‖−n−1∇θθCEL(θ)− {E[P(x)D′(x, θ)V−1(x, θ)D(x, θ)] + S21(θ)S−111 (θ)S12(θ)}‖ = op(1).

Proof. The proof is similar to the proof of Lemma C.1 in [6]. �

Proof of Theorem 2.1. The proof is similar to the proof of Theorem 3.2 in [6]. �

Proof of Theorem 3.1. The first-order condition for (3.7) is ∇θCEL(θ̃) = 0. By the Taylor expansion, we get

0 = n−1/2∇θCEL(θ0)+
1
n
∇θθCEL(θ∗)n1/2(θ̃ − θ0),

for some θ∗ between θ̃ and θ0. Note that

−∇θCEL(θ0) =
n∑
i=1

n∑
j=1

Tinwij[∇θ g̃(zj, δj, θ0)]λi(θ0)
1+ λ′i(θ0)g̃(zj, δj, θ0)

+

n∑
k=1

[∇θψ(xk, θ0)]t(θ0)
1+ t ′(θ0)ψ(xk, θ0)

= A+ B.

By the proof of Theorem 3.2 in [6], we have

n−1/2A = n−1/2
n∑
i=1

υ∗(xi, θ0)g̃(zi, δi, θ0)+ op(1),

where υ∗(x, θ) = D′(x, θ)V−1(x, θ). It follows from Lemma A.3 that

n−1/2B = n−1/2S21(θ0)S−111 (θ0)
n∑
k=1

ψ(xk, θ0)+ op(1).

Furthermore, by Lemmas A.2 and A.4, we have−n−1∇θθCEL(θ∗)
p
−→ Σ−12 . Therefore,

n1/2(θ̃ − θ0) =
{
−n−1∇θθCEL(θ∗)

}−1
n−1/2∇θCEL(θ0)

= −Σ2n−1/2
n∑
i=1

{
υ∗(xi, θ0)g̃(zi, δi, θ0)+ S21(θ0)S−111 (θ0)ψ(xi, θ0)

}
+ op(1).

Since−n−1/2
∑n
i=1

{
υ∗(xi, θ0)g̃(zi, δi, θ0)+ S21(θ0)S−111 (θ0)ψ(xi, θ0)

} d
−→ N(0,Σ−12 ), Theorem 3.1 is then proved. �

Proof of Theorem 3.2. Since ∇θCEL(θ̃) = 0, by the Taylor expansion, we get

CEL(θ0) = CEL(θ̃)+
1
2
(θ0 − θ̃ )

′
∇θθCEL(θ∗)(θ0 − θ̃ )

holds for some θ∗ between θ̃ and θ0. Then, we can write

−2CELR(θ0) =
√
n(θ̃ − θ0)′

{
−n−1∇θθCEL(θ∗)

}√
n(θ̃ − θ0).

Furthermore, from Lemmas A.2, A.4 and Theorem 3.1, we have −n−1∇θθCEL(θ∗)
p
−→ Σ−12 and Σ−1/22

√
n(θ̃ − θ0)

d
−→

N(0, Ip). Then, Theorem 3.2 can be proved by the continuous mapping theorem. �
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Proof of Theorem 4.1. It is easy to see that

sup
θ

{CEL+(µy, θ)} =
n∑
i=1

n∑
j=1

Tinwij log

{
wij

1+ λ′i(θ̃)g̃(zj, δj, θ̃ )

}
+

n∑
k=1

log

{
1
n

1

1+ t(θ̃ , µy)φ(xk, θ̃ , µy)

}
,

and

sup
µy,θ
{CEL+(µy, θ)} =

n∑
i=1

n∑
j=1

Tinwij log

{
wij

1+ λ′i(θ̂)g̃(zj, δj, θ̂ )

}
+

n∑
k=1

log
{
1
n

}
,

where t(θ, µy) = argmaxν
∑n
k=1 log(1+ ν

′φ(xk, θ, µy)) and λi(θ) is defined in the proof of Lemma A.2.
Similar to the proof of Lemma A.1, we can show that

t(θ0, µy0) = S̄−111 (θ0, µy0)

[
1
n

n∑
i=1

φ(xi, θ0, µy0)

]
+ op(n−1/2),

where S̄11(θ, µy) = E{φ(x, θ, µy)φ′(x, θ, µy)}. By the Taylor expansion, it then follows that

n∑
k=1

log
{

1
1+ t(θ0, µy0)φ(xk, θ0, µy0)

}

= −
1
2

[
1
√
n

n∑
k=1

φ(xk, θ0, µy0)

]′
S̄−111 (θ0, µy0)

[
1
√
n

n∑
k=1

φ(xk, θ0, µy0)

]
+ op(1).

Thus, we get

CELR+(µy0) = sup
θ

{CEL+(µy0, θ)} − CEL+(µy0, θ0)+ CEL+(µy0, θ0)− sup
µy,θ
{CEL+(µy, θ)}

=
1
2

√
n(θ̃ − θ0)′

(
−
1
n
∇θθCEL+(µy0, θ∗)

)
√
n(θ̃ − θ0)

−
1
2

√
n(θ̂ − θ0)′

(
−
1
n
∇θθSEL(θ∗∗)

)
√
n(θ̂ − θ0)

−
1
2

[
1
√
n

n∑
i=1

φ(xi, θ0, µy0)

]′
S̄−111 (θ0, µy0)

[
1
√
n

n∑
i=1

φ(xi, θ0, µy0)

]
+ op(1) (A.5)

with θ∗ between θ̃ and θ0, and θ∗∗ between θ̂ and θ0. Let

Σ3 = {Σ
−1
1 + S̄21(θ0, µy0)S̄

−1
11 (θ0, µy0)S̄12(θ0, µy0)}

−1,

where S̄12(θ, µy) = E
{
∂φ(x, θ, µy)/∂θ

}
, and S̄21(θ, µy) = S̄ ′12(θ, µy). Similar to the proof of Lemma A.4, we have

−
1
n
∇θθSEL(θ∗∗)

p
−→ Σ−11 , (A.6)

and

−
1
n
∇θθCEL+(µy0, θ∗)

p
−→ Σ−13 , (A.7)

Furthermore, we can show that

n1/2(θ̃ − θ0) = −Σ3
1
√
n

n∑
i=1

{
υ∗(xi, θ0)g̃(zi, δi, θ0)+ S̄21(θ0, µy0)S̄−111 (θ0, µy0)φ(xi, θ0, µy0)

}
+ op(1), (A.8)

and

n1/2(θ̂ − θ0) = −Σ1
1
√
n

n∑
i=1

υ∗(xi, θ0)g̃(zi, δi, θ0)+ op(1). (A.9)
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Plugging (A.6)–(A.9) into (A.5) and arranging terms, we obtain

−2CELR+(µy0) =

 Σ
1/2
1

1
√
n

n∑
i=1
υ∗(xi, θ0)g̃(zi, δi, θ0)

S̄−1/211 (θ0, µy0)
1
√
n

n∑
i=1
φ(xi, θ0, µy0)


′

(Ip+1 −M)

×

 Σ
1/2
1

1
√
n

n∑
i=1
υ∗(xi, θ0)g̃(zi, δi, θ0)

S̄−1/211 (θ0, µy0)
1
√
n

n∑
i=1
φ(xi, θ0, µy0)

+ op(1),
where

M =

(
Σ
−1/2
1

0
0

S̄1/211 (θ0, µy0)

)
Q

(
Σ
−1/2
1

0
0

S̄1/211 (θ0, µy0)

)
,

and

Q =
(

Ip
S̄−111 (θ0, µy0)S̄12(θ0, µy0)

)
Σ3

(
Ip

S̄−111 (θ0, µy0)S̄12(θ0, µy0)

)′
.

Here, (Ip+1 − M) is a symmetric idempotent matrix with rank(Ip+1 − M) = 1. Therefore, by the central limit theorem and
the continuous mapping theorem, Theorem 4.1 can be easily proved. �
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